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We spent the last two months studying cosmology. The basic goal, which was highlighted

by the successful of WMAP , Planck, and low-z galaxy redshift surveys, is to establish a

basic world model. We now have a concordance cosmology, a LCDM universe, with large

cosmological constant, low matter density dominated by CDM, a flat geometry and an

almost scale invariant initial power spectrum. This model is consistent with predications

from inflationary cosmology, and is consistent with all available data.

The goal for the last month is galaxy formation, to see how collapsed objects, galaxies, clusters

of galaxies grow in the post recombination universe after the CMB era. We will also exam

the evolution of intergalactic gas, the IGM, as it is closely tied to galaxy formation.

Our goal is to present some basic tools, and go over basic processes, while highlight some of the

outstanding issues. We will not go into great details about the popular model of the day,

so I hope that things discussed will have some lifetime before they become irrelevant. Two

processes that we have not discussed so far, but are crucial for galaxy formation: nonlinear

evolution of perturbation, which results in collapse and viralization of gravitationally bound

objects; and dissipation processes, which will affect how gas, or baryons evolve and finish

the formation of galaxies. We will discuss nonlinear collapse and P-S first.

1 Nonlinear collapse

We have studied linear perturbations. Once these perturbations go nonlinear (which we

define precisely later), the collapse proceeds rapidly via gravitational instability. This leads

to galaxies, large-scale structure, etc.

The successful “concordance cosmology” postulates that we live in an adiabatic Λ cold dark

matter Universe.

Cold dark matter models are characterized by the bottom-up assembly of halos, sometimes

called “hierarchical” structure formation. Since CDM has no (known) temperature, it has

no pressure, and so can collapse into halos at the smallest scales. These halos then merge

into larger halos as gravity pulls them together.

Until about a decade or two ago, some debate about “top-down” vs. “bottom-up” formation.

Top down formation occurs when dark matter is hot (neutrinos?), and then larger structures

fragment into smaller ones, like a GMC fragments upon collapse into Jeans mass-sized lumps.
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With tight limits on the amount of hot dark matter from studying the small-scale power spec-

trum, today nobody talks much about top-down structure formation. Everything is “hier-

archical”.

Aside: Warm dark matter has been advocated for solving very small scale issues with CDM

(e.g. cusp problem). The “warmness” of DM can be characterized by a DM particle mass.

Current limits (mostly from Lyα forest) are mWDM >few keV. Particle theory DM candidates

are typically in the GeV-TeV range.

2 Zel’dovich approximation

It is possible to gain insights into the early collapse of perturbations by extending linear

perturbation theory. A perturbation in 3-D is in general triaxial. Qualitatively, collapse

occurs first along pancakes (1D), then filaments (2D) and finally quasi-spherical halos (3D).

Today, computer simulations can accurately follow this procedure from the linear regime to the

present day halo population. But computers are actually poor in the δ <∼ 1 regime, since

it involves subtracting two large numbers that nearly cancel.

Linear theory is technically only valid when δ � 1, but we can follow evolution to δ ∼ 1 using

the Zel’dovich (1970) approximation.

We will work in a “Lagrangian” frame. As opposed to measuring coordinates relative to a fixed

(or comoving) grid (“Eulerian” frame), we will study the deformation of material around

a location moving with a particle q. A high-density peak will draw in matter from it’s

underdense surroundings.

Because we are studying the deformation of matter perturbations rather than the growth of those

perturbation relative to a fixed grid, it is effectively a 2nd order perturbation expansion. But

it also yields intuition about the nature of collapse.

Call q the comoving coordinate of a particle at the center of the perturbation, and x to be the

proper coordinate of another nearby particle. We want to understand how x evolves in time.

We can write, with full generality,

x(t) = a(t)q + b(t)f(q) (1)

Here, the first term on the RHS represents the Hubble expansion of x relative to q, and the

second term represents the comoving deviation from Hubble flow, parameterized by some

function f(q).
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In the case of an initial configuration as an ellipsoid, Zel’dovich showed that the motion of each

particle can be described by a diagonal “deformation tensor” (dxi/dqj; Longair 16.11).

D = |dxi/dqj| = a(t)δij + b(t)∂xi/∂qj

For a suitable choice of axes, f(q) can be represented by three constants related to the

principal axes of the local ellipsoid: α, β, and γ. While these constants can be different for

different perturbations, the Zel’dovich approximation states that a(t) and b(t) are the same

for all particles. This is obvious for a(t) in a homogeneous cosmology, but didn’t have to be

so for b(t).

Diagonalizing the deformation tensor then yields the density evolution, described by

ρ(a− bα)(a− bβ)(a− bγ) = ρ̄a3 (2)

which describes conservation of mass in the deforming ellipsoid.

Zel’dovich derived b(t). For Ω = 1, a(t) = (t/t0)
2/3 and b(t) = 0.4(t/t0)

4/3 = 0.4R2(t), where

t0 = 2/3H0 is the final time of collapse. Hence b(t) describes the second-order perturbation

to the expansion for the ellipsoidal volume. Essentially, b(t)/a(t) represents the linear regime

growth factor.

Depending on which of α, β, γ is largest, the density will then approach a singularity along that

direction. Hence the ZA shows that collapse occurs first along one direction (into a planar

configuration). These are called “Zel’dovich pancakes”.

Once “shell crossing” occurs, i.e., when a(t) − αb(t) = 0, the ZA density formally goes to

infinity, and the ZA breaks down. Of course the density doesn’t really go to ∞, since

torques cause angular momentum that prevent singular collapse. Careful simulations have

actually validated the ZA as extremely accurate until shell crossing.

Simulations of structure formation generate initial conditions using the ZA. (1) A power spec-

trum is generated given cosmological parameters. (2) At each k a Gaussian random number

is thrown to determine the power on that scale. (3) The density perturbations are laid down

(using random phases), which effectively determines α, β, γ for each particle. (4) Particles’

positions (x(t)) are evolved from a uniform grid using the ZA from z ∼ 1000, until a time

just before the first shell crossing in the volume. (5) The velocities can be easily computed

from ẋ = ḃ(t)f(q). Given the “initial” positions and velocities, the evolution is then followed

numerically.

It is possible to extend the ZA and try to follow the particles into the weakly nonlinear (“quasi-

linear”) regime. This hasn’t proved terribly insightful, but it has been done.
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3 Spherical collapse

Let’s skip over the messy pancake and filament stages and go straight to the end state: A

halo which we will assume (for now) is spherical.

Intuition: The evolution of a spherical density perturbation is identical to the evolution of the

Universe with a matter density equal to the density of the halo, i.e. a high-Ω universe!

If we have a spherical perturbation, Gauss’s Law tells us we can ignore the matter outside the

sphere, and that the mass interior is constant. So

d2r

dt2
=
−GM
r2

. (3)

Integrating once we have

ṙ2 =
2GM

r
+ C, (4)

i.e. conservation of energy. This ODE has a solution

r = A(1− cos θ) (5)

t = B(θ − sin θ) (6)

A3 = GMB2 (7)

where θ = [0, 2π) is a parametric time variable, and C = −A2/B2. This is a cycloid. Since

C < 0, the system is bound (kinetic<potential). This is identical to the solution for the

evolution of the scale factor in a closed Universe.

Let’s study the behavior of this system at early times. Initially, the perturbation expands with

Hubble flow. For θ → 0, r = Aθ2/2 and t = Bθ3/6. Hence θ6 = 8r3/A3 = 36t2/B2, or

r3 = (9/2)GMt2. Now r3 = 3M/4πρ, so we get 6πGρ = t−2.

To relate this to overall cosmic expansion, recall that H2 = 8πGρ/3, so then 6πGρ = (9/4)H2.

Hence we get (9/4)H2 = t−2, or t = 2/3H. This is exactly the the time evolution of an

Ω = 1 universe! So at early times (when θ is small), our spherical model evolves like an

Ω = 1 universe. This is interesting, but should not be surprising.

As we move forward in time (or θ), we need to expand to higher order.

r = Aθ2/2(1− θ2/12) (8)

t = Bθ3/6(1− θ2/20) (9)

This takes some algebra but can be written as

r =
A

2

(6t

B

)2/3[
1∓ 1

20

(6t

B

)2/3]
(10)



SphericalCollapse — 5

The top sign is for the cycloid, bottom is for hyperbolic. The RHS first term is the first order

expansion as before, and the next term represents the growth of the density enhancement.

The initial mass of the system is M = 4π
3
ρ̄r3. If the density is enhanced by an overdensity δ,

the radius must shrink (by δr) in order to conserve enclosed mass:

M =
4π

3
ρ̄r3(1 + δ)(1 + δr)3. (11)

Equating the initial and final masses gives (1 + δ)(1 + δr)3 = 1. Expanding to first order

then gives

δ ≈ −3δr = ± 3

20

(6t

B

)2/3
. (12)

where we take δr from the second term in the above equation. Note that once again we have

δ ∝ t2/3, as in linear theory.

We can use these formula to quantify some key events in the perturbation’s history. First it is

growing with Hubble expansion. Then it breaks away owing to its self-gravity, and reaches

a maximum expansion at θ = π; i.e. r = 2A, t = πB. Final collapse occurs when θ = 2π,

r = 0, t = 2πB.

We can therefore estimate the overdensity at turnaround and collapse:

δturnaround = (3/20)(6π)2/3 = 1.06 (13)

δcollapse = (3/20)(12π)2/3 = 1.69 (14)

Hence shortly after a perturbation’s overdensity exceeds unity, it turns around and begins its

contraction. The collapse overdensity is 1.69, but of course this is spurious – in our perfectly

spherically symmetric, pressureless model the overdensity at collapse is actually ∞, but our

linear regime extrapolation yields 1.69. This number will still turn out to be useful.

Note that all the shells within our assumed tophat spherical perturbation behave homologously;

there are no shell crossings, and all shells of matter turn around and collapse at the same

time.

4 Virialized halos

In practice, the collapse gets halted well before singularity by a process known as “virial-

ization”. Nearby LSS torques up the matter distribution so that it contains a net angular

momentum. Because dark matter can’t release its gravitational potential energy, it obtains

a velocity that takes it around the center, and eventually equipartitions its energy with the
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rest of the matter through dynamical friction, resulting in a pressure-supported (and slightly

rotating) virialized halo.

Simulations show that the end state of virialization is a halo with a centrally-concentrated mass

distribution.

Since galaxy rotation curves are flat, it used to be that one often postulated ρ ∝ r−2. This gives

M(r) ∝ r, and v2 ∝ GM/r =const.

But simulations tend to show a different profile, first given by Navarro Frenk and White (1997):

ρ ∝ 1

r(r + rs)2
(15)

where rs is the scale radius. The NFW profile is characterized by two parameters, an overall

normalization (set by the halo mass) and the “concentration” c, roughly defined as the ratio

of the virial radius to the core radius.

There is much debate in the literature regarding the NFW profile, particularly its inner slope.

But CDM simulatations generically predict a cuspy inner profile, with ρ ∝ r1−1.5 as r → 0,

with the exact slope a matter of much bickering. Observations, at face value, indicate

ρ ∝ r∼0−1, though there is much debate about that as well.

Also note that the NFW profile is only true for relaxed, undisturbed halos; halos with recent

merger activity can deviate substantially from this profile. The reason why simulations

produce an NFW-like profile is not understood.

4.1 Virial overdensity:

An important aspect of spherical collapse is the final overdensity reached by the collapse.

While perturbation theory cannot give us this highly nonlinear endstate, one can still deter-

mine this from energetic arguments.

First let us determine the density at virialization. At turnaround the kinetic energy is zero,

and V = E. The virial theorem says the final state has V = −2T , so E = T + V = −T ,

which gives V = 2E. So the potential energy is doubled from turnaround to virialization

(assuming energy conservation), which means the radius of the system must be halved. Now,

the turnaround radius is r = 2A, so the final virialized radius must be r = A. The density

of this halo is therefore ρh = 3M/4πA3.

To get the overdensity, we need the mean cosmological density at the time of collapse. For an

Ω = 1 universe, we previously derived ρ̄ = (6πGt2)−1. For t, we use the time to collapse,
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namely t = 2πB. Hence ρ̄ = (24π3GB2)−1. The overdensity at collapse is then

δ ≈ ρh/ρ̄ =
72π3GMB2

4πA3
= 18π2 = 178 (16)

So a collapsed halo will always have an average density within it that is roughly 200 times

the cosmic mean density at that epoch!

The exact value depends on cosmology. For low-Ω universes it is larger, because the late-time

mean cosmological density is lower than expected (i.e. more expansion).

In simulations it has been found that halo scaling properties are most easily understood when

scaled to exactly 200 times the mean. So people often talk of the “virial radius” r200, “virial

mass” M200, etc. These are all quantities that correspond to a spherical region around the

halo center that encompasses a mean density of 200 times the mean density at that epoch.

4.2 Virial velocity dispersion:

Since matter in the halo is pressure supported, it has a line of sight (1D) velocity dispersion

σ. The kinetic energy is then given by T = 3Mσ2/2. Now in virial equilibrium, the KE

should be half the PE, or equal to the PE at turnaround. Hence 3Mσ2/2 = GM2/2A. Using

A = (GMB2)1/3, and B = t/2π at collapse, we get

σ2 =
1

3

(2πGM

t

)2/3
(17)

Taking t = 2/3H as the collapse time, and M = 4πρr30/3 = H2r30/2G, we get

σ2 =
1

3

( πH2r30
(2/3H)

)2/3
(18)

=
1

3

(3π

2

)2/3
(Hr0)

2 (19)

≈ (Hr0)
2 (20)

Hence the 1-D velocity dispersion of a collapsed object is simply the Hubble flow velocity

across the radius of the initial perturbation! Expressing it in terms of the virial radius

r200 = r0/2001/3, we get

σ ≈ 5.5Hr200 (21)

This depends somewhat on cosmology, since in general t 6= 2/3H. Note also that means that

for a constant mass, velocity dispersion of the halo will be different. Work out σ ∼ (1+z)1/2.

In general, high-redshift halos are smaller, and have larger velocity dispersion, for the same

mass, because the turnaround time is shorter and the universe is denser.



SphericalCollapse — 8

Recap from previous lecture on spherical collapse. Perturbation will grow non-linear and then

collapse to self-gravitating, virialized objects. It goes through three steps: (1) 1-D collapse,

to Zeldovich pancakes. We can develop perturbative models, i.e., Zeldovich approximation,

to describe this process. Density perturbation is triaxial. One axis will collapse first. (2)

1-D pancake will collapse to filaments; (3) finally, the highest density regions will go through

quasi-spherical collapse to dark matter halos.

The problem of spherical collapse is similar to the evolution of a over-critical universe when it

is linear or quasi-linear. We used this to work out and density scale for turnaround and

viralization. We showed that when linear perturbation is 1.06, it will turn around and begin

to collapse. After twice that time, when linear perturbation grows to 1.69, it will reach

complete collapse and becomes a virialized object.

We also showed that characteristic density for a viralized halo is 178, or close to 200. This gives

us the virial density and virial radius of an object. The central concept here is dark matter

halo. Numerical simulations show that they have a universal NFW profile. Today, we will

study the distribution function of such halos.

5 Press-Schechter Theory

Halos provide our major conceptual unit for the deeply non-linear regime. These lumps of

dark matter host the formation of galaxies through the condensation of baryons within them.

Now that we have studied the behavior of individual halos, we can ask the question, is it

possible to determine the mass spectrum (or “mass function”) of halos from cosmological

considerations? Amazingly, it is. This was first done by Press & Schechter (1976)

Press-Schechter theory is an analytic model for the evolution of the halo mass function. Its

derivation is far from rigorous, yet the results have been shown to be remarkably accurate

(at least to within ∼ ×2). P-S (or its extensions) is unquestionably the most used analytic

formula in cosmological galaxy formation theory. Efforts to make P-S more rigorous and/or

more accurate has been a cottage industry for over 30 years, and certainly some progress has

been made, but P-S still yields a great deal of insight from relatively simple considerations.

Here’s the basic scheme: Imagine that we have a region of space with mass M that is collapsing.

This mass can be connected with a particular comoving length scale (i.e. r or k) in the initial

density field by M = 4πρ0r
3 (ρ0 is the cosmic mean density), plus k = 2π/r. Now consider

the density fluctuations in spheres of mass M (i.e. in spherical tophats of radius r). Such
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fluctuations have an RMS value that we derived before:

σ2
r =

∫ k2 dk

2π2
P (k)

(
3 sin(kr)− 3kr cos(kr)

(kr)3

)2

The idea of Press-Schechter is that halos form out of peaks in the matter fluctuations. In the

linear-theory spherical collapse model, the density at collapse is 1.69ρ0. Press-Schechter

makes the ansatz that linear theory is correct until the density reaches this magic value, and

then it suddenly collapses into a halo (ρ ∼ 200ρ0). Though seemingly unphysical, this turns

out to be a reasonable approximation since gravitational instability operates very quickly.

So at any given time, all regions that have a density of 1.69 will have collapsed to form a halo.

Hence the fraction of mass that is in halos of mass > M is given by the fraction of the

Gaussian distribution of RMS σr that exceeds 1.69:

f(> M) =
1√
2π

∫ ∞
1.69/σr

dx e−x
2/2

The fraction of mass that is in halos between mass M and M + dM is given by df/dM . For

convenience, define ν(M) ≡ 1.69/σr. Then

df

dM
=

1√
2π

dx

dM
e−x

2/2
∣∣∣x=∞
x=ν

=
1√
2π

dν

dM
e−ν

2/2

The number density of such halos is the number density of all halos (ρ0/M) times the fraction

of mass in halos from M →M + dM :

dn

dM
=
ρ0
M

df

dM
=
ρ0
M

1√
2π
e−ν

2/2 dν

dM

Now we substitute d log ν
d logM

= M
ν

dν
dM

, so

1

M

dn

dM
=

dn

d log M
=
ρ0
M

1√
2π
νe−ν

2/2

(
d log ν

d log M

)

The term d log ν/d log M is less frightening than it looks. Over a sufficiently small range in k,

P (k) is roughly a power law: P ∝ kn (recall n ≈ −2 on galaxy scales). Hence

σ2
r =

∫ k2+n dk

2π2

(
3 sin(kr)− 3kr cos(kr)

(kr)3

)2

The term in parantheses is around unity when kr � 1 and vanishes fo kr � 1. So we can

roughly estimate it as a step function: Unity up to kmax = 1/r, and zero for larger k. In

that case,

σ2
r =

∫ 1/r

0

k2+n dk

2π2
=

1

2π2

1

rn+3
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So σ2
r ∝ r−(n+3), so σr ∝ M−(n+3)/6 (using M ∝ r3), which makes ν = 1.69/σr ∝ M (n+3)/6.

Hence, the logarithmic derivative d log ν/d log M = (n + 3)/6 where n is the effective loga-

rithmic slope of the power spectrum at a mass scale M .

Now for the last swindle. In purely cold dark matter, most of the mass is within halos, since

even the smallest fluctuations will permit collapse. However, the P-S derivation has only half

of the mass in halos, because F (0) = 1/2; the negative part of the Gaussian has been left out

since it corresponds to underdense regions. The swindle is to simply multiply dn/d logM by

a factor of 2! Hence, our final answer is

dn

d log(M)
=
ρ0
M

√
2

π

(
n+ 3

6

)
νe−ν

2/2

The physical reason why this swindle works is that, once things go nonlinear, the collapse

is able to draw matter in from less dense regions, resulting in a log-normal matter density

distribution. Hence much of the mass does end up in the overdense regions.

Since ν ∝M (n+3)/6, let us introduce a parameter called M∗ such that ν = (M/M∗)
(n+3)/6. Then

dn

dM
=

ρ0
M2

√
2

π

(
n+ 3

6

)(
M

M∗

)(n+3)/6

exp

[
−
(
M

M∗

)(n+3)/3
]

This form should be familiar – it’s a Schechter function!

The most important things to note about the P-S formula are the limits for small and large M .

(1) For M �M∗, n > −1, and the mass function cuts off exponentially.

(2) For M � M∗, n → −3, so the mass function goes as M−2. Of course if it was exactly

n = −3, it would be zero, but in practice it never gets close enough for the (n + 3)/6 term

to matter.

Figure 16.4.

Figure 16.5. How well it worked.

6 Press-Schechter Extensions

Remarkably, P-S works over virtually all mass scales from dwarf galaxies to clusters, to

better than a factor of two. However, in detail P-S tends to systematically underpredict

large-mass halos and overpredict small-mass ones.

Extended Press-Schechter (EPS): Bond et al (1991) used an excursion set formalism to statis-

tically estimate how many small halos would be subsumed into larger ones (and therefore
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be effectively uncountable). This reduced the number of small-mass halos in P-S and in-

creased the number of large-mass ones, thereby bettering the agreement with simulations.

Furthermore, EPS allows characterization of the merging rate of dark matter halos.

Sheth-Tormen: Assumed halos were elliptical instead of spherical, in a way that depended on

the shear from the surrounding environment (Sheth, Mo, Tormen 2001). This alters the

collapse a bit. People call this the Sheth-Tormen (1999) mass function because the empirical

fit was presented before the analytic paper. Reed et al (2003) showed that S-T provides

an excellent fit to numerical simulations (also Jenkins etal 2001). The S-T mass function is

given by:

f(σr) = A

√
2a

π

[
1 +

(
σ2
r

aδ2c

)p]
δc
σr

exp−aδ
2
c

2σ2
r

,

where δc = 1.686, A = 0.3222, a = 0.707, and p = 0.3. Today, S-T is the most commonly

used analytic halo mass function.

Figure; SDSS cluster

Figure: comparing with Jenkins

Figure 16.6.

Press-Schechter illustrates important aspects of hierarchical cluster models.

• small halo appears first. Galaxies with M ∼ 1012 won’t show up until z ∼ 4.

• galaxy mass objects began to form at z ∼ 10.

• cosmological dependence.

Figure: Bahcall et al.

7 Problem with P-S mass function

It would be tidy indeed if galaxies mapped straightforwardly onto halos in such a way

that L∗ in the Schechter luminosity function corresponded to M∗ in the P-S mass function.

Unfortunately, this is not the case; L∗ galaxies today have halo masses well below M∗.

Furthermore, the faint-end slope of the galaxy luminosity function is significantly shallower

that −2. Hence the process of galaxy formation is just a bit more complex that such a simple

one-to-one mapping.

White figure.



SphericalCollapse — 12

Problems at both high and low mass end.

High-end: feedback?

The low-mass slope of the mass function M−2 is much steeper than what is observed in the

luminosity function of galaxies. Indeed, this discrepency extends to fairly high masses, as

much as the LMC in certain contexts. This could be reconciled in many interesting ways:

1) low-mass halos are inefficient in forming stars and are therefore underluminous, for many

possible reasons:

1a) photoheating from external UV evaporates the gas,

1b) supernovae from internal star formation pushes the gas out,

1c) the objects get torn apart by encounters with larger galaxies,

2) the universe forms fewer low mass halos because of some deviation from the standard cold

dark matter scheme: WDM, interactions, decays, quantum exclusion.

This brings us to the question of how to make real galaxies out of dark matter halo. So far we

have only considered dark matter particles, which are collisionless. In contrast, the baryonic

component of galaxies, will radiate. The fact that you can see it means that baryons are

losing energy by radiation from stars and ISM. This is a dissipative process, in the sense that

the baryonic matter can lose thermal energy, and therefore the total energy, and collapse

further.

8 The Role of Dissipation

Dissipative processes play a dominant role in the formation and evolution of stars. A star

can only be formed if the collapsing protostellar cloud can get rid of its binding energy. The

best way is by radiative cooling. This process continues until the cloud becomes optically

thick to its own radiation. The loss of binding energy is then mediated by the dust grain

which will still be optically thin.

Note that there is then a key difference between normal star formation and the formation of the

first stars. There is no dust grain to cool. There are other differences which we should come

back later.

Dissipation will also play a key role in the formation of the entire galaxy. The theoretical frame

work was first worked out by Rees, Ostriker, Silk, etc., and was highlighted in one of the

most influential papers by George Blunmenthal, Sandy Faber, Joe Primack and Martin Rees,

in 1984, entitled Formation of galaxies and large-scale structure with cold dark matter.
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Figure 16.2 shows the cooling curve as a function of temperature and metallicity. You will visit

this again in ISM class. The cooling rate is

dE/dt = −N2Λ(T ),

where N is the number density and Λ is the cooling function. Square dependence is that most

of the cooling process are two body processes, collision or recombination. In the absence of

metal, the dominant loss mechanism at high temperature is thermal bremsstrahlung, with

energy losing rate ∼ N2T 1/2. At lower temperature, the main loss mechanisms are helium

at T ∼ 105, and f-b and b-b of atomic hydrogen at T ∼ 104. Note two things:

• dependence on metallicity

• quickly drops towards low T

Note that for galaxy context, what kind of temperature we are referring too. This is basically

the virial temperature of the halo. Without any heating (star formation) and cooling, this

is the temperature that the gas particle is going to be. So what we just said is that for small

halos, which formed early, and had very low T, and with no metal, cooling is hard. First

galaxies will have a hard time forming stars, and probably the star formed there was big.

Will come back later.

Now let’s work out some timescales. We can define cooling time as the time it takes for the

plasma to radiate away all its energy:

tcool =
E

|dE/dt|
=

3NkT

N2Λ(T )
,

this timescale can be compared with the timescale for gravitational collapse

tdyn ∼ (Gρ)−1/2 ∼ N−1/2.

Figure 16.3 shows the locus of the equality tcool = tdyn in a temperature-number density

diagram. Inside this locus, the cooling time is shorter than the collapse time, so it is expected

that dissipative processes are more important than dynamical processes in determining the

behavior of the baryonic matter. There is also a line showing where object has dynamical

time longer than Hubble time in which case it won’t collapse at all. So it can be seen clearly

that the range of masses which lie within the critical locus and which can cool in 1010 years.

This is the mass range of 106 to 1012 solar masses, exactly what the mass of our normal

galaxy. Note at higher mass, you have your clusters which won’t be able to cool. That’s

why the largest galaxies have 1013 solar mass.
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This is an important conclusion. Nothing in our dark matter analysis will give us the char-

acteristic mass of galaxy. It is not a determined by power spectrum, but by the cooling

process.

Galaxy clusters represent the largest bound and virialized structures in the Universe today.

This extreme environment makes them interesting for a variety of cosmology and galaxy

formation applications.

- Highest-σ perturbations, probing tail of Gaussian primordial fluctuations.

- Many galaxies within a small volume, allowing observational efficiency for detailed study.

- Contain hot gas near halo virial temperature, allowing an independent probe of cluster

properties.

- Often have numerous lensed objects, so serve as a gravitational telescope.

- Their halos are just assembling today (or recently), providing an interesting glimpse into

hierarchical mass assembly.

Clusters contain anywhere from tens to many hundreds of ≥ L∗ galaxies. Live at intersection

of LSS filaments.

Famous catalog from Abell: at least 30 galaxies betweenM3 andM3+2 within 1.5 Mpc (physical)

radius. That distance is called the Abell radius. Abell Richness class: R = 0, N = 30− 49.

R = 1, N = 50− 80. R = 2, N = 80− 130. R = 5, N > 300.

Galaxy groups are smaller versions of clusters, containing at most a few L∗ galaxies. Typically

people call groups to be < 1014M� or < 2 − 3 keV in virial temperature, but in actuality

there is a continuum of objects, with no obvious physical distinction between clusters and

groups other than mass. Rare subclass known as “compact groups” (catalogued by Hickson)

have several galaxies, spirals or ellipticals, within a very small radius, say 50–100 kpc; likely

transient systems, and may include some “projected” groups.

Virgo – a poor cluster (2× 1014M�), only 18 Mpc away, virial radius about 1.2 Mpc.

Coma – a rich cluster (1015M�), about 100 Mpc away, virial radius about 2 Mpc.

Local group – a poor group (2× 1013M�), < 1 Mpc away, rvir ∼ 0.5 Mpc (not virialized).

9 Basic properties

Clusters are identified through:

- X-ray emission from hot intracluster medium (ICM),

- Optical selection looking for concentrations of galaxies on the sky,

- Lensing, do large images and look for “strongish” weak lensing,
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- Sunyaev-Zel’dovich upscattering of CMB photons from hot ICM e−’s. (later)

Clusters are rare! R ≥ 1 clusters have a density of 10−5h3 Mpc−3, 1000 times less than L∗

galaxies. Most galaxies do not live in clusters (only around 5%). Most galaxies, do, however,

live in groups, if one counts all the way down to poor groups like the Local Group.

Clusters are characterized by their:

- Optical richness R,

- Velocity dispersion σ, usually quoted as 1-D,

- X-ray temperature TX , usually expressed in keV≈ 107K,

- Dynamical mass M .

The most fundamental is mass, but this is not directly observable except via lensing. Others

correlate with mass but not perfectly.

Clusters always have a cD (central dominant) galaxy. It is very massive, up to 1012+M� in

stars alone. Cluster galaxies orbit cD and are held up by dynamical pressure. cD galaxies

typically have an extended envelope of stars beyond de Vauceleurs profile. It is often difficult

to separate cD from “intracluster” stars.

Clusters often show substructure, indicating that they are still in the process of forming via

merging. However, they are not formed exclusively from merging groups; many isolated

galaxies fall in also.

Stars in clusters today are uniformly old and red, with little cold gas. However, there is a strong

increase in the amount of blue (star-forming) galaxies in clusters back to z ∼ 1. This is

called the Butcher-Oemler effect.

Also, GALEX has revealed that some cD galaxies toady are forming stars, at rates up to 10’s

of M�/yr. Still, these birthrates are much smaller than typical SFGs.

Clusters are highly clustered. In other words, they show a large bias. The correlation length

can be as much as 20h−1 Mpc, depending on the sample. That’s a bias of nearly 4.

Superclusters are also seen, i.e. coherent structures of ∼ 100Mpc/h scales with δ ∼few. These

are unlikely to be bound objects, but will eventually collapse.

10 Cluster constituents

Stars make up about 5-10% of the baryonic mass in clusters, with larger clusters having

smaller fractions. Clusters have very little cold/neutral gas. So most baryonic matter in

clusters is in hot, X-ray emitting gas.
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How hot would we expect the gas to be? The galaxies are moving in the cluster at about 1000

km/s; equipartition says gas should be moving similarly.

The kinetic energy density of the particles would be (3/2)ρσ2. If shared into a thermal distri-

bution, the temperature would be (3/2)nkT . So kT = (ρ/n)σ2 = µmpσ
2.

The mean molecular weight is ρ/n = µmp. For atomic hydrogen gas, this would be µ = 1. For

ionized hydrogen, µ = 1/2. For helium/hydrogen mix, µ = 0.59. So

kT = 6.16 keV
(

µ

0.59

)(
σ

1000 km s−1

)2

That’s about 70 million degrees.

11 Simple cluster model

In principle, clusters are very simple entities. To within 10%, they are balls of hot gas

sitting in the potential well of the dark matter halo. The hot gas is held up against gravity

by thermal pressure gradients. This is known as hydrostatic equilibrium.

dp

dr
= −GM(< r)ρ

r2

p =
ρkT

µmp

ρkT

µmp

(
1

ρ

dρ

dr
+

1

T

dT

dr

)
= −GM(< r)ρ

r2

M(< r) = − kTr2

Gµmp

[
d(log ρ)

dr
+
d(log T )

dr

]

How do we measure these quantities? The temperature can be measured from the X-ray spec-

trum. The spectrum is not a black-body, but rather is dominated by Bremstrahlung. The

spectrum is fairly flat up to a sharp cutoff at hν = kT :

dE

dV dt dν
= 6.8× 10−38neniT

−1/2
K e−hν/kT ḡff ergs s−1 cm−3 Hz−1

Integrating over frequency, the total energy radiated per unit volume is

dE

dV dt
= 1.4× 10−27T

1/2
K neniḡB ergs s−1 cm−3

The Gaunt factor is about 1.2.

Givin the temperature, the strength of the emission tells us about the density of the gas. Hence,

we can measure ρ and T and generate the mass profile of the cluster.
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In doing so, we find that

a) hot gas makes up only about 15% of the cluster’s dynamical mass.

b) cluster temperatures are reasonably well matched to the velocity dispersion of the galaxies.

c) clusters are fairly isothermal, but not totally so.

d) the gas density reachs 10−2–10−3 cm−3 in the centers.

At pressure equilibrium, ρT is a constant. So colder gas has higher ρ and is far more effective at

emitting radiation (∝ ρ2). Some clusters seem to have evidence for colder gas in the centers;

these are known as “cool core” or “cooling flow” clusters. These are a minority, but exact

fraction depends on definition.

12 Estimating Cluster masses

Halo mass is the key parameter for doing cluster cosmology. Basically, the evolution of the

halo mass function at the massive end is highly sensitive to cosmological parameters (recall

HW problem). However, because the tail is exponential, small errors in mass determination

can yield large errors in n(> M). Hence precise mass estimates are required.

Usually it is not possible to make a detailed, accurate mass profile from X-ray spectra for a

large statistical sample. Furthermore, the assumption of hydrostatic equilibrium may not be

applicable in the case of a recently-merged unrelaxed cluster (simulations though indicate

that it is ok at the 10-20% level).

Hence others methods are used:

1. Measure X-ray temperature, use M(< r200) formula above. In lieu of measuring ρ(r) and

T (r), assume it is isothermal or follows NFW profile. Then only need to measure T and r200.

Generally, r200 is calibrated from simulations, or estimated based on an assumed density

profile.

2. Velocity dispersions of the galaxies. Measure the redshifts of many galaxies in the cluster

and try to determine the velocity dispersion. Problem: which galaxies are actually in the

cluster, and which are just falling in. cf: Fingers of God in redshift surveys.

3. Weak lensing. This has the advantage that it really probes the mass, but the disadvantage

that it gets the projected mass along the line of sight. Because large structures are correlated,

these masses are typically biased by about 20%. However, this bias can perhaps be calibrated

by simulations.

These three methods give similar masses but can differ at the 30% level. This is currently
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insufficient for precision cosmology. None are perfect!

13 Sunyaev-Zeldovich effect

CMB photons travelling through the hot ICM are up-scattered (inverse Compton scattering).

This produces a deficit of photons at lower frequency and an excess at higher frequency, with

a null at 217 GHz. The size of the effect is typically measured by the Compton y parameter,

which is

y =
∫
dl σTne

k(Te − Tcmb)
mec2

y is related to the shift in intensity ∆I(ν):

∆I(ν) =
2(kTCMB)3

(hc)2
g(x)y

where g(x) is the spectral function

g(x) =
x4ex

ex − 1

[x(ex + 1)

ex − 1
− 4

]
(x = hν/kT ), which has a crossover at 217 GHz.

Since the ICM temperature far exceeds the CMB temperature, Tcmb is negligible. Hence y is

proportional to the integrated gas pressure (p = knT for ideal gas) along the line of sight.

At low frequencies, ∆T/T = −2y. Cores of rich clusters can reach y ∼ 10−4, which is consider-

ably higher than the primary anisotropies of the CMB.

SZ effect is redshift independent! As long as balls of hot gas are out there, SZ surveys should

find them. This is in stark contrast to X-ray and optical surveys whose sensitivity drops

rapidly with z.

Combining X-rays and SZ gives powerful probe of cosmology ICM structure. Recall X-ray

emission∝ ρ2T 1/2. SZ’s y ∝ ρT . Hence by obtaining both, one can in principle independently

get ρ and T .

One can combine SZ+X-rays to infer the LOS length scale of the cluster, and assuming spherical

clusters (on average), one can measure the angular size and infer the angular diameter

distance and hence the Hubble constant. This is nice because it is independent of the

distance ladder. Currently, technology is insufficient to do this to better than 20-30%, but

new radio telescope arrays (particularly at South Pole) will revolutionize this field.

An additional aspect for probing ICM physics is that with sufficient resolution, can get ρ(r) and

T (r) independently. This can tell about non-thermal energy injection (will discuss later).



SphericalCollapse — 19

Currently, surveys (e.g. BIMA/OVRO) have found a large number of clusters that were pre-

viously X-ray detected. SPT has now found several new SZ clusters, confirmed by optical

data. ACT will come online soon, and provide large samples.

Kinetic SZ effect: Bulk motion of hot gas, from clusters with non-negligible peculiar velocity,

can also cause CMB temperature shifts. The Doppler shift causes an overall temperature

shift in the CMB, whose spectral signature is different than thermal SZ. Its amplitude is

small. Only hope to measure is to try to measure at 217 GHz, where thermal SZ is zero.

14 Cooling flow crisis

Consider cooling times. The energy density is (3/2)nkT , while the cooling rates are propor-

tional to n2T 1/2. The ratio gives the amount of time to cool significantly: tc ∝ T 1/2/n. High

density gas will cool in the age of the universe.

Often, we find that the densities implied in the centers of clusters would allow the gas to cool

in a Gyr or less. We also find clusters with extra luminosity and cooler gas in the centers.

From estimating tc, one naively predicts that 100–1000 M�/yr of gas is cooling. Yet, we do

not see this cool gas: no noticable star formation, no lumps, generally no soft X-ray emission

below ∼ 1 keV!

What prevents this gas from cooling? Unknown. Popular theory is that AGN activity injects

energy periodically in a self-regulating manner. Evidence includes “hot bubbles” seen in X-

ray data that appear to coincide with radio emission from AGN jets, and that could contain

enough energy to suppress cooling flows. However, exact mechanism remains uncertain.

Another possibility is magnetic conduction. Magnetic fields are seen in clusters at the microgauss

level; such fields, if efficiently conductive, could thermalize clusters and prevent cool cores.

Generally requires maximally efficient conduction, which is difficult to understand.

Third possibility is that hierarchical accretion transports enough gravitational energy to cluster

centers to prevent cooling flows. This is seen in some but not other hydro simulations; it’s

very difficult to model in quantitative detail.

It is tempting to try to solve both crises with AGN feedback. Not clear if this will work, because

feedback is required at late times to prevent cooling flows (“radio mode”), but cluster scaling

relations don’t evolve much at least out to z ∼ 0.5.
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15 ICM metallicity crisis

ICM gas is not primordial. It has metals, typically 1/3 solar!

How did metals get into the ICM? Unclear. Could be swept out of galaxies via ram pressure

stripping when they fall into the cluster medium, or could be blown out of galaxies by

supernovae, or could have accreted from IGM at that metallicity.

Probably not latter, as IGM metallicity is much lower, even taking into account metallicity-

density relation.

Models for stripping/blowout tend to fall short of required metal budget by ∼ ×2. But in-

tracluster stars, i.e. stars that are bound to the cluster potential but not any individual

galaxy, can make up as much as half the cluster’s stellar mass, and accounting for the metals

produced by those stars can alleviate the shortfall. However, IMF variations could also do

it.

These various “crises” associated with gastrophysical processes are a significant challenge for

using cluster to do precision cosmology. It is clear clusters are not as simple as originally

thought. Much like how galaxies were originally used to try to do cosmology, but then

cosmology was constrained independently so galaxy evolution became the more interesting

question, it seems that clusters will follow a similar track, and that clusters themselves will

become more interesting than doing cosmology with them.

16 Clusters and Cosmology

Clusters are proven to be powerful tools for cosmology, examples:

• Measurement of density parameter via mass to light ratio.

• Measurement of density parameter via baryon fraction.

• Measurement of cosmological parameters via dN/dz.

• Measurement of Hubble constant via S-Z.

• Probing non-Guassianity via the most massive systems.

• Understanding dark matter, Bullet cluster.


