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ABSTRACT

We present a new implementation of the tracer particles algorithm based on a Monte Carlo approach for the Eulerian adaptive mesh
refinement code Ramses. The purpose of tracer particles is to keep track of where fluid elements originate in Eulerian mesh codes, so
as to follow their Lagrangian trajectories and re-processing history. We provide a comparison to the more commonly used velocity-
based tracer particles, and show that the Monte Carlo approach reproduces the gas distribution much more accurately. We present a
detailed statistical analysis of the properties of the distribution of tracer particles in the gas and report that it follows a Poisson law. We
extend these Monte Carlo gas tracer particles to tracer particles for the stars and black holes, so that they can exchange mass back and
forth between themselves. With such a scheme, we can follow the full cycle of baryons, that is, from gas-forming stars to the release
of mass back to the surrounding gas multiple times, or accretion of gas onto black holes. The overall impact on computation time is
∼3% per tracer per initial cell. As a proof of concept, we study an astrophysical science case – the dual accretion modes of galaxies
at high redshifts –, which highlights how the scheme yields information hitherto unavailable. These tracer particles will allow us to
study complex astrophysical systems where both efficiency of shock-capturing Godunov schemes and a Lagrangian follow-up of the
fluid are required simultaneously.
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1. Introduction

Many astrophysical problems of interest require us to solve
equations of hydrodynamics on very different timescales and
physical scales. Two main methods have been developed to solve
these equations. On the one hand, one can study the motion
of the gas by following the evolution of interacting particles.
This Lagrangian approach is the one used by smooth particle
hydrodynamics (SPH, e.g. Springel 2005; Wadsley et al. 2004;
Price et al. 2018) codes. These codes sample the gas distribu-
tion using a set of fixed-mass macro-particles smoothed with a
given kernel, and move particles accordingly. By construction,
this approach provides the Lagrangian evolution of the gas. This
property is also one of its shortcomings: low-density regions are
populated by large particles and hence lack resolution. On the
other hand, gas hydrodynamics can also be described on a grid,
where gas distribution is sampled on finite volumes, and solved
with efficient shock-capturing Godunov solvers. Adaptive mesh
refinement (AMR, e.g. Kravtsov et al. 1997; Teyssier 2002;
Springel 2010; Bryan et al. 2014) codes follow this approach and
allow for a dynamical refinement of the mesh. Though quasi-
Lagrangian refinement is most commonly adopted in situations
addressing galaxy formation problems, super-Lagrangian reso-
lutions can also be achieved by refining the grid based on gas
quantities such as the Jeans length to follow gravitationaly unsta-
ble star-forming regions (Agertz et al. 2009), the vorticity to fol-
low the seeding of turbulence (e.g. Iapichino & Niemeyer 2008),
the relative variation of any hydro quantity (such as e.g. the
ionised fraction of hydrogen; Rosdahl & Blaizot 2012), or using

a passive scalar to keep track of a particular gas phase (such as
for jets, see, e.g. Bourne & Sijacki 2017), among others. While
super-Lagrangian refinement provides a very flexible method to
trigger refinement, it falls short of providing the Lagrangian his-
tory of the gas.

To overcome this issue, AMR codes have been equipped
with “tracer” particles. Tracer particles are passively displaced
with the gas flow, and hence track its Lagrangian evolution.
Each tracer can also be used to record instantaneous quantities,
such as the thermodynamical properties of the gas or any other
property. Many astrophysical problems can can benefit greatly
from this Lagrangian information. For example, when studying
galaxy formation, the past Lagrangian history of the gas is cru-
cial to understand how gas has been accreted and how it has
been ejected in large-scale galactic outflows. Tracer particles can
be used to study the density and temperature evolution of the
gas (e.g. Nelson et al. 2013; Tillson et al. 2015) that will even-
tually form stars. For example, one could use tracer particles to
study the temperature evolution of the gas as it falls onto galax-
ies, to study the number of dynamical times before it becomes
star forming or to quantity the number of time gas is recycled in
stars or sent in galactic fountains. Another problem that requires
the use of tracer particles is the study of mixing. Particularly
in turbulent environments, such as the interstellar or the inter-
galactic medium, the Lagrangian information provides informa-
tion about, for example, mixing timescale (e.g. Federrath et al.
2008), the origin of turbulence (e.g. Vazza et al. 2011, 2012), or
how it contributes to core buildup Mitchell et al. (2009). In addi-
tion to this, the past Lagrangian evolution of a parcel of fluid
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can also impact the modelling itself (e.g. Federrath et al. 2008;
Silvia et al. 2010).

In this paper we present a new implementation of tracer par-
ticles in the AMR Ramses code (Teyssier 2002). This imple-
mentation is based on the one developed by Genel et al. (2013)
for the moving mesh arepo code (Springel 2010). It has been
extended to track the full Lagrangian history of baryons in
any phase, including their conversion from gas to stars, from
stars back into the gas via supernova feedback, their interac-
tion with feedback from black holes, and their accretion onto
them. This Monte Carlo (MC) tracer particle implementation
improves the previous implementation, velocity-advected trac-
ers. With the velocity-based approach, tracer particles are moved
based on the interpolated local values of the gas velocity field.
While this yields qualitative results, it suffers from systematic
effects: tracer particles over-condensate in regions of converg-
ing flows (Genel et al. 2013). Monte Carlo tracer particles fol-
low a different idea. They are moved so that the tracer particle
mass flux at each cell interface is statistically equal to that of the
gas. Thanks to this property, the Eulerian distribution of tracers
converge to that of the gas when the number of tracer particles
goes to infinity. In addition to matching the gas distribution, the
implementation of tracer particles here is also able to match the
distribution of baryons in stars and in black holes.

The paper is structured as follows. Section 2 details the
implemented algorithm. Section 3 presents tests and validations
of the new implementation. In particular, Sect. 3.1 presents the
results from idealised tests and Sect. 3.2 presents an analysis of
the properties of tracers in a real astrophysical simulation. Using
the same simulation, Sect. 3.3 illustrates the efficiency of the
scheme applied to a specific science case – the bimodal accretion
of gas onto galaxies at high redshift. Section 4 assesses the per-
formance of the scheme. Section 5 provides a discussion of our
results and our conclusions. Appendix A provides more details
about the algorithm.

2. Implementation

The Ramses code (Teyssier 2002) solves the full set of Euler
equations by formulating the equations in terms of finite-volume,
that is, by calculating fluxes at the interfaces of cells of the adap-
tive mesh. This is done by using a MUSCL-Hancock method
with a second-order Godunov solver calculating the fluxes from
linearly interpolated values at cell faces from the cell-centred
values limited by a total-variation-diminishing scheme. Such a
Eulerian-based method has proven efficient at capturing shock
discontinuities and achieves efficient mixing of shear layers of
gas; however, its main drawback is that it does not naturally pro-
vide the Lagrangian trajectories of gas elements.

To address this problem, it is possible to introduce the so-
called tracer particles of the flow that should follow the flow
lines of the gas. A naive approach to track the motion of the
gas is to use the velocity of the gas itself, assign it to tracer par-
ticles, and move them accordingly. This is done with a cloud-
in-cell interpolation of the velocity values of the overlapped
cells where the volume of the cloud is that of the host cell,
though the level of the interpolation is not particularly impor-
tant (nearest grid point or triangular shape cloud; Federrath et al.
2008). Such a velocity-based approach was implemented in
Ramses (Dubois et al. 2012a) and used to probe the link between
cosmic gas infall and galactic gas feeding, and its acquisition
of angular momentum (Pichon et al. 2011; Dubois et al. 2012a;
Tillson et al. 2015). While this approach yields smooth trajec-
tories, it falls short of reproducing the gas density distribution

accurately in regions with strong convergence of the velocity
field (Genel et al. 2013).

To address this shortcoming, we have implemented in
Ramses the MC approach of tracer particles introduced
by Genel et al. (2013) for arepo (Springel 2010). Instead of hav-
ing proper velocities and positions, MC tracers are attached to
individual cells and are allowed to “jump” from the centre of
one cell to the centre of another according to the mass fluxes
obtained through the Godunov solver.

We have generalised the MC method to track exchanges
of baryons between gas, star particles, and supermassive black
hole (SMBH) particles, and in the following we refer to them
as “buckets”. At each time step, tracers are allowed to jump
from any bucket i to any bucket j with a probability (gas→gas,
gas↔star, gas→black hole) of

pi j =


∆Mi j

Mi
, if ∆Mi j ≥ 0,

0, if ∆Mi j < 0,
(1)

where ∆Mi j is the mass flowing from bucket i to bucket j
between t and t + ∆t and Mi is the mass of the depleted bucket
i at time t. This probability is also the fraction of baryons flow-
ing from one bucket to another. If the initial Eulerian distribu-
tions of tracers and baryons are equal, then in the limit where the
number of tracers becomes large, satisfying Eq. (1) is sufficient
for the Eulerian distributions to remain equal at all times. Here
is an outline of the proof. For any bucket i containing Nt trac-
ers of equal mass mt, let the total tracer mass read Mt ≡ Ntmt.
Because tracers are moved stochastically, the tracer mass flux
∆Mt,i j is a random variable. If at time t, Mt = Mi (i.e. the Eule-
rian distributions are the same), then the expected tracer flux is
E

[
∆Mt,i j

]
= Nt × pi jmt = Mi pi j = ∆Mi j. When the number

of tracers becomes large, the tracer mass flux converges to the
baryon flux, ∆Mt,i j → ∆Mi j. The buckets have the same initial
mass and are updated with the same mass fluxes, so they remain
equal at the next time step, t + ∆t. Therefore, if the initial Eule-
rian distributions are equal, by induction they remain equal at all
times (in the limit of a large number of tracers)1.

All the processes that are able to move tracers from bucket
to bucket are summarised in Fig. 1. Tracers can move from one
gas cell to another through gas dynamics, and the jet mode of
AGN feedback from SMBHs, from gas to stars via star forma-
tion, from stars to gas via supernova (SN) feedback, and from
gas to SMBHs via black hole accretion. Below, we present the
different algorithms used for each of these processes.

2.1. Gas dynamics

The algorithm moving tracer particles from one gas cell to
another is the following. For each level of refinement, all the
unrefined leaf cells are iterated over. For each leaf cell i con-
taining tracer particles, the total outgoing mass is computed as
∆M ≡

∑2Nd
j=1 max(∆Mi j, 0), where j runs over the index of the

neighbouring cells, Nd is the number of dimensions, and ∆Mi j
is the mass transferred between cell i and cell j in one time
step and obtained from the Godunov flux of mass Fm,ij, that is,
∆Mij = Fm,ij∆t. We take

pgas =
∆M
Mi

, (2)

1 In general, any stochastic scheme for which the expected tracer flux
equals that of the baryons is able to track the Eulerian distribution at all
times.
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Fig. 1. Scheme of the different “buckets” that can hold tracer parti-
cles and the process that moves them around. The three buckets are gas
cells, stars, and SMBHs. Arrows indicate outgoing mass fluxes between
buckets and the physical process associated, and grey squares represent
tracer particles. The jet mode feedback from AGNs (around SMBHs) is
able to move gas tracer particles from the central cell to the surround-
ing cells. The particles have no spatial distribution within the buckets or
any phase-space distribution. Tracer particles are exchanged probabilis-
tically between buckets based on the mass fluxes. For example, for the
gas, they are exchanged based on the mass fluxes at the boundary of the
cells.

to be the probability of displacing a gas tracer particle from one
cell to any other of its neighbouring cell, and

p j = max
(
∆Mi j

∆M
, 0

)
, (3)

to be the probability of moving this tracer particle into cell j.
For each tracer particle in cell i, a random number r is drawn
from a uniform distribution between 0 and 1. If r < pgas, the
tracer is selected. For each selected tracer, another random num-
ber r′ is drawn. For each neighbouring cell j with a positive flux
(such that ∆Mi j > 0), if r′ < p j the tracer particle is moved into
cell j and the algorithm proceeds to the next particle; else, r′ is
decreased so that r′ ← r′−p j and the algorithm proceeds to the
next neighbouring cell. Because the sum of all the p j is 1, this
procedure will assign the tracer to a single cell.

When a cell of mass M0 is refined between two time steps,
all its tracers are distributed randomly to one of the eight newly
created cells, the probability for a tracer particle to be attached to
the new cell i being p = Mi/M0 (refined density can be interpo-
lated from neighbouring values or equally distributed amongst
new cells). Conversely when a cell is derefined all its tracers are
attached to the parent cell.

2.2. Star formation

This part of the algorithm involves moving tracers from the gas
phase into star particles, and moving the star-tracer particles
along with their star particles.

We first recall that the star formation process in Ramses is
usually modelled by a Schmidt law, where the star formation
rate density is non-zero and

dρ?
dt

= ε?
ρg

tff
, (4)

when ρg > ρ0, and where ρg is the gas density, ρ0 a gas density
threshold, tff = (3π/(32Gρg))1/2 the gas free-fall time, and ε?
the efficiency of star formation, which can be taken as an ad hoc
constant, or as a function of the local gravo-turbulent properties

of the gas (Krumholz & McKee 2005; Hennebelle & Chabrier
2011; Padoan & Nordlund 2011). A single star particle made of
N? stars of mass resolution M?,0 is created, where N? is drawn
according to random Poisson process (Rasera & Teyssier 2006):

Psf =
λN?

N?!
exp (−λ), (5)

where Psf is the probability of creating N? particles from the gas
(and accordingly removing M? ≡ N?M?,0 mass from the gas
cell), and

λ =
ρg∆x3

M?,0

∆t
ε−1
? tff
· (6)

Finally, the transfer of gas tracer particles to star-tracer par-
ticles at time of creation t of M? is given by the probability

p? =
M?

Mi
· (7)

In more details, we loop over all the gas tracer particles con-
tained in the cell where the new star is created. For each of
them, a random number r is drawn from a uniform distribution
between 0 and 1. If r < p?, the gas tracer particle is turned
into a star-tracer particle at the same position as that of the star
particle (i.e. at the centre of the cell). The star-tracer particle is
“attached” to the star particle by moving along with the star par-
ticle, which is done through a classic leap-frog integration of its
motion. Therefore, at all time steps, the position of the tracer is
updated to match the position of its star. The index of the star is
also recorded on the tracer for convenience.

The implementation also comes with two alternatives to ini-
tialise the tracer particles. One can feed in a list of positions to
the code; one tracer will be created at each location. Alterna-
tively, we developed an initialisation scheme that takes as input
the mass that each tracer particle represents, mt. The scheme is
called “in-place initialisation” as it is performed directly within
the code: the scheme is called once at startup, after the AMR
grid has been built. It loops over all cells, and for each of them
computes the number of tracer particles to create. The expected
number of tracers created in a cell of mass Mcell is N = mt/Mcell.
Let us write N0 = bNc. The scheme creates N0 ≡ bNc particles
in the cell and then creates an additional one with probability
N−N0. In the end, the expected number of tracer particles cre-
ated in the cell is N, meaning that on average each cell is popu-
lated with the correct number of tracer particles. In the following,
unless stated otherwise, the tracer particle distribution is always
initialised using the in-place method.

2.3. Supernova feedback

Let us describe the transfer of mass of a star particle to the gas
according to type II SN explosions (referred to henceforth as
SNII) and their associated tracer particles. This can be trivially
extended to the more complete description of the evolution of
stellar mass loss.

When a star particle sampling an initial mass function (IMF)
of mass M? explodes into type II SNe, it releases a mass ηSNM?,
where ηSN can be crudely approximated by the mass fraction of
the IMF going SNII. The probability of releasing a star-tracer
particle into the gas is pSN = ηSN. For each star particle turning
into SNe, we loop over all the star-tracer particles attached to it.
For each of these, a random number r is drawn from a uniform
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Fig. 2. Scheme of the 48 neighbouring virtual cells (only the 24 rear
ones are shown) where mass and momentum are deposed during a SN
event. The cell containing the SN has a size of ∆x and is outlined in red.

distribution between 0 and 1. If r < pSN, the star-tracer parti-
cle is released in the gas and turned into a gas tracer particle.
Otherwise, the tracer is left attached to the stellar remnant.

The transfer of star-tracer particles to the gas by SNII is
described here for the so-called mechanical feedback model of
(Kimm & Cen 2014; see also Kimm et al. 2015)2. In this model,
the gas is released into the neighbouring cells. The mechani-
cal feedback scheme is designed to overcome the consequences
of radiative losses in SN bubbles due to the lack of resolution.
Where the cooling time of the SN-heated gas is shorter than the
hydrodynamical time step, the energy-conserving phase (with
Sedov-Taylor solution), during which the momentum is growing
by the pressure work of the bubble, cannot be captured properly,
and leads to spurious energy and momentum loss. To circum-
vent this problem, Kimm & Cen (2014) introduced a model that
correctly accounts for the momentum injection according to the
Sedov-Taylor or snow-plough solution (Thornton et al. 1998),
which depends on the cooling rate of the gas, or more precisely
on the energy release, local gas density, and metallicity. The cell
containing the exploding star particle is virtually represented by
8 cells refined by an additional level, which are equivalently
surrounded by 48 such virtual neighbouring cells, as illustrated
in Fig. 2 (Kimm & Cen 2014). The mass ejecta together with
the mass of the swept-up gas of the central true cell is released
evenly in all the virtual cells, and is attributed back accordingly
to the true existing cells.

The tracer particles are interfaced with this feedback model
as follows: For each released star to gas tracer particle, a random
integer number l ∈ [1, 48] is drawn uniformly. The star tracer is
then moved to the centre of the lth virtual cell and attributed to
the corresponding true existing cell as a new gas tracer particle.

2.4. SMBH formation and gas accretion

Supermassive black holes are modelled as sink particles that
can form out of the dense star-forming gas, grow by accretion
of gas, and coalesce following the implementation described
in Dubois et al. (2012b).

2 We have extended this implementation to i) simple thermal pulses of
energy (with or without delayed cooling; Teyssier et al. 2013), where
the mass is released to the central cell only, and ii) to the so-called
kinetic model of (Dubois & Teyssier 2008; in its more recent form
described in Rosdahl et al. 2017) where “debris” particles are replaced
by a bubble injection region of energy, momentum, and mass according
to the Sedov-Taylor solution.

A SMBH forms according to several user-defined criteria,
typically above a given gas density threshold ρ0 and outside an
exclusion distance radius rex within which SMBH is artificially
prevented if any other SMBH already exists (in order to prevent
creation of multiple SMBHs within the same galaxy). When a
SMBH forms with an initial seed mass MSMBH,0, gas tracer par-
ticles in the cell of mass Mi containing the SMBH are attached
to the SMBH and become SMBH tracer particles according to a
probability

pSMBH =
MSMBH,0

Mi
· (8)

SMBHs can continuously accrete gas according to the
Bondi–Hoyle–Littleton accretion rate, capped at Eddington with

ṀSMBH = (1 − εr) Ṁacc = (1 − εr) min(ṀB, ṀEdd), (9)

ṀB =
4πρG2M2

SMBH

(c2
s + u2)3/2

(
ρ

ρboost

)α
, (10)

ṀEdd =
4πGmpMSMBH

σTεrc
, (11)

where Ṁacc, ṀSMBH, ṀB, and ṀEdd are the disc, SMBH, Bondi–
Hoyle–Littleton, and Eddington accretion rates, respectively, mp
is the mass of a proton, G the gravitational constant, σT the
Thomson cross-section, εr the radiative efficiency, cs the speed
sound, u the mean velocity of the gas with respect to the SMBH,
and c the speed of light. ρboost and α are free parameters set,
here, to ρboost = 8mp cm−3 and α = 2 introduced to boost
the accretion rate due to unresolved small-scale larger densi-
ties (Booth & Schaye 2009). The value of εr is either chosen as
a constant value equal to 0.1, or, here, as a varying function of
the spin of SMBH, whose evolution is governed by gas accre-
tion and BH coalescence (see Dubois et al. 2014a,b, and Dubois
et al., in prep., for details).

The mass taken from the gas cell in one time step is ∆Macc ≡

∆t min(ṀBH, ṀEdd). We note that ∆Macc > ṀSMBH∆t as part of
the accreted mass is radiated away due to relativistic effect (and
lost to the simulation). Each gas tracer in the cell containing the
SMBH at a given time is accreted into the black hole with a
probability of

pacc =
∆Macc

Mi
. (12)

Tracer particles also model SMBH merger events. All the tracer
particles attached to the two parent SMBHs are moved to the
newly formed SMBH. There is no mechanism to extract tracers
from the SMBH (reflecting the fact that there is no way to extract
matter from a BH). One should also note that the total mass of
SMBH tracers is larger than the total mass of SMBHs, as part of
the energy-mass has been radiated away during accretion (and
tracers have a fixed mass).

2.5. AGN feedback

In Dubois et al. (2012b), there are two modes of AGN feed-
back: a quasar/heating mode and a radio/jet mode. The mode is
selected based on the ratio of the Bondi–Hoyle–Littleton accre-
tion rate to the Eddington accretion rate χ = ṀB/ṀEdd. If
χ < 0.01, the AGN is in jet mode, and, otherwise, it is in quasar
mode (Merloni & Heinz 2008).

In quasar mode, all the energy of the AGN proportional to
EAGN,Q = εf,QεrṀaccc2∆t (the value εf,Q = 0.15 is calibrated to
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Fig. 3. Schematic representation of the jet model. Gas is transported
from the central cell (hatched region) containing the SMBH (black dot)
into the jet (blue shaded region). The radial profile of the jet is a Gaus-
sian of scale rAGN. The shape of the jet is a “capsule” (a cylinder capped
with two half spheres).

match the BH-to-galaxy mass relation; Dubois et al. 2012b) is
released as thermal energy in all cells within a sphere of size
RAGN and the mass of the gas is left untouched. This feedback
mode has only an indirect effect on the gas mass distribution (and
hence on tracer particles), turning some fraction of the released
thermal energy into kinetic energy and launching a quasar-like
wind.

In radio mode, a jet is launched from the AGN. The jet moves
mass from the central cell only and spreads it into the jet and
injects linear momentum, and energy. The released energy (and
hence, momentum within the jet), as for the quasar mode, is pro-
portional to the rest-mass accreted energy with an efficiency of
εf,R , which is either taken as a constant value of 1 (to match the
SMBH-to-galaxy mass relation; Dubois et al. 2012b) or a vary-
ing function of the spin of the SMBH following the results of
magnetically arrested discs (MADs) from McKinney et al. 2012;
see Dubois et al., in prep. for details). The jet is modelled by a
“capsule” (a cylinder with spherical caps) of size rAGN, as illus-
trated in Fig. 3. The radius of the jet rAGN is usually set to a
few times the cell resolution. The mass sent through the jet is
proportional to the accreted mass onto the SMBH

Ṁjet = fLoadṀSMBH, (13)

where fLoad is a mass-loading factor, usually 100. The mass
transported by the jet is distributed to all the cells intersecting
with the capsule. Each cell i receives a relative fraction ψi of the
mass (and of the injected linear momentum)

ψi =
ρi

∫
I

e−r2/2r2
AGN d3V∑

j ρ j
∫
J

e−r2/2r2
AGN d3V

, (14)

where I (resp. J) is the volume of the intersection between the
AGN capsule and the cell i (resp. j) and ρi is the cell mean den-
sity. The radius r in Eq. (14) is the polar radius in the cylindrical
frame centred on the AGN and aligned with its direction (it is
the distance to the jet centre). This integral is computed approx-
imately, using a numerical integration scheme.

The tracer particles are interfaced with the jet model as fol-
lows. Each gas tracer particle in the cell i containing the SMBH
is moved into the jet volume with a probability of

pjet =
Ṁjet∆t

Mi
· (15)

For each of these particles a random number r is drawn from a
uniform distribution between 0 and 1. If r < pjet, the tracer is
selected and moved into the jet. The new position of the tracer
(x, y, z) is drawn randomly, z being the coordinate in the direction
of the jet; x and y are drawn from a normal distribution of vari-
ance rAGN and z is drawn uniformly between −2rAGN and 2rAGN.
The algorithm uses a draw-and-reject method until one position
inside the capsule is found. We note that the gas tracer distribu-
tion (as given by Eq. (15)) is consistent with the distribution of
the gas sent through the jet (as given by Eq. (14))3.

More details about the algorithm are given in Appendix A.

3. Validations and tests

Let us now present various validation tests of the algorithm.
Section 3.1 presents the results of idealised tests for gas-only
tracer particles. Section 3.2 presents the results obtained from a
cosmological zoom-in simulation of a galaxy with its SMBH at
z = 2 and provides the details of the observed distribution of
tracer particles. Unless stated otherwise, the gas hydrodynam-
ics is solved with an adiabatic index of γ = 5/3 and the HLLC
approximate Riemann solver (Toro 2009), applying the MinMod
slope limiter on the linearly reconstructed states.

3.1. Idealised tests

In this section, we introduce different idealised tests to con-
firm that the evolution of the gas is correctly tracked by
gas tracers. Section 3.1.1 presents a simple two-dimensional
(2D) advection of an overdensity to quantify diffusion effects.
Sections 3.1.2 and 3.1.3 present a Sedov–Taylor explosion and
a Kelvin–Helmoltz instability and confirm that the gas tracers
are able to accurately follow the motion of the gas for a strong
shock case and a mixing layer of gas, respectively. Section 3.1.4
presents an idealised halo with an AGN at its centre to confirm
that the gas tracers correctly track the evolution of the gas in
AGN jets.

3.1.1. Uniform advection

In order to quantify the level of diffusion of MC tracers, we run
a simulation similar to that run for Fig. 6 of Genel et al. (2013).
The simulation is a region of 1 cm in size with a constant den-
sity of 1 g cm−3 and a velocity of 0.01 cm s−1. An overdensity
of 14 g cm−3 is set at 0 < x < 0.05 cm. The sound speed is
cs = 1.3 cm s−1 in the under-dense region and 0.35 cm s−1 in the
over-dense region. The simulation is performed on a uniform 2D
1282 grid including 250 000 tracer particles, initially distributed
in the same way as the gas. Due to the intrinsic numerical diffu-
sion (advection error) of the hydrodynamical solver, the spatial
extent of the overdensity increases as a function of time as it is
advected away. This is illustrated in the central panel of Fig. 4.
We note that the density profiles have each been shifted along
their x coordinate for visualisation purposes and do not reflect
their real absolute position (in fact the rightmost peak travelled
5 cm in 100 s). The top panel of Fig. 4 shows that, when rescaled
by the expected noise level σ ≡ 1/

√
Mcell/mt = 1/

√
N (N is

the expected number of tracer particles in the cell), the relative
error between the gas tracers and the gas distributions shows

3 In practice, the numerical evaluation of the integrals of Eq. (14) may
lead to small yet undetected discrepancies between the gas tracer and
the gas distributions.
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Fig. 4. Top panel (bottom):: gas density profile (solid line) and gas den-
sity profile (plus symbols) at different times (reported in the legend).
The profiles have been recentred and shifted horizontally by −0.12 cm,
0, 0.12 cm, and 0.24 cm for t = 0, 1, 9, and 100 s, respectively. Top panel
(top):: relative difference between the gas and gas tracer density profiles
in units of the expected noise level σ = 1/

√
Mcell/mt. Bottom panel:

evolution of the spatial extent of an advected overdensity as a function
of time for the gas (dashed) and the gas tracer particles (dot symbols)
for a high-resolution run (blue) and a low-resolution run (orange, see
text for details). The difference shows no spatial dependence. The gas
tracers diffuse exactly as the gas.

no spatial modulation. Their distributions are the same with an
extra factor that is entirely due to sampling noise, which in turn
depends only on the local cell mass and the (constant) tracer
mass.

In more quantitative terms, let us compare the time evolu-
tion of the spatial extent of the gas tracer overdensity to that
of the gas. We rerun the simulation on a 322 grid (low resolu-
tion) in addition to the previous run (high resolution). We com-
pute the spatial extent by fitting a Gaussian function ρ(x) =
ρ0 + H exp(−(x − x0)2/(2σ2

ρ)) to the gas and gas tracer profiles,
with free parameters ρ0 the base density, H the amplitude of the
overdensity, x0 the position of the overdensity, and σρ its spa-
tial extent. The results are shown in the bottom panel of Fig. 4.
As expected due to the numerical diffusion, the spatial extent of
the overdensity increases as a function of time and the diffusion
becomes larger when the resolution is decreased. In both cases,
the Eulerian distribution of tracer particles is diffused exactly as
much as the gas4.

4 This result complements that of Genel et al. (2013). Indeed we study
here the diffusion of the Eulerian distribution of the tracer particles,
while the original paper presents the Lagrangian diffusion of the tracer
particles.
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Fig. 5. Bottom panel: radial profile at different times of a Sedov explo-
sion (from blue to yellow) for the gas (solid lines) and the gas tracer
(dots). The error bars are 2σ errors. Top panel: relative difference
between the gas profile and the gas tracer profile. Data have been shifted
by −0.25, −0.125, 0, 0.125 and 0.25 radius units respectively (from blue
to yellow) so that one may easily distinguish the different data points.
Details of the simulation are discussed in the text. The gas tracer parti-
cles are accurately advected with the gas.

3.1.2. Sedov-Taylor explosion

We ran a classical Sedov-Taylor explosion in three dimensions
and compare the gas density radial profile to the density profile
of gas tracer particle. The simulation was performed on a coarse
grid of 1283, refined on the relative variation of the density and
of the pressure: a new level is triggered when the local relative
variation of one of these quantities is larger than 1% with up to
two levels of refinement. The simulation was initialised with a
uniform density and pressure of 1 g cm−3 and 10−5 dyne cm−2,
respectively, and an over-pressure in the central cell of the box
of 6.7 × 106 dyne cm−2. 2 900 000 tracers, statistically uniformly
distributed initially in the box, hence, with around ∼1.4 tracer
per initial cell.

The evolution of the spherically averaged radial density pro-
file of the gas and of the tracers is shown in Fig. 5. The tracer
density has been computed by deposing the gas tracer mass in
the nearest cell. The axes have been normalised so that the radius
of the blast is one at the latest output. The error bars have been
estimated assuming that the number of tracers per radial bin is
given by a Poisson distribution. This assumption is discussed in
more detail in Sect. 3.2.2.

At all stages of the blast, the tracer particles radial profile
matches that of the gas at percent levels. This is more easily seen
in the top panel of Fig. 5 where the relative difference between
the gas tracer density and the gas density is plotted. The errors
are all within a few percent and consistent with random fluctua-
tions. As the explosion expands, the swept-up mass of gas in the
shocked region increases. This is well tracked by the tracer dis-
tribution. Because the mass increases, the total number of tracer
particles in the shock increases proportionally, causing the sam-
ple noise to decrease. In this particular test, the tracer distribu-
tion accurately reproduces that of the gas in the pre- (which is
trivially that of the initial distribution) and post-shocked regions
(shocked shell plus hot bubble interior). The noise level is a func-
tion of the number of tracer particles; its expected value is pro-
portional to the total gas mass only.
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Fig. 6. Projection of the density (top panel) and of the gas tracer den-
sity (bottom panel) around a developing Kelvin–Helmoltz instability.
To reduce the noise of the gas tracer projection, we have superposed the
four projections of the forming rollers (each of size 0.25 cm). The gas
tracer distribution resembles that of the gas with extra noise due to their
stochastic nature.

The Sedov explosion is a reliable way of testing the ability of
hydrodynamical codes to deal with shocks: more specifically it
tests the ability of the code to capture the shock dynamics prop-
erly and also tests that the code resolves the shock interface with
a few cells in a regime where the Mach number is largely above
1. Here, the gas tracer distribution has been shown to match that
of the gas to a high degree of confidence, confirming that the
gas tracers are correctly transported with the flow and are able to
resolve shocks.

3.1.3. Kelvin–Helmholtz instability

We ran a classical Kelvin–Helmoltz (KH) instability in three
dimensions to compare the gas density to the gas tracer density
projected maps. The gas has an adiabatic index γ = 7/55. The
simulation is performed on a 1283 grid with a physical size of
1 cm and a maximum level of refinement of 210. Cells are refined
based on the relative variation of the density: a new level is trig-
gered when the local relative variation of the density is larger
than 1%. Only hydrodynamics is included. The instability is ini-
tialised with two regions of left and right density of 2 g cm−3

and 1 g cm−3, and of tangential velocity uy,L = −1 cm s−1 (resp.
uy,R = 1 cm s−1). The instability was initially triggered by adding
a small damped sinusoidal perturbation of the perpendicular
velocity field ux = u0 cos (k(x − λ/2)) exp(−k|x − x0|), where
λ = 0.25 cm, k = 2π/λ, x0 = 0.5 cm and v0 = 0.1 cm s−1. Here
2 900 000 gas tracers were initially distributed in the box, so that
their Eulerian distribution matched that of the gas.

Figure 6 shows a projection of the gas density and of the
tracer density at time t = 0.3 s, when the Kelvin–Helmoltz was
already settled. The gas tracer distribution reproduces well the
vortices found in the gas distribution, with extra noise due to the
reduced number of tracer particles.

The largest k wave numbers of the perturbation are the first to
grow following a KH growth timescale of τKH = 2πR1/2/(|∆u|k),
with ±R = ρR/ρL, and ∆u = uy,R−uy,L. Therefore, as time pro-
ceeds, larger rollers develop in the shear interface between the
two phases of gas, and hence, the mixing layer spreads further.
We computed the evolution of the cross-section profile of the
density at different times. The results are presented in Fig. 7. The
phase-mixing region grows as a function of time and the growth

5 This value is consistent with the adiabatic index of air at 20◦.
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Fig. 7. Evolution of the cross-section of the gas density (solid lines)
and the gas tracer density (symbols and shaded regions) for the Kelvin–
Helmoltz instability at different times (from blue to red from the start
to the end of the simulation at t = 0.3 s). The profiles have been shifted
vertically (each by 0.6 g cm−3) so that one may easily distinguish them
from one another. The shaded regions are ±5σ, where σ has been esti-
mated using a Poisson sampling noise. The gas tracers are accurately
following the diffusion of the gas.

is correctly captured by the tracer particles that are able to track it
within their intrinsic noise level. Therefore, the gas tracer parti-
cles are able to correctly capture the KH shear instability leading
to mixing of two gas phases. Interestingly, the present algorithm
does not lead to any relative diffusion between the gas and the
tracers, as is illustrated quantitatively in Sect. 3.1.1.

3.1.4. AGN feedback

We subsequently tested the accuracy of the mass transfer for the
jet mode of AGN feedback, which transfers part of the gas of the
central cell to the surrounding cells within a “capsule” region
(see Sect. 2.5 for details). We ran an idealised simulation of a
halo with an AGN at its centre. The simulation is performed on
a coarse grid of 1283, refined according to a quasi-Lagrangian
refinement criterion: a cell is refined/derefined wherever the
mass resolution is above/below 1.4 × 107 M� up to a maximum
level of refinement of 12. The box size is 1.2 Mpc, hence with
a minimum cell size of 300 pc. The max level of refinement is
also enforced in all the cells closer than 4∆x from the SMBH,
where ∆x is the minimum cell size. The gas distribution fol-
lows a NFW (Navarro et al. 1997) gas density profile, while the
dark matter part follows a similar NFW profile modelled with
a static gravitational profile (no back reaction of gas onto dark
matter). The NFW profile has parameters V200 = 200 km s−1 (at
200 times the critical density of a H0 = 70 km s−1 Mpc−1 Uni-
verse), a concentration of c = 6.8, and is 10% gas. The gas is ini-
tially put at rest and at hydrostatic equilibrium. A SMBH of mass
MSMBH,0 = 3.5 × 1010 M�6 is set at the centre of the box and 106

tracers are set in the cell containing the black hole. We force the
AGN to be in jet mode with a fixed direction in space and boost
its efficiency so that all the tracer particles are sent into the jet in
one time step. The radius and height of the jet is rAGN = 50 kpc.
This value is much larger than usual values which are usually
a few times the cell resolution (here typical values would be a

6 We note that the SMBH mass is taken anomalously high for a typical
halo mass of M200 ' 3 × 1012 M�. This is chosen simply to get a suffi-
cient power of the jet through the Bondi accretion rate given the NFW
distribution of gas.
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few kiloparsecs). This is chosen so that the jet reaches cells at
different levels of refinement and in other CPU domains. Within
50 kpc of the AGN, there are 1200, 24 000, 12 000, 13 000 and
8000 cells at levels 28 to 212 (∆x from 5 kpc to 0.3 kpc) so that the
tracer particles are deposited in regions of different refinement
level. This region also covers 8 of the 16 CPU domains used.
This controlled test enables us to check that the distribution of
tracers sent through the jet matches the expected distribution, in
the presence of deep refinement and parallelism.

Let us first present the theoretical probability distribution
function as a function of the distance to the jet and along the jet.
We then compare theoretical figures to those of the simulation.
The marginal probability density function (PDF) in the direction
of the jet r‖ is given by

p(r‖) =
1
A


√

e − er2
‖
/2r2

AGN , if |r‖| < rAGN,
√

e − 1, if rAGN < |r‖| < 2rAGN,
(16)

where

A = 2
√

erAGN

(
2 +
√

2F
(
1/
√

2
)
− 1/

√
e
)
. (17)

Here F is Dawson’s integral. The marginal PDF in the radial
direction r⊥ is

p(r⊥) =

r⊥e−r2
⊥/2r2

AGN

(
1 +

√
1 − r2

⊥/r
2
AGN

)
r2

AGN

(
2 −
√

2F
(
1/
√

2
)
− 1/

√
e
) · (18)

The marginal PDF in the radial distribution is similar to a χ dis-
tribution with two degrees of freedom with an extra factor due
to the two spherical caps: more particles are found close to the
centre of the jet since the capsule is more extended close to its
centre.

Figure 8 presents the results from the comparison of the sim-
ulation to the expected distribution. The distribution in the radial
direction has been rescaled by a factor of two to span the same
range as in the parallel direction. Theoretical curves (Eqs. (16)
and (18)) are in very good agreement with the observed distri-
butions, confirming that the algorithm is distributing tracer par-
ticles correctly in jets. In addition we have also run the same
idealised simulation without forcing the AGN efficiency. We
report that the tracer mass flux is equal to the gas mass flux. This
confirms that the physical model of the jet is accurately sam-
pled by the tracer particles interacting with it, both in terms of
its mass and for its spatial distribution.

3.2. Astrophysical test

We have run a 50 cMpc/h-wide cosmological simulation down
to z = 2 zoomed on a group of mass 1 × 1013 M� at z = 0, where
the size of the zoom in the Lagrangian volume of initial condi-
tions is chosen to encapsulate a volume of two times the virial
radius of the halo at z = 0. We start with a coarse grid of 1283

(level 7) and several nested grids with increasing levels of refine-
ment up to level 11. The adopted cosmology has a total matter
density of Ωm = 0.3089, a dark energy density of ΩΛ = 0.6911,
a baryonic mass density of Ωb = 0.0486, a Hubble constant of
H0 = 67.74 km s−1 Mpc−1, a variance at 8 Mpc σ8 = 0.8159,
and a non-linear power spectrum index of ns = 0.9667, compat-
ible with a Planck 2015 cosmology (Planck Collaboration XIII
2016).

The simulation includes a metal-dependant tabulated gas-
cooling function following Sutherland & Dopita (1993) allow-
ing the gas to cool down to T ∼ 104 K via Bremsstrahlung
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Fig. 8. Distribution of particles moved by a jet before any hydro-
dynamical time step has occurred. Shown is the parallel distribution
marginalised over the plane of the jet (blue) and the radial distribution
marginalised over the direction of the jet (orange) vs. the expected theo-
retical distributions from Eqs. (16) and (18) (dashed grey). The abscissa
is in units of rAGN in the parallel direction and in units of rAGN/2 in the
radial direction. The distribution of gas tracers sent into the jet perfectly
matches the expected one.

radiation (effective until T ∼ 106 K), and via collisional and
ionisation excitation followed by recombination (dominant for
104 K ≤ T ≤ 106 K). The metallicity of the gas in the sim-
ulation is initialised to Z0 = 10−3 Z� to allow further cool-
ing below 104 K down to Tmin = 10 K. Reionisation occurs
at z = 8.5 using the Haardt & Madau (1996) model and gas
self-shielding above 10−2 mp cm−3. Star formation is allowed
above a gas number density of n0 = 10 H cm−3 according to the
Schmidt law and with an efficiency εff that depends on the gravo-
turbulent properties of the gas (for details, see Kimm et al. 2017;
Trebitsch et al. 2017). The main distinction of this turbulent star-
formation recipe with the traditional star formation in Ramses
(Rasera & Teyssier 2006) is that the efficiency can approach and
even exceed 100% (with εff > 1 meaning that stars are formed
faster than in a free-fall time). The stellar population is sampled
with a Kroupa (2001) initial mass function, where ηSN = 0.317
and the yield (in terms of mass fraction released into metals)
is 0.05. The stellar feedback model is the mechanical feedback
model of Kimm et al. (2015) with a boost in momentum due to
early UV pre-heating of the gas following Geen et al. (2015).
The simulation also tracks the formation of SMBHs and the evo-
lution of AGN feedback in jet mode (radio mode) and thermal
mode (quasar mode) using the model of Dubois et al. (2012b).
The jet is modelled in a self-consistent way by following the
angular momentum of the accreted material and the spin of the
black hole (Dubois et al. 2014b). The radiative efficiency and
spin-up rate of the SMBH is then computed using the MAD
results of McKinney et al. (2012).

We have a minimum roughly constant physical resolution of
35 pc (one additional maximum level of refinement at expan-
sion factor 0.1, 0.2, and 0.4), a star particle mass resolution of
m?,res = 1.1 × 104 M�, a dark matter (DM) particle mass res-
olution of mDM,res = 1.5 × 106 M�, and gas mass resolution of
2.2 × 105 M� in the refined region. A cell is refined according to
a quasi-Lagrangian criterion: if ρDM +ρb/ fb/DM > 8mDM,res/∆x3,
where ρDM and ρb are respectively the DM and baryon den-
sity (including stars plus gas plus SMBHs), and where fb/DM
is the cosmic mean baryon-to-DM mass ratio. The max level of
refinement is also enforced in all cells closer than 4∆x from any
SMBH, where ∆x is the minimum cell size. We add tracer parti-
cles in the refined region with a fixed mass of mt = 2.0 × 104 M�
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Fig. 9. Top panels: density weighted projection of the gas density in a cosmological simulation (left), of the velocity tracer distribution (right), and
of the MC gas tracer distribution (centre). All the plots share the same colour map. Bottom panels: relative difference between the tracer and the
gas. Velocity tracers accumulate in convergent regions (e.g. filaments, nodes). The MC gas tracer distribution reproduces more accurately that of
the gas than velocity tracers.

(Ntot ≈ 1.3 × 108 particles). There is on average 0.55 tracers per
star and 22 per initial cell. Cells of size 35 pc and density 20 cm−3

contain on average one tracer per cell.

3.2.1. Velocity tracers versus Monte Carlo tracers

In addition to the above simulation, we ran the exact same one
replacing each MC tracer with a velocity-advected tracer. This
simulation was performed down to z = 6 and compared to the
fiducial one. Both have a similar gas distribution, confirming that
the tracer particles are indeed passive7. At this redshift, 99% of
the baryons are still in the gas phase (0.72% in stars and 8 ×
10−5% in SMBHs), meaning that the comparison between MC
tracers (that can be transferred into stars) and velocity tracers
is fair when looking at cosmological scales. Since the velocity
tracers have not been linked to star formation or SMBHs, we
expect significant discrepancies within galaxies, where the gas-
to-star ratio is much smaller.

The top panels of Fig. 9 show projections of the density-
weighted density of gas (top left panel), of MC tracers (top-
centre panel), and of velocity-advected tracers (top-right panel).
The distribution of the MC tracers resembles that of the gas with
extra noise due to sampling noise. All the prominent structures

7 They have however an indirect impact on stochastic processes such
as star formation and SN feedback as they impact the random num-
ber generator (hence the outcome of these random processes will vary
depending on how many and where the tracer particles are).

in the gas are also present in the MC tracer distribution. On
the other hand, the velocity tracer distribution is much sharper
than that of the gas. The velocity tracers aggregate in converg-
ing flows (filaments and centres of galaxies) while MC tracers
do not (they aggregate in high-mass regions, as expected). At
such large scales, the origin of the discrepancy is an intrinsic
issue of velocity tracers. This test shows that on a qualitative
level, the MC tracers have a distribution that is in much better
agreement with the gas distribution than the velocity advected
tracers. The relative difference between the gas distribution and
the tracer distribution is presented in the bottom panels of Fig. 9.
The relative difference between the MC tracer density and the
gas density (bottom central panel) is significantly smaller than
the relative difference between the velocity advected tracer den-
sity and the gas density (bottom right panel). The latter is also
much more biased: the velocity advected tracer density in con-
vergent flows (e.g. filaments) can be up to an order of magnitude
larger than the gas density, while in the vicinity of converging
regions, the velocity advected tracer density is largely underes-
timated (e.g. around filaments). On the contrary, the MC tracer
density is found to be in better agreement with the gas density
and is not biased.

3.2.2. Gas tracers

As we have seen, velocity tracer particles are a less reliable tracer
of the actual gas density compared to MC tracer particles, and
this can already be seen on cosmological scales. Therefore, we
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Fig. 10. Density-weighted projection of the gas density (left panels), of the gas tracer density (centre panels), and of their relative difference (right
panels) along the x axis around the most massive galaxy of the cosmological simulation at z = 2. Top panels: large-scale structure of the gas; data
have been selected within 200 kpc of the centre. Bottom panels: zoom on the central galaxy; data have been selected within 10 kpc of the centre of
the galaxy. The MC tracer density is similar to that of the gas. The radial modulations are due to differences in cell mass at fixed cell resolution:
massive cells (closer to the centre at fixed resolution) are best sampled by the MC tracers.

now continue to explore only the distribution of MC tracer parti-
cles with respect to the actual distribution of baryons. Figure 10
shows the density-weighted projected gas density and cloud-in-
cell interpolated gas tracers around the zoomed galaxy of the
simulation. Visual inspection reveals that the gas tracer distribu-
tion matches that of the gas with additional noise. All structures
with a contrast above the noise level are reproduced by the gas
tracers. More quantitatively, Fig. 11 shows the density of trac-
ers versus the density of gas for the entire available range of gas
densities (i.e. 9 orders of magnitude); the expected one-to-one
relation is seen, with some scatter due to MC sampling noise.

More quantitative results can be obtained by computing the
statistical properties of the gas tracer population. A cell of mass
Mcell is expected to contain on average Mcell/mt tracers. For a
sample of cells of similar masses, we expect the mean number
of tracers per cell to be λ ≡ 〈Mcell〉/mt. The distribution of the
number of tracers per cell in the simulation is shown in Fig. 12
for different cell-mass bins. Within a cell-mass bin, the number
of tracers Nt can be seen to be very well approximated by a Pois-
son distribution with parameter λ

pλ(Nt = k) =
λke−λ

k!
· (19)

To confirm this observation, we compared the mean number of
tracers per cell to the expected number λ in the top panel of
Fig. 12. For all cell masses, the mean number of tracer particles
per cell is accurately described by its expected Poisson distribu-
tion. At large values of gas mass within a cell (right of the plot),

the scatter in the histogram count is due to the small number
of massive cells in the simulation. Indeed, these cells can only
be found in the most refined regions (otherwise they would be
refined into smaller cells) where they also tend to be converted
into stars.

In the following we assume that the gas tracer distribution is
given by a Poisson distribution with parameter λ = 〈Mcell〉/mt.
This yields a simple rule of thumb to estimate the precision of
the tracer scheme. The accuracy of the Eulerian distribution of
the tracer can be written 1/

√
λ ∼
√

mt/Mcell.

3.2.3. Star formation and feedback

Figure 13 shows the integrated stellar mass and star-tracer mass
around the zoomed galaxy of the cosmological simulation. Both
distributions are visually in agreement and feature the same spa-
tial distribution. At large radii where the star density is smaller
than the gas density (r & 4 kpc, see Fig. 14), the noise level of the
star-tracer distribution is larger than that of the gas. This is due to
the fact that small masses are poorly resolved by the MC tracers.
Close to the galactic centre, the increasing star density induces
a larger star-tracer density, and therefore, at fixed resolution, a
smaller noise sampling. This is illustrated by the right panel of
Fig. 13, where the centre of the plot shows smaller fluctuations
than at large radii. More quantitative results are presented below.

We first present the analytical distribution of tracer parti-
cles for stars and for the number of tracers released in SN
events, derived from first principles. When a star particle is
formed, each tracer in the cell containing the newly created star
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Fig. 11. Gas density vs. gas tracer density, colour coded by cell mass.
The grey dashed line shows the one-to-one relation. The gas and gas
tracer densities match on nine orders of magnitude.

particle is attached to the star particle and has a probability of
p? ≡ M?,0/Mcell of becoming a “star tracer”, where M?,0 is the
mass of the newly created star particle8. Because M?,0 < Mcell –
a star particle cannot be formed with more material than what
is available – this probability is well defined: 0 < p? < 1.
When the heavy stars in a star particle go into SN, they yield
ηM?, and the mass of the corresponding star particle becomes
M? = (1 − η)M?,0. The star tracers are then returned to the gas
with a probability of η. Before the SNe explode, the distribution
of tracers for an individual star particle is given by a binomial
distribution with parameters Ni (the initial number of tracer in
the cell where the star particle formed) and p?

pform(Ni; N f = k) =

(
Ni

k

)
pk
?(1 − p?)Ni−k. (20)

The number of tracer particles released in the SN event reads

pSN(N f ; N = k) =

(
N f

k

)
ηk(1 − η)N f−k, (21)

where N f is the number of star tracers in the star particle before
the SN explosion. The number of tracers in the star particle after
the SN has exploded is, thus, given by a binomial distribution of
parameters Ni and (1 − η)p?,

pf
?(Ni; N = k) =

(
Ni

k

)
((1 − η)p?)k (1 − (1 − η)p?)Ni−k . (22)

In the limit where the Ni becomes large and (1 − η)p? small,
Eq. (22) converges mathematically to a Poisson distribution with
parameter Ni(1 − η)p?.

Now, we compare the expected distribution of tracer parti-
cles to the measured one. Figure 15 presents the distribution of
the number of tracer particles per star particle for different star
particle mass bins. The number of star tracers per star particle
can be seen to be well approximated by a Poisson distribution
with parameter λ = 〈M?〉/mt. There is a clear deviation at the
tail of the distribution which displays an excess of probability.

8 We note that in practice the star particles have a mass that is a multi-
ple of the stellar mass resolution.
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Fig. 12. Bottom panel: distribution of the number of gas tracers for
different cell-mass bins as observed in the simulation (solid lines) vs.
a Poisson distribution with parameter λ = 〈Mcell〉/mt (dashed lines,
reported in the legend). Top panel: relative difference between the
observed mean number of tracer particles and the expected one, λ, as
a function of λ. For all cells, the distribution of the number of gas trac-
ers per cell is given by a Poisson distribution with parameter λ.

This is however expected as when a star forms in a cell, a sig-
nificant part of the cell mass is converted into the star, so that
p? ≈ 1. Because usually (1 − η) ≈ 0.9, the product p?(1 − η)
is also of order unity. At the same time, cells where stars form
have a typical mass of 104M� ∼ mt, meaning that they contain
only a few gas tracers at star formation. Therefore, we expect a
significant deviation from a Poisson distribution, as the require-
ment for Eq. (22) to converge to a Poisson distribution is not
met. This argument is reinforced by the fact that, compared to
light stars (e.g. the blue curve of Fig. 15), the most massive stars
have a more top-heavy distribution (e.g. the red curve) than a
Poisson distribution. Indeed, these massive stars are relatively
more massive than their parent cell, meaning that the parameter
p? is larger. In the simulation, star formation is only activated
for cells above a given (fixed) density threshold. This is usually
achieved at the maximum resolution, causing cells experiencing
star formation to have typically the same mass, and therefore the
same number of gas tracer particles, regardless of the mass of
the forming stars. Consequently, the massive star particle distri-
bution is indeed less Poissonian than that of the light stars, since
their p? is larger at fixed Ni. Figure 15 is in qualitative agreement
with this.

3.2.4. SMBH evolution

Using our cosmological simulations, we have checked that the
total mass of SMBH tracer particles (Mt SMBH,tot = (3.5 ±
0.3) × 106 M�9) matches that of SMBH in the simulation
(MSMBH,tot/(1− εr) = 3.1 × 106 M�) at the 10% level, up to an εr
factor. This factor is due to the mass lost by the accreted mate-
rial as it falls onto the black hole. This mass is radiated away and
lost to the simulation. Because the tracer particles have a fixed
mass in our implementation, they are unable to capture the mass
energy that is radiated. However, one could store the value of εr
at accretion time onto each tracer to be able to reconstruct the
exact mass that the SMBH tracer represents.

9 The uncertainty has been estimated using a 1-σ Poissonian noise.
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as in Fig. 10. In the difference map, regions where no stars are found are indicated in grey. The star and star-tracer distributions are in very good
agreement; their difference shows no spatial dependence. The noise level is higher than in Fig. 10 at large radii where the star surface density is
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Poisson sampling noise. Top panel: relative difference between the
baryon and the tracer profiles. The tracers match their baryon coun-
terpart at a few percent level.

3.3. Bi-modal accretion at high redshift: a science case for
tracer particles

Low-mass galaxies (embedded in halos Mh . 1011 M�) exhibit a
significant amount of “cold-mode” cosmological accretion made
of cold gas streaming in narrow filaments with a temperature typ-
ically below Tmax / 105 K (Birnboim & Dekel 2003; Kereš et al.
2005; Ocvirk et al. 2008; Nelson et al. 2013, 2016). A “hot-
mode” phase made of gas that was shock heated before enter-
ing the virial radius (Tmax ∼ 106 K) appears in halos with higher
mass. At early times (z > 2.5), the accretion is dominated by
the cold mode. As time goes by, halos grow in mass so that an
increasing fraction of the gas heats up before entering the halo.
The outcome of this is a decrease of the relative importance of
cold accretion compared to hot accretion. By z / 2, most of the
accreted material comes from the diffuse hot phase. Hence, get-
ting access to the Lagrangian history of the stars and of the star-
forming gas is key to pinning down the origin of gas acquisition
in galaxies.
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Fig. 15. Distribution of the number of star tracers per star for different
star particle mass bins (in units of 104 M�) as observed in the simula-
tion (symbols and shaded surfaces) vs. as given by a Poisson distribu-
tion with parameter λ = 〈M?〉/mt (dashed). The error bars have been
estimated using a bootstrap method. For all stars, the distribution of the
number of star tracers per star is approximated by a Poisson distribution
with parameter λ.

We revisit this result using ramses and the MC tracer parti-
cles. Using the cosmological simulation of Sect. 3.2, we study
the accretion of gas as a function of time around the central
galaxy. We select all the gas tracers that end up in star particles
(not the star-forming gas) at z = 2 and r < 0.1Rvir. The halos
were detected using the AdaptaHOP halo finder (Aubert et al.
2004). For the positioning of the centre of the DM halo, we start
from the first AdaptaHOP guess of the centre (densest particle
in the halo) and from a sphere the size of the virial radius of
the halo; we use a shrinking sphere (Power et al. 2003) by recur-
sively finding the centre of mass of the DM within a sphere 10%
smaller than the previous iteration. We stop the search once the
sphere has a size smaller than '100 pc and take the densest par-
ticle in the final region. Twenty neighbours are used to compute
the local density. Only structures with a density greater than 80
times the average total matter density and with more than 200
particles are taken into account. The original AdaptaHOP finder
is applied to the stellar distribution in order to identify galax-
ies with more than 200 particles. Their Lagrangian history is
reconstructed in post-processing from the 132 equally spaced
(∆t = 25 Myr) outputs, and the thermodynamical properties of
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Fig. 16. Bottom panel: histogram of the maximum temperature of the
gas accreted onto the central galaxy between different redshifts (from
early accretion time in blue to late accretion time in yellow). Top panel:
cumulative distribution of the gas temperature. Only the gas-forming
stars within the virial radius are selected. The total distribution inte-
grated over the total accretion time is shown with the black dashed line
in the bottom panel. The total distribution has been rescaled by a factor
of one third for visualisation. The halo has two modes of accretion: a
cold and a hot mode. At high z the cold mode dominates and at low z
the hot mode dominates.

the gas are extracted from the local gas cell value. For each tracer
particle, the maximum temperature Tmax reached before falling
into the virial radius is recorded. The infall time is defined as the
last inward crossing of the virial radius. The merger tree is com-
puted following Tweed et al. (2009). The procedure only selects
tracer particles falling onto the galaxy in the gas phase. This
excludes gas tracers tracking gas that formed stars in satellite
galaxies but includes gas from wet mergers. Figure 16 presents
the temperature distribution of the accreted gas for different bins
of infall time. At early times (blue lines, z & 3) the accretion is
bi-modal. About 50% of the gas is accreted via the cold mode,
as shown in the top panel of Fig. 16. At later redshifts (z . 2.5),
the accretion becomes dominated by the hot mode. The relative
importance of the cold accretion decreases and the distribution
become less and less bimodal, until it is eventually entirely dom-
inated by the hot mode. This is in qualitative agreement with
the findings of Kereš et al. (2005) though the exact quantitative
amount of cold versus hot accreted gas relies significantly on
i) the numerical scheme to model gas dynamics (Nelson et al.
2013) and ii) the modelled feedback processes (Dubois et al.
2013).

Caution should be taken here: contrary to what was done
in the original study, only the accretion onto a single galaxy is
investigated. In particular, our results are sensitive to the particu-
lar accretion and merger history of that galaxy, which impact the
temperature distribution of the gas. In order to achieve a fairer
comparison, one would have to run a full cosmological simula-
tion and study the gas accretion of the full population within the
box. While this would now technically be possible thanks to the
new tracer algorithm, it is nonetheless well beyond the scope of
this paper.

4. Performance

To quantify the performance of the tracer particles and their asso-
ciated CPU overhead (defined as the excess of computation time
required by the tracer particles), we restarted the simulation of
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Fig. 17. Overhead as a function of the number of tracer particles per
initial cell (symbols). The orange symbol is the simulation with the
tracer deactivated. The data (excluding the run with the tracer deacti-
vated) have been fitted with a linear function (dashed line). The esti-
mated overhead (slope of the fit) is ∼3% per tracer per initial cell with
an extra constant of ∼10%.

Table 1. Run time per coarse time step for the different runs.

Name Absolute Tracer Run time Overhead
number per cell (s) (%)

t100 129325116 10 1310 39.9
t67 86214303 6.7 1270 35.3
t20 64656206 5 1210 28.7
t33 43104621 3.3 1160 23.1
t20 25861310 2 1100 17.5
t10 12929077 1 1060 13.1
t0.1 130250 0.01 1060 13.4
t0 0 0 1020 9.2
not 0 0 940 –

Notes. The run notr was performed with no tracer particles and with
all the tracer particle routines deactivated. The column “Tracer per cell”
is the number of tracer particles per initial cell in the zoomed region.
The “Overhead” column contains the run-time overhead defined with
respect to the notr run.

Sect. 3.2 at redshift z = 2, while varying the numbers of tracer
particles to test the scaling of the algorithm. At restart, we dec-
imate the tracer population to keep only 67, 50, 33, 20, 10, or
0.1% of the initial population (in the gas, star, and black holes).
We also run a simulation with no tracer but all the tracer routines
activated (t0) and a simulation with no tracer and the tracer rou-
tines deactivated (notracer). The parameters of the runs are
presented in the first three columns of Table 1. The run time
is defined as the total run time divided by the number of steps.
The overhead is defined as the relative increase of the run time
with respect to the run not. All the runs were stopped after two
iterations of the coarse time step (about ∼2000 s of run time,
∼2.8 Myr of simulation time). The results are also plotted in
Fig. 17.

By comparing the two runs t0 and notr, we conclude that
the tracer particle machinery adds a constant cost of about 10%
to the computation. This is due to the fact that the tracer particles
require the fluxes at the interface of each cell (six quantities per
cell) to be stored, which then have to be communicated between
CPUs. In addition, there are multiple loops that iterate over all
the cells and all the particles (see Sect. 2 for more details). In
principle, this could be optimised by setting tracer particles in
their own linked list, but we exploited the particle machinery
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available in Ramses, and treated tracer particles just like stan-
dard particles (star or DM) with respect to code structure. In the
following, the computation overhead will be expressed in terms
of the number of tracer per initial cell: Nt/Ncell,i, where Nt is the
number of tracer particles and Ncell,i is the number of initial (gas)
cells.

The runs with tracers show that the total run time starts
increasing with the number of tracer particles per cell10 when
this number becomes of the order of ∼0.1 tracer per initial cell.
Above this threshold, the run time scales roughly linearly with
the number of tracer per initial cell. We have run the simula-
tion on the Occigen supercomputer with 672 cores (28 nodes of
24 cores). Each node is made of two Intel Haswell 12-Core E5-
2690 V3s11 running at a clock frequency of 2.6 GHz. The nodes
are wired together with a DDR Infiniband network (20 Gbit s−1).
The code was compiled with the Intel Fortran compiler version
17.0 and OpenMPI 2.0.2. In this setup the overhead is 3% per
tracer per initial cell. For example the run t100 with 10 tracer
per initial cell had a 40% overhead. Part of the overhead is due
to the tracer particles themselves (moving, generating random
numbers, etc.). Another part is due to the load balancing. Indeed,
in this simulation, tracer particles are only found in the zoomed
region, which is already the most CPU-intensive region. Our
simulation can be seen as a worst-case scenario for the tracer
particles. In general, let us write the conservative formula giving
an estimate of the overhead induced by the tracer particles

∆t
t

= 0.03
(

Nt

Ncell,i

)
+ 0.1, (23)

where t is the run time and ∆t the extra cost induced by the tracer
particles. Here, Nt and Ncell,i are the total number of tracer parti-
cles and the total number of initial cells, respectively.

5. Conclusions

We present a new implementation of tracer particles in the
Ramses AMR code based on the Monte Carlo approach
from Genel et al. (2013). It has been interfaced with the most
common physical models used in cosmological simulations (star
formation and stellar feedback, SMBH growth and AGN feed-
back). We have shown that the Lagrangian history of the gas is
accurately reconstructed by testing the accuracy of the tracer dis-
tribution in an advection-dominated problem and in a diffusion-
dominated problem. The gas tracer distribution matches that of
the gas, even in complex situations that involve subgrid models.
We have also provided a comparison of the new MC tracer parti-
cles to the previous velocity-based implementation and showed
that the new version largely outperforms the accuracy of the pre-
vious one. We have made a detailed study of the distribution of
tracer particles in a zoom-in cosmological simulation including
state-of-the art subgrid model physics (cooling, star formation,
SN feedback, SMBHs, and AGN feedback) and show that: (i) in
each cell, the gas tracer distribution is given by a Poisson distri-
bution with parameter λ = Mcell/mt; and (ii) for each star, the
number of star tracers can be approximated by a Poisson distri-
bution with parameter λ = M?/mt. The properties of the Poisson
distribution give a simple rule to estimate the sampling noise
of the tracer particle, as the noise can be represented by 1/

√
λ.

In turn this should allow users to quantify how many particles

10 We note that here the number of cells is the one in the refined regions,
not the initial number of cells.
11 See Intel-Xeon-Processor- E5-2690.

are needed to reach their sought accuracy. We have also shown
that the gas tracer particles sample exactly the intrinsic numer-
ical diffusion of the Godunov solver. To highlight the assets of
tracer particles in a realistic setting, they were implemented in
the problem of cold flow accretion at high redshift. The known
bi-modality in the temperature of gas was recovered.

The performance of the algorithm was explored. In a zoom-
in full physics cosmological simulation, the run time grows
roughly linearly with the number of tracer particles per cell. The
overall impact on computation time is estimated to be ∼3% per
tracer per initial cell plus a constant computation time overhead
of 10%, regardless of the number of tracer particles. These fig-
ures should serve as upper limits on the computation time. The
performance of the scheme could be optimised by using two sep-
arate linked lists for the tracer particles and the other particles, as
is done in arepo (Genel et al. 2013). Implementing these possi-
ble improvements will be the subject of future studies. Presently,
the performance is significantly lower than that reported in the
original paper of Genel et al. (2013): in addition to using a spe-
cific linked list for the tracer particles, the moving mesh of arepo
reduces the number of tracer movements and mitigates the cost
of each tracer.

In comparison to the original paper by Genel et al. (2013),
we provide an additional detailed description of the statistical
properties of the ensemble of tracer particles not only in the gas
but also in stars and in AGN jets. We also studied how their
distributions behave when complex sub-grid models are involved
(star formation and feedback, AGN feedback, BH accretion) and
checked that their distribution is in agreement with the baryon
distribution.

This implementation provides an efficient method to accu-
rately track the evolution of the Lagrangian history in the Eule-
rian code Ramses. It opens new perspectives to study how baryon
flows interact in hydrodynamical simulations. For instance,
tracer particles could be used to quantify the spatial and time
evolution of the anisotropically accreted gas, its contribution
to the spin of galaxies, and how these processes impact galac-
tic morphology. Specifically, following Tillson et al. (2015),
Danovich et al. (2015), and DeFelippis et al. (2017), one could
address the following open questions: Where does the angular
momentum go? Does it contribute to the spin-up of the galaxies
or is it re-distributed before entering the disk? If it is, is it due to
turbulent pressure, shock-heating or SN and AGN feedback?
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Appendix A: Tracer particle algorithm

Let us describe here the pseudo-code underlying the tracer par-
ticle algorithm. The corresponding Fortran code is available
upon request.

A.1. Gas to gas cells

The main function in charge of moving tracers between gas cells
is called TreatCell. It takes as input the index of a cell and loops
over all tracers in it. It requires all the (mass) fluxes to be stored.
The pseudo code is the following.

function TreatCell(icell)
mcell ←MassOfCell(icell)
Fnet ← 0
for idir ← 1, 2Ndim do . Compute outgoing flux

5: F ← GetFluxInDir(icell, idir)
if F > 0 then

Fnet ← Fnet + F
end if

end for
10: tracers← GetTracerParticlesInCell(icell)

pout ← Fnet/mcell . Probability to move part. out of cell
for jpart in tracers do . Loop on tracer particles

r1 ← DrawUniform(0, 1)
if r1 < pout then

15: r2 ← DrawUniform(0, 1)
for idir ← 1, 2Ndim do . Select a direction

F ← GetFluxInDir(icell, idir)
p = F/Fnet
if r2 < p then . Move in direction idir

20: MoveParticle(icell, jpart, idir)
break

else
r2 ← r2 − p

end if
25: end for

end if
end for

end function
This function requires the MoveParticle function, which is
defined as follow

function MoveParticle(icell, ipart, idir)
Ftot ← GetFluxInDir(icell, idir)
neighbors← GetCellsOnFace(icell, idir)
īdir ← GetOppositeDirection(idir)

5: r ← DrawUniform(0, 1)
for jcell in neighbors do

F ← − GetFluxInDir( jcell, īdir)
p← F/Ftot
if r < p then. Move particle to the centre of the cell

10: SetParticleAtCenter(ipart, jcell)
break

else . Proceed to next cell
r ← r − p

end if
15: end for

end function

Fig. A.1. Cell faces numbering.

GetFluxInDir returns the mass that goes through the cell
face in one timestep. Assuming that cell faces are numbered
from 1 to 6 (left, right, top, bottom, front, rear, see Fig. A.1),
GetOppositeDirection reads

function GetOppositeDirection(idir)
mask← [2, 1, 4, 3, 6, 5]
return mask[idir]

end function
When looped over all cells, the algorithm treating all the trac-

ers has complexity O(N) where N is the total number of tracer
particles and requires O(NdimNcell) memory to store the fluxes
and O(N) to store the tracer particles information.

A.2. AGN

Here we present how the volume of the jet is computed. We also
present how the positions of the tracer particles in the jet are
drawn. The function in charge of drawing position for the tracer
particles in the jet is Tracer2Jet

function Tracer2Jet(j)
loop

c← 2
while c > 1 do

5: a← NormalDistribution(0, 1)
b← NormalDistribution(0, 1)
c← a2 + b2

end while
x← rAGN × a

10: y← rAGN × b
h← Uniform(−2rAGN, 2rAGN)
r2 ← x2 + y2

if |h| > rAGN and (|h| − rAGN)2 + r2 < r2
AGN then

break
15: else if |h| ≤ rAGN then

break
end if

end loop
. We now have a position in the frame of the jet.

20: uz ← j/|j|
ux ← [jy + jz,−jx + jz,−jx − jy]
ux ← ux/|ux|
uy ← uz ∧ ux
return x ux + y uy + h uz

25: end function
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