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1 INTRODUCTION

ABSTRACT

The merging rate of critical points, used as a proxy for cosmic evolution, is computed as
a function of smoothing scale from the initial cosmic landscape to forecast special events
driving the assembly of dark matter haloes. Beyond the mergers of peaks with saddle points
(a proxy for halo mergers), we consider the coalescence and nucleation of all sets of criti-
cal points, including wall-saddle to filament-saddle and wall-saddle to minima (a proxy for
filaments mergers and void mergers respectively), as they impact the geometry of galactic
infall, and in particular filament disconnection. Analytical predictions are validated against
multiscale measurements in maps and cubes (the corresponding code being available upon
request). Applications to cosmology, astrophysics and other fields of research are discussed.
The rate of filament coalescence is compared to the merger rate of haloes and the two-point
clustering of these events is computed, along with their cross-correlations with critical points.
These correlations are qualitatively consistent with the preservation of the connectivity of
dark matter haloes, and the impact of the large scale structures on assembly bias. The cosmic
evolution of the destruction rate of haloes and voids as a function of mass and redshift is quan-
tified for a ACDM cosmology. The one-point statistics in higher dimensions is also presented,
together with consistency relations between critical point and critical event counts.

Key words: cosmology: theory — galaxies: evolution — galaxies: formation — galaxies:
kinematics and dynamics — large-scale structure of Universe — statistics: random processes

to cosmology, as it influences for example lensing observations
through spin alignments (Crittenden et al. 2001; Codis et al. 2015).

The large-scale structures of our observable Universe are routinely
observed through the distribution of galaxies, neutral gas or dark
matter. As such, galaxies and their haloes are both probes of the
large-scale density field (from the point of view of cosmology), or
the subject of interest (from the point of view of galaxy formation).
It is now accepted that the large-scale structures are key to under-
stand galaxy formation, for example by driving angular momentum
acquisition through cosmic cold streams (Dekel & Birnboim 2006;
Agertz et al. 2009; Pichon et al. 2011; Danovich et al. 2012; Dubois
et al. 2012) and by galaxy mergers, which efficiently disrupt galax-
ies into ellipticals (e.g. Toomre & Toomre 1972; Naab & Burkert
2003; Bournaud et al. 2007). This scale coupling is also relevant
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In the era of precision cosmology, any attempt to infer cosmolog-
ical parameters from observations of galaxies and haloes should
therefore take into account the influence of the surrounding large-
scale structures. Since the details of the buildup of cosmic structure
and galaxies are encoded in the initial matter density field and are
coupled, one could, in principle, predict their joint evolution from
the initial conditions. Considering that an initial Gaussian random
field with small density perturbations leads to the formation of both
cosmic structures and galaxies, some descriptive statistics of this
field can be used to jointly predict the final fate of galaxies, halos
and the cosmic web. More specifically — and this will be the topic
of this paper — we should be able to identify special sets of points
via a multi-scale analysis of the initial conditions (as a mean of
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compressing the relevant information content of this field) and use
them to predict the fate of cosmic structures.

Within the paradigm of the spherical gravitational collapse
of an overdense patch, one can draw a relationship between the
time of collapse and the scale at which the initial patch must be
smoothed so as to pass a theoretically given overdensity thresh-
old (Press & Schechter 1974). In practice, not only does the patch
need to pass a given density threshold as a function of smoothing
but additional constraints must be added, notably to avoid double
counting (the so-called cloud-in-cloud problem). This requires en-
forcing a first crossing condition to ensure that no larger scales than
the one considered can collapse, which makes the core of the ex-
cursion set approach (Peacock & Heavens 1990; Bond et al. 1991;
Jedamzik 1995; Maggiore & Riotto 2010; Musso & Sheth 2012).
Better agreement with actual collapsed haloes can be achieved with
a modified stochastic threshold that incorporates the effects of tidal
forces on top of spherical collapse (Bond & Myers 1996; Sheth
et al. 2001).

When studying halo statistics, it is also of interest to investi-
gate the substructures (hence smaller scales) within a given patch so
as to study its assembly history. Lacey & Cole (1993) showed that
the properties of the excursion set trajectories carry information on
the matter accretion history of the forming haloes, allowing us to
split this accretion into a smooth component on the one hand and
mergers on the other hand. In this sense, the fate of a given region is
encoded in its initial conditions and is captured by the multi-scale
properties of the corresponding Gaussian random field.

The topology of the initial density field at a given smooth-
ing scale is encoded in the position and height of all its critical
points. For instance, peaks in the initial conditions will later form
the nodes of the cosmic web (Bardeen et al. 1986), while bridges in
between, in the middle of which is found a saddle-point, will sub-
sequently collapse due to the tidal anisotropies to form filaments
(Bond et al. 1996). Conversely, voids will develop from the initial
minima (Sheth & van de Weygaert 2004), and walls around wall-
type saddle points. Beyond the strong focus on extrema, Pogosyan
et al. (2009b) developed a theoretical framework, the skeleton,
to understand the structure of the cosmic web as a whole (walls
and filaments) in terms of gradient lines joining peaks and voids
through saddle points. In this context, computational geometry al-
lows us to quantify the strength of topological pairing between criti-
cal points (Sousbie et al. 2011; van de Weygaert et al. 2011) through
persistence (Edelsbrunner et al. 2002; Pranav et al. 2017) which
measures their relative heights, and defines a scale-free hierarchy
amongst filaments, walls and voids of the cosmic web.

Returning to haloes, Manrique & Salvador-Sole (1995, 1996)
brought together the virtues of the two (peak and excursion set) ap-
proaches in the so-called confluent system formalism, where excur-
sion set trajectories are not randomly located in space and concen-
tric, but insist on peaks and follow their position as the smoothing
scale changes. This approach was later perfected and made more
analytically manageable (Paranjape & Sheth 2012; Paranjape et al.
2013), including the effect of tidal shear (Castorina et al. 2016).
The very notion of special points in the position-smoothing space
is hence crucial in the context of modelling the evolution of haloes
but also the cosmic web as a whole.

The topology of this web at a given smoothing scale is en-
coded in the position and height of all its critical points, namely ex-
trema (maxima and minima) and saddle points (filament-type and
wall-type saddle points). Their drift with smoothing defines the so-
called skeleton tree (Hanami 2001) which captures the variation of
this topology with smoothing scale, hence time. One can identify

special scales at which two such points coalesce, hence produc-
ing merger events of different types, corresponding to mergers of
haloes, filaments, walls or voids. In that paper the focus was on
the coalescence of filament saddles with maxima, which the author
named sloping saddles (as they are vanishing saddle points on the
slope of peaks), identified as proxies for merging events. These are
known to play an important role in triggering AGN feedback, which
impacts gas inflow and therefore galactic morphology (Dubois et al.
2016). Coalescence of other critical points also impact the geom-
etry of the cosmic web (in particular the filaments) which defines
preferred directions along which galaxies are fed cold gas and ac-
quire their spin. They also impact wall disappearance, hence void
statistics (Dubinski et al. 1993).

The focus should now therefore be on special points in the
3+1D position-smoothing space, where these paired critical points
merge, i.e. when the persistence level tends to zero as a function
of smoothing. Using the above-mentioned mapping between scale
and cosmic time provided by the spherical collapse model, these
mergers can be matched to structurally important special moments
that modify the topology of the evolved density field. For instance,
when two haloes merge, the topology of the excursion set of the
density field (i.e. the region above a given threshold) is changed,
because it decrements the number of components above the thresh-
old.

Mapping the geometry of the Gaussian random field onto the
knowledge of only these singular events is a very efficient and use-
ful compression of the information encoded in the field. It is ef-
ficient because it compresses the information about a 3D random
field into a finite set of points in 3+1D. It is useful because i) these
points bear significance in terms of cosmology or galaxy forma-
tion, and ii) we will be able to characterise the corresponding point
process in terms of the properties of the underlying initial Gaus-
sian field — therefore statistically in terms of the underlying power
spectrum.

Hence, in this paper we will present a “critical event theory”
to capture not only the evolution of the halo hosting the galaxy
via its merger tree, but also the evolution of the spatial structures
that fed it, which are responsible for driving the acquisition of sec-
ondary galactic properties (such as their angular momentum) and
thus to understand the phenomenon known as assembly bias. We
will include the coalescence of minima with wall-type saddles and
wall-type saddles with filament-type saddles corresponding respec-
tively to the merging of two walls (with a void disappearing in be-
tween) and two filaments (with disappearance of a wall). We will
finally study the clustering properties of all these critical events in
the multi-scale landscape, since it is the sequence and geometry of
these critical events that will shape the fate of galaxies.

Our astrophysical motivations are the following. Study the
generalised history of accretion: what kind of mergers happens
when, and where? Quantify the conditional rate of filament and
wall disappearance in conjunction to that of an existing larger scale
critical point. Understand the origin of void disappearance and its
usefulness as a cosmic probe for dark energy. Connect the multi-
scale landscape of initial conditions to the properties of dark matter
haloes, and eventually the morphology of a given galaxy. Study
how the anisotropic large scales modes bias its assembly history.
Beyond astrophysics, we aim to quantify the statistical properties
of zero persistence points in a multiscale landscape and to provide
tools to identify such points.

This paper proceeds as follows. Section 2 forecasts special
events through the coalescence of critical points in the multi-scale
landscape. We re-derive the condition for a critical event in an ar-
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bitrary frame, and quantify its one- and two-point statistics in 2
and 3 dimensions (in the main text) and higher dimensions (in the
appendix). Section 3 predicts the clustering properties of these spe-
cial events. Section 4 compares the predictions to realisations of
Gaussian random fields for validation. Section 5 discusses pos-
sible applications in astrophysics and beyond. Section 6 presents
our conclusions. A summary of the notations and conventions used
throughout the paper is provided in Table 1.

Appendix A presents the counts in arbitrary dimensions and
illustrates them in up to 6D. Appendix B explores the duality be-
tween critical points and critical events. Appendix C discusses al-
ternative interpretations of critical events. Appendix D describes
the local behaviour of critical point lines near their coalescence.
Appendix E presents algorithms to generate Gaussian random
fields satisfying a set of given ‘events’ at some scale and position.
Appendix F generalises some results using alternative definitions
to relate critical events to mergers in physical space. Appendix G
gives the joint PDF of a Gaussian random field up to the third
derivative of the field. Appendix H explains how the critical events
are measured in random field maps and cubes.

2 THEORY: 1-PT STATISTICS OF CRITICAL EVENTS

In this paper we consider the overdensity at position 7, 6(r) =
p(r)/p — 1, to be a homogeneous and isotropic Gaussian random
field of zero mean and power spectrum P, smoothed on scale R.
In this section, we will focus on one-point statistics associated with
merger rates of the field critical points as the smoothing scale in-
creases. In Section 2.1 we define different quantities used through-
out the paper to describe the relevant features of the field. Sec-
tion 2.2 presents the number density of critical events, while Sec-
tion 2.3 introduces critical events of different types (peak, filament
and wall mergers) and calculates their total and differential densi-
ties at given height. In this latter section, Gaussian properties of
the field are used for the first time. Section 2.4 sketches the corre-
sponding theory for projected maps, while Section 2.5 presents its
extension to non-Gaussian fields.

2.1 Characteristic features of a field

Let us first introduce the dimensionless quantities for the density
field, smoothed over a scale R by a filter function W

d’k ”
1 = | —=d(k kR)e™ ™. 1
(B = [ s kW EkR)e n
We will consider the statistics of this field and its derivatives in this
paper. For practical purposes, let us introduce the dimensionless
quantities

0 Vid ViV ViViVind

T="—",Tk =", Tkl = y Thim = — (2)
(o) o1 o2 o3

which are normalised by their respective variance

o%(R) = 2% / Ak K P ()R WA(RR),  (3)
™ Jo
so that we have (z*) = 3, (zpar) = Y, (wman) =

Zk,z,m@klmxklnﬁ = 1. Note that here and in the following of
the paper, we have dropped the explicit dependence of the quanti-
ties of equation (2) to the smoothing scale.
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Following closely Pogosyan et al. (2009b), let us introduce the

characteristic scales of the field
R=2, R=2, R=2. )
o1 02 03
These scales are ordered as Rg > R, > R. The first two have well-
known meanings of typical separation between zero-crossing of
the field and mean distance between extrema respectively (Bardeen
et al. 1986). The third one, R, is by analogy the typical distance
between inflection points.
Let us define a set of spectral parameters that depend on the
shape of the underlying power spectrum. Out of the three scales
introduced above, two dimensionless ratios may be constructed that

are intrinsic parameters of the theory
_ R. o? - R _ o3
77R0_0'00'27 7R*_O'10'3.

®

From the geometrical point of view ~y specifies how frequently one
encounters a maximum between two zero-crossings of the field,
while 7 describes, on average, how many inflection points are be-
tween two extrema. From a statistical perspective, v and 7 are
cross-correlation coefficients between the field and its derivatives
at the same point
2
gz 089 o _(V8-V'VY) ©)

go02 0103

These scales and scale ratios fully specify the correlations between
the field and its derivative (up to third order) at the same point. For
power-law power spectra of index n with Gaussian smoothing at

the scale R in 3D, Ry = R\/2/(n+3), R. = R\/2/(n+5)
and R = R\/2/(n+7) while y = \/(n+3)/(n+5) and 5 =
v/ (n+5)/(n+ 7). See also Appendix Al for their generalisation

to any dimension.

2.1.1 Critical points of the random field

Critical points of the 3D field at fixed smoothing scale are defined
as places where the spatial gradient of the field vanishes: V§ = 0.
This provides a number of conditions exactly equal to the dimen-
sionality of the space, and thus is in general satisfied only at iso-
lated points. The type of critical point is given by the signs of the
eigenvalues o2 \; of the Hessian of the field

H=VVjy, )

which we will always consider sorted A1 < A2 < As.

Local extrema of the field are critical points whose eigenval-
ues have all the same sign, negative for maxima, and positive for
minima. Other critical points are saddles of different types: in 3D
filamentary saddles have A1 < A2 < 0 < A3 and wall-like saddles
have A1 < 0 < A2 < As. Requiring ever more eigenvalues to be
positive, we go from maxima to filamentary saddles to wall saddles
and to minima, each type differing from the neighbours by the sign
of one eigenvalue. Correspondingly, the Hessian determinant

H = det(VV3) = a5\ A2 )3, (®)

changes sign at every step of this progression.

In Euclidian space the average Euler characteristic is zero.
This means that the alternating sum of critical points is null n, —
nip + ngp — Nep = 0, with n‘é’ff’w’v the mean number densities
of peaks, filament-type saddle, wall-type saddles and voids respec-
tively. A more formal definition is given in Appendix B. Thus, the
density of all the critical points with H > 0 is equal to the density

of ones with H < 0. For any dimension, this mathematically reads

ZHi>O n&) = EHi<0 ng
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Figure 1. 1+1D landscape of a 1D field smoothed at a scale R. Solid lines
indicate maxima (red) and minima (blue). Smoothing length R is the small-
est at the backplane and increases toward the viewer, critical point lines end
at critical events (black dots). The critical point lines are projected on the
6 = —1 plane (red and blue dashed lines). Vertical purple lines indicate
the projection of critical events onto the 6 = —1 plane and illustrate that
critical events are found at the location where two critical points merge. An
interactive version can be found online.

Figure 2. 2+1D landscape of a 2D field smoothed at a scale R. The density
field (blue to red map) is smoothed at increasing (upward) R. For each scale,
the critical points (red lines: peaks, green lines: saddle points, blue lines:
minima) are found. At the tip of each branch a critical event is found (red:
peak-saddle critical events, blue: saddle-minima). Isocontours of density
in 2+1D are shown as transparent surfaces (blue for negative density and
red for positive density). An interactive version can be found online. Note
that the critical points at coordinate ~ (50, 20) (see inset) or ~ (110, 55)
are indeed clearly sloping saddles: one of the eigenvalues of the Hessian
vanishes as the curvature changes.

2.1.2 Critical event definition

Let us now define critical events. These events — that generalise
the notion of sloping saddles in Hanami (2001) — are defined in
the 3+1D position-smoothing space as locations where, besides

V§ = 0, the Hessian determinant H also vanishes'. Because we
impose these four conditions in a four-dimensional space, the so-
lution is a set of points in position-smoothing space, which will be
interpreted as points in space-time, hence the denomination events.
These events in 3+1D space correspond to mergers of the trajec-
tories traced by critical points as the smoothing scale R changes.
Since in general at each critical event only one eigenvalue of H
vanishes, only the tracks of critical points of neighbouring types
can merge.

Figure 1 shows the critical events for a 1+1D field. These
events are found at the tip of critical point lines and represent the
disappearance of a pair of critical points of neighbouring kind (e.g.
a maximum and a minimum in case of one spatial dimension, a
maximum and a saddle point for higher dimensions). At a criti-
cal event the topology of the field at fixed R slice is changed by
removing a pair of critical points. The inverse process where a crit-
ical point pair is created and two trajectories emerge from a critical
event? is also possible (for a Gaussian filter, only in more than 1D),
although, as we will show further, much less probable.

Let us illustrate the concept of critical events using an anal-
ogy with a mountainous landscape, the latter being restricted to
2D space. A mountainous landscape is made of peaks analogous to
proto-haloes. A peak is linked to some of its neighbours via moun-
tain passes, that form a proto-filamentary structure. Following the
ridge from one peak to another one is analogous to following a fil-
amentary structure between two proto-haloes. With the action of
time, the mountains will erode until eventually no peak will subsist
— this is analogous to the smoothing operation. In the process, a dis-
appearing peak will see its height (the density) decrease with time.
If the peak is not prominent enough, it will eventually be smoothed
to the point where it no longer is a peak but a shoulder on another
peak’s slope. Just before the peak disappears, it is still linked to its
neighbour via a pass. When the peak disappears so does the pass
— indeed a pass is always located between rwo peaks ; when one
disappears, so does the pass. This particular event is what we de-
fined as a critical event. It encodes the moment when two critical
points (here a peak and a saddle point) annihilate. This can also
be interpreted as the moment a peak disappears on the slope of its
nearest neighbour — the two peaks merged and the most prominent
subsisted. Critical events have hence a dual interpretation. Figs. 2
and 3 shows an illustration in this specific case of a 2+1D field us-
ing a 3D visualisation and a sequence of 2D renderings at various
smoothing length.

In the following, we will rely on the Ansatz that critical points
(peaks, filament saddles, wall saddles and minima) in the initial
conditions can be mapped into late time structures of the cosmic
web (haloes, filaments, walls and voids respectively). Under this
assumption, critical events (where critical points merge) can be
interpreted as mergers of cosmic structures. While this assump-
tion sounds generally reasonable, a word of caution is required.
For instance, the formation redshift, z, of a halo is usually re-
lated to the height § of the corresponding peak through the rela-
tion 6 = d./D(z), with peaks of vanishing height forming haloes
asymptotically late in the future. This automatically excludes local
maxima of negative height from the picture. Thus, critical events

1 We warn against possible confusion that critical events are not a gen-
eralisation of critical points to extra dimension. The additional condition
imposed is not 3§ /OR = 0 but H = 0.

2 We will always be speaking about mergers or creation as smoothing in-
creases, i.e. consider trajectories traced by critical points in the direction of
increasing R.
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Figure 3. From left to right and top to bottom, a smoothing sequence of a Gaussian random field, whose density is colour coded from blue to red as a function
of height (analogous to the slices shown in Fig. 2). The skeleton tracing the ridges (Pogosyan et al. 2009b) is shown in purple, while the anti-skeleton tracing
the trough is shown in white. The saddles shown as green crosses lay at the intersection. The maxima are shown as red triangles while the minima as blue
squares. As one smooths the field, these critical points drift towards each other along the skeletons, until they vanish in pairs. The upcoming coalescence are
identified with grey circles. Note that as saddle points vanish, the two corresponding skeletons do too. Note also that the direction of coalescence is typically
set by the skeleton’s just before coalescence. In this two-dimensional example, the ratio of peak+saddle to void+saddle event is one. The black segment in the
bottom left of the first and last image represents the amount of smoothing. This paper is concerned with studying the one and two-point statistics of these grey
circles. Note that these events are indeed proxy for mergers of the peaks of the underlying field: for instance, between snapshot 3 and 5 the central four peaks
have merged into one. Similarly, between 1 and 4 the central four voids have merged into one. We provide an interactive tool to follow such events in 2D and

3D.

where local maxima of negative height disappear should never be
associated to halo mergers, nor should those where local minima of
positive height disappear be associated to void mergers. Similarly,
critical events leading to the creation of critical points (unlikely,
but possible nucleation) have no obvious late-time counterparts. We
will come back to these details later.

Since the primordial density field is a 3D field, the den-
sity landscape is made of peaks (proto-haloes), saddle-points
(proto-filaments and proto-walls) and minima (proto-voids). Crit-
ical events record the merger of peaks into proto-filaments (PF crit-
ical events), of proto-filaments into proto-walls (FW critical events)
and of proto-walls into proto-voids (WV critical events). This is il-
lustrated in Fig. 4. PF critical events (top panel) encode the merger
of two haloes separated by a filament. After the merger, the most
prominent peak subsists, while the other proto-halo and the proto-
filament have annihilated. FW critical events (centre panel) encode
the merger of two filaments separated by a wall. After the merger,
the most prominent proto-filament subsists, while the other proto-
filament and the proto-wall have annihilated. WV critical events
(bottom panel) encode the merger of two walls separated by a void.
After the merger, the most prominent wall subsists, while the other
proto-wall and the proto-void have annihilated. Note that here we
have interpreted the merger from the point of view of the dens-
est surviving structure (e.g. the surviving peak of a peak-filament
merger), but a dual interpretation is possible that instead takes the
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point of the least dense structure, see Appendix C for more details.
In the following of the paper and unless stated otherwise (as in e.g.
Section 5.1), we will always use the former interpretation.

2.2 Critical event number density

In this section, we will present the derivation of the mean number
density of critical events in 3+1D position—smoothing space. The
averaging is performed over ensemble of field realisations on 3D
spatial slices and the resulting mean density is smoothing depen-
dent. In Section 2.2.1, we demonstrate how one can express the
critical event constraint as a function of the local properties of the
field and its derivatives. We also describe in more details the link
between the 3+1D density of critical events and the rate of change
with smoothing of the 3D spatial density of critical points and intro-
duce the concept of net merger event density (see also Appendix B).
We then perform in Section 2.2.2 the computation of the critical
event density in the eigenframe of the Hessian of the field where it
takes a simpler form.

2.2.1 General formulation

As defined in Section 2.1.2, each critical event is a solution
(7ce, Ree) of the set of constraint equations V4 = 0 and H = 0,
the latter implying that one eigenvalue of the Hessian vanishes. In
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Peak-filament

A crit. event
]
/ (halo merger)

Filament-wall
crit. event

Figure 4. Illustration of critical events in a 3D random field and their phys-
ical meaning. @ symbols are peaks, X symbols are filament-type saddle
points (filament centres), ® symbols are wall-type saddle points (wall cen-
tres) and O symbols are minima (void centres). Top: Peak-filament criti-
cal events encode the merger of two haloes and the disappearance of their
shared filament. After the merger, only one peak subsists and the filament
disappears. Middle: Filament-wall critical events encode the merger of two
filaments and the disappearance of their shared wall. After the merger, only
one filament subsists. Bottom: Wall-void critical events encode the merger
of two walls and the disappearance of their joint void (surrounded by the
two walls and the dotted lines). After the merger, only one wall-type saddle-
point subsists and the void has disappeared. Halo mergers are encoded
by peak-filament critical events, filament mergers. Alternatively, one could
have chosen to describe these events as resp. filament, wall and void disap-
pearances, while describing the excursion from the low density end. This is
illustrated on Fig. C1.

the direction of the null eigenvector, the field behaves as at a flat
(critical) inflection point. Following Hanami (2001), the number
density of critical events in position-smoothing space is given by

n3P = < > 65 (= ree)dn(R — Rce)> , )

ce

where 7. is the position of a critical event (i.e. a critical point with
a degenerate direction) in real space and R.. its associated smooth-
ing scale, and dp is the Dirac function. The brackets in equation (9)
denote the 3+1D spatial averaging over volume V' and scale range
AR, (...) = (VAR)™' [\ zdR [, d’r....

In the following, we will use Or to denote derivatives with
respect to scale R. Since critical events are characterised by H and
V4, let us rewrite equation (9) in terms of the properties of the
field, using the coordinate transformation from (7, R) to (V4, H).
This involves the 3+1D Jacobian of the transformation

OorH VH
OrVS VV§

= H (0rH —0rVS-H ' - VH).  (10)

’

J(H,V§) = '

The latter expression for the 3 + 1 decomposition of the Jacobian
formally requires the Hessian H to be invertible, which is not the
case at the critical event. Still, the Jacobian is well-defined even
there since the product FH ! remains finite in the I — 0 limit.
Interestingly, the term Or H does not contribute to .J since it enters
the result only multiplied by the vanishing H.

The fully covariant formulation of the number density of crit-
ical events, which generalises Hanami (2001), is then

ni = (17165 (Vé)on(H) ), (1n

where the brackets now indicate the expectation value over the joint
distribution of the field and its successive derivatives up to second
order, as well as derivatives of the field gradient with respect to R,
P(:E, Tiy Lij, 833:1)

The statistics of Or V § variables depends on the choice of fil-
tering function and may be non-local. Its treatment is significantly
simplified when filtering with a Gaussian window, in which case
the change in the value of the field with R is given by a local quan-
tity via the diffusion-type equation

Ord = RV?6, 12)

so we can replace the problem by averaging over the one-point
distribution of the field and its derivatives up to the third order,
P(z,x;,xi;, k). This distribution involves 20 variables, see Ap-
pendix G for the PDF for Gaussian random fields. For the calcula-
tions that follow, we will use a Gaussian filtering model and equa-
tion (12).

It is important to stress now that the 3+1D number density of
critical events given by equation (11) is not equivalent to the rate of
change with smoothing R of the 3D density of critical point pairs.
Indeed, at a critical event, one pair of critical points of adjacent
topological types (e.g. maximum and filamentary saddle) coalesce,
but as a local analysis in Appendix D demonstrates, this event can
describe either the merging or the creation of the pair, depending
on the sign of Jacobian J. Namely, the partial number densities

nis = (|710n(E) 0 (Vo)on (), (13)

such that n2P = ng’f _+ n§£+, count separately critical events
where a pair of critical points is created (4, also called a nucleation)
or destroyed (—). The two kinds are illustrated on Fig. 5, which was
generated using the code detailed in Appendix E for two likely con-
figurations. Note however that nucleation critical events are ~ 30
times less probable than the destruction critical event (see Fig. F1)
for ns < —1 (y < 0.8). The quantity that is equal to the rate of
change of the density of critical points with smoothing is, there-
fore, obtained by removing the absolute value from the Jacobian in
equation (11), as shown in Appendix B, which shows that the rate
of change of the number density of critical points with smoothing
obeys

dnep
dR

where we introduced the ‘net merger rate’ (taken with minus sign)
as

=2(J 6 (Vo)on(H)) = —2nl2,  (14)

Moo = Moo — Now s . (15)
While in this paper, the term ‘net merger rate’ has been chosen
for the sake of readability, we must emphasize that this quantity
measures rates in position-smoothing scale space. Care should be
taken to relate these mergers to mergers in space-time, as will be
discussed in Section 5.1.
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Figure 5. 2D slice, in the (x, R) plane, of the conditional mean density
in 3+1D position-smoothing space, under constraint of a destruction criti-
cal event (red sphere, top panel) and a nucleation critical event (red box,
bottom panel) at R = 1,z = 0. The slice position is chosen to contain
the events. Green lines show filament-type saddle points at each R and
red lines show peaks. Density isocontours are represented as coloured lines
(from red, high density to blue, low density). The top panel is reminiscent
of Fig. 1, since 3D merger events closely resemble 1D merger events along
filaments, while the bottom panel is unique to dimensions larger than one
for Gaussian smoothing. While nucleation events such as that shown on the
bottom panel can occur, they statistically seem to remain short-lived and are
less frequent than destruction ones.

2.2.2  Expression in the frame of the Hessian

One possible method to yield an analytical expression of equa-
tion (14) is to re-express it in the frame of the Hessian, where
the Jacobian becomes sparse and can be computed in terms of the
field variables. We shall denote the field variables in the eigen-
frame of the Hessian with a tilde. In this frame the diagonal com-
ponents of the Hessian itself are given by the eigenvalues Z;; = A;
with off-diagonal ones being zero Z;; = 0. The Jacobian is by
construction invariant under rotation, so we can rewrite it in the
Hessian eigenframe without loss of generality. Developing H into
o5 A1 23 and assuming, for instance, that direction 3 is the de-
generate one, the Jacobian can be rewritten as follows

OrA3  T331 &332 333

J(H, V) Orii M 0 0
i Sl B A ~ 1
010503 Ado ORZT2 0 A2 0 |’ (16)
Oris 0 0 0
= —(MX2)’T3330RT3 , amn

MNRAS 000, 000-000 (0000)

where the factorisation of A1 A2 in equation (16) is a consequence
of A3 being zero, which also nulls the last component of the last
row. Using equation (12) to re-express the derivative with respect
to smoothing in terms of the Laplacian of the field, we find the
number density of critical events in equation (11) to be?

3D __ R
ce R2 R,%

<’Zl§53ll||i‘333|5](33)(i‘i))\1)\25D()\3)>, (18)

where 6&3) (Z;) is understood as the product of the Dirac delta func-
tions of all components of the gradient of the field. R. and R are
the typical inter-critical point and inter-inflection point separation
introduced in equation (4).

Let us stress that in equation (18) the averaging is performed
over the distribution of the fields expressed in the frame of the Hes-
sian matrix (Doroshkevich 1970) that differs functionally from the
distribution in an arbitrary frame. For computational purposes it is
useful to avoid this complication. We achieve this by noticing that
in the integral over the Hessian space, the transition to the eigen-
frame can be introduced using the Dirac delta functions on off-
diagonal elements of the Hessian coupled with the Jacobian of the
transformation o< (A3 — A1)(A3 — A2)( A2 — A1) times 272 due to
integration over angles of Hessian orientation assuming statistical
isotropy. Namely, equation (18) can be cast in the form of an av-
erage over the distribution of field variables in an arbitrary frame
as

3D _ 27T2R
ce — RQ Ri’
X @H(—.TZZ)@H(QJQZ_$11)6D($33)6](33)($¢¢k)> . (19)

<’Zl$3u | |13333|51()3) (l'i)l'%1$§2(1’22 —$11)

We can use this expression as is to compute the average n2y over
any isotropic distribution given in an arbitrary coordinate frame,
since the Hessian eigenframe condition is now enforced explic-
itly by (51(33 )(2:4) which denotes again a product of Dirac delta
functions of all the off-diagonal components of the Hessian ma-
trix, while the Heaviside functions ©y enforce the sorting of the
Hessian’s diagonal elements. Thus, we have dropped the tilde sign
from the variables. For compactness, we have given the integrand in
non-rotation invariant form, having used the presence of dp (z33) in
the integral that describes condition of the vanishing third Hessian
eigenvalue.

The novelty of equation (19) compared to the classical
BBKS formula is the weight | >, #3:||zs33|, which requires the
knowledge of the statistics of the 3rd order derivatives of the
field. The expectations in equation (19) can be evaluated with
the joint statistics of the field and its successive derivatives,
P(x113, X223, X333, T11, T22), Which now only involves five of the
variables listed above to average over.

Following the same derivation, one can also compute the net
merger rate

3D 271'2R
me RQ R‘:f
X @H(—ZE22)9H($22—w11)5D($33)5](33)(17i¢k)> . (20)

<($333Zl$3u) 5](33) (wi)xiﬂf’%z(mm —5511)

Let us stress here that equations (19) and (20) describe different
quantities that were defined in equations (11) and (15), respectively.
In equation (20) and in the following of the paper, the quantity of
interest will be the net merger rate.

3 One factor of A1\ drops between equation (17) and (18) because of
0p (H) in equation (11). We also note that A A2 > 0 when Az = 0.
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Note that equation (18) closely resembles the equation giv-
ing the flux of critical lines per unit surface presented in Pogosyan
et al. (2009b), up to the delta function on the third eigenvalue (and
the corresponding Jacobian). It involves the product of the trans-
verse curvatures, because the larger those curvatures the larger the
flux of such lines per unit transverse surface. The extra third eigen-
value delta function reflects that we also now require that along
the filament’s direction the curvature should be flat, whereas they
marginalised over all possible longitudinal curvature. The similar-
ity implies that critical points essentially slide along critical lines as
one smooths the field, see Fig. 3: in some loose sense the 3D event
count can be approximatively recast into a 1D event count along
the ridges.

2.3 Gaussian number density of critical events per type

In this section, the number counts are extended to distinguish dif-
ferent critical event types and count them as a function of density.
Section 2.3.1 presents the number count of the different types of
critical events. Section 2.3.2 presents their number count as a func-
tion of their density. Throughout the section, the field will be as-
sumed to be a Gaussian random field.

2.3.1 Different critical events and their mean number density

In the previous example we chose the largest eigenvalue A3 to be
vanishing at the critical event, which corresponds to the coales-
cence of a peak-filamentary saddle pair. Thus, we did not count all
possible critical events in equations (19) and (20). While the co-
alescence of peaks with filaments (PF critical events, the sloping
saddles of Hanami 2001) are clearly central to the theory of mass
assembly, the coalescence of filament-saddles with wall-saddles
(FW critical events) and of wall-saddles with voids (WV critical
events) are also likely to affect the topology of galactic infall. Even
though we mostly deal with critical events in the linear density
field, these may still be a proxy for the events of destruction of
filaments, walls and voids in the non-linearly evolved cosmic web.
FW critical events correspond to the case when the middle eigen-
value Ao vanishes, while WV critical events are the ones with the
lowest eigenvalue \; being zero.

Let us therefore compute the net merger rate for each type of
mergers (P = PF, 7 = FW and YW = WYV) using Gaussian as-
sumption about the density field. For an isotropic Gaussian field,
odd- and even-order derivatives of the field at the same point are
completely statistically independent. Therefore, equation (20), gen-
eralised to the case where any eigendirection can be chosen as a de-
generate one, can be split into odd- and even-order derivative terms
as

o) — 1t

me — RQRE Codd C',even 3 (21)

where

Cjeven = <27T25D(13jj)@H (z33—222)Ou(T22—211)

x 65 (et

Z%Ejklwikm%l(mkk_l‘ll)'>7 (22)

kl

with 7% being the completely antisymmetric Levi-Civita tensor

4 From now on to simplify the notation we will drop the superscript 3D
from the critical event densities where it does not lead to confusion.

and j = 3, 2,1 for peak, filament and walls. In turn the term that
involves the odd-order derivatives of the field,

Coda = <Z lewjjj5§)($i)>7 (23)
l

is actually independent on j due to isotropy. In the following of the
paper, we will also make use of the notation P, F, W instead of
7 = 3,2,1 (for peak, filament and wall mergers resp.) in formulas
with an astrophysical interpretation.

The factors Coqq and Cj cven that constitute n$) are readily
evaluated. In 3+1D they are

29 — 66 2

Cl,even = C3,even = W 5 CQ,even = \/ﬁ 5 (24)
while common to all merger event types,
1/ 3\*? 2
Codd = = | — 1-5%). 25
dd = ¢ (27r> (1-%%) (25)
Coaa can also be computed in arbitrary dimensions as shown in

Appendix A4.

We note that for Gaussian fields, the computation of the total
critical event density nce, as well as partial densities of creation
and destruction events nce,+, differ from the computation of nme
only in the C\qq term that can also be found analytically for these
quantities. The corresponding values are given in Appendix F.

In addition, let us note that the quantities n$) correspond to
the following changes of the critical point densities

dn,/dR = —nl., dnl, /dR = —(nhe + nie),
dny,/dR = —nh,, dnly/dR = —(nh. +nim) .  (26)

Here, superscripts p, f, w, v denote peaks, filament-saddle, wall-
saddle and minima respectively. Thus, for instance, n’., and the
change in the density of peaks dn?,/d R both evaluate to

3R 5. 29v/15 — 18/10
nhe = —(1-34) Y20 V2 7)
R3R2 18007

This coincides with the result of Appendix A8, obtained by direct
differentiation of nf,.

From equation (24) we can compute the ratio of filament to
peak mergers 7z p = nl. / nk, = C2,even/C3,even. Interestingly,
the merger event ratio is independent of the spectral index of the
field and is given by

N 24V/3

P 29v2 1243
which is nothing but the ratio between the mean number of wall-
type saddles and peaks minus 1. This relation can be readily ob-
tained also from equation (26) by noting that the relative frac-
tion of different critical points is smoothing-independent, and thus
should be, after some algebra, the ratio of their rates of change, e.g.,
(nhe+nhe)/nk. = nip/n‘gp so that rrp = nip/nﬁ’p — 1. Equa-
tion (28) also shows that there are about twice more filament dis-
appearing in filament merger events (F events) than in halo merger
events (P events). Similarly, we can compute 7y to deduce that
there are twice as many walls disappearing due to filament mergers
(F events) as due to wall mergers (W events). Appendix A6 also
presents these ratios in dimension 4 to 6.

~ 2.05508 , (28)

2.3.2 3D differential event counts of a given height

As argued by Press & Schechter (1974); Bardeen et al. (1986), the
initial mean density profile of a proto-object contains information

MNRAS 000, 000-000 (0000)
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about its future evolution (e.g. the time of collapse). In this sec-
tion, we therefore extend our previous results by computing the net
merger rate in 3+1D space as a function of the field height (the over-
density). While the density-integrated net merger rates, computed
in the previous section, are directly connected to the derivatives
of the density-integrated number density of critical points through
equation (26), the net merger rates at fixed v do not verify such a
simple relation, since the field height v is not preserved along the
3+1D trajectory of an individual critical point. In other words, the
field height of the critical event is not simply related to the height
of its two progenitors. This gives us an additional source of change
in the critical point number density at fixed v. Thus, nme (V) is a
new statistics, not equivalent to dn.p(v)/dR, that focuses specif-
ically on the contribution of mergers to the change of the critical
point number density at a given v. Studying nme(v) allows us to
make the distinction between mergers of important critical points
and less significant ones. In particular, if we identify astrophysical
objects by a threshold in v, we will be able to study the mergers of
that particular population.

The differential net merger density as a function of height is
obtained by introducing dp(x — v) in the expectation of equa-
tion (21). Under the assumption of a Gaussian random field, the
field only correlates with its even-order derivatives (second in this
case). Imposing the height of the critical events considered here
therefore only modifies the term Cjeven While Coqq is left un-
changed, following

Cjeven (V) = <5D (x —v)dp(2,;)On(x33 —222)Ou (222 —T11)

> . (29)

The net merger density of kind j at height v, n$) (v) then reads

X 27‘(‘25](33) (fEk#l

VD se™Madiat (e —wu)

kl

(4) R
nme( ) R2? R3

Oj,even(l’)oodd- (30)

Interestingly, C'j cven (V) appears to have an analytical expression
once rotational invariants are used to evaluate the expectations. Fol-
lowing the formalism described in Pogosyan et al. (2009a), we in-
troduce the variables

h=1I, Jo=1I{—3I, (&3))
27 9 x+ v

Js *Ls**IJQJrIl, ¢= )
V1—72

that are linear combinations of the density field « and rotational in-
variants of its second derivatives, namely the trace [y02 = tr H =
A+ A2 + Az, minor o3 = 1/2((trH)> — trH - H) =
A1A2+A2A3+ A3\ and determinant [0 = det H = 03 A1 A2 A3
of the Hessian matrix H. The distribution of these variables is given
by

(32)

25v/107

P(§5J17J27J3) 24 o422

exp(—1¢* - 3J7 - S), (33)

where J3 is uniformly distributed between fJg /% and Js’ /% and
Ja is positive. Using these rotational invariants, one can rewrite

MNRAS 000, 000-000 (0000)

equation (29) for each type of critical event as
Co,even(v) = (3 (JF = J2)” b0 (2= )30 (1) %

x On(Si+2VE)0n(~Vh—h)), (4
Coeven(v) = (§(J2 = ) b0 (2= 1) (Is) %

x Ou(i+VR)Ou(VE-1)), ()
Creven(v) = (5 (JF = 12)” b0 (2 =) (1) x

x Ou(i—VR)Ou(2vE-J)),  (6)

with
27 31 Jey — J3
op(Is) = 5 0p (J3 - %) , (37)
1 v+vJ1
op(r — V) = ——§ _ | . 38
D ) M D <C 1_72> (38)

The condition that the determinant /3 is null due to specific A; be-
ing zero is enforced by restricting the range of J; according to the
product of Heaviside functions as specified in equations (34)—(36).
The integration in equations (34)—(36) can be done analytically and
an exact expression for Cj even (V) follows

CQ,even(V):CQ,G exp <_

03 ,even

1=

Cl,even(l/) :03,even(77/)7 (39)
with
3vByvy/1 — 42 (2759* + 307> (2 — 23) + 351)
C3,5 = ’
> 21 (9 — 592)*
i
erf (\/2(1—v2)(6—5w2)) +1 B 2

c - , C26= ————
0 V514/6 — 52 >0 V576 — 52

il V2w 1
o ( <1—w2><9—5w2>) "
3.9 =
4\/5 (9 — 592)°/?
<360074 412092 (27-3592)02

(9-5v2) * 9—572

The resulting net merger rate as a function of their height v is plot-
ted in Fig. 6, bottom panel, for different values of the spectral in-
dex ng. Note that n{J >( ) scales like 1/R* but is also a function of
R via the spectral parameters v and 4. A comparison to measure-
ment in numerically drawn random fields will be presented later in
Fig. 11. Note that the mean density of net peak mergers, given by
equation (30) for j = 3 and equation (39), is equivalent to formula
C30 in Hanami (2001).

+575v* —123072 + 783) .

2.4 2D event counts and differential counts

Given its astrophysical interests when considering 2D maps in var-
ious contexts, let us also briefly present the analogues of equa-
tion (21) for 2+1D fields. It reads

—2mR
P,2D
N (v, R)= 2 R? ((z211 + T222)T2220p (T1)0p (T2)) X

*

(®u(—2z11)0p(222)0p(T12)0D (T — V)T11), (40)
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10 R%nf2P (v)

102 R, (v)

Figure 6. The PDFs of critical events net merger rates of the various types
‘P, F in 2D for ns from —2 to —1/2 (top panel) and P, F, VW in 3D for
ns from —3 to —1/2 (bottom panel), as labelled. Note that the dominant
change with spectral index is in the amplitude which scales like 1/(R2 R%).
The rest of the shape variation comes from the weaker -« and 4 dependence
of Coqq and Ceven. In 2D, the P, F merger rates coincide for ng = —2
as the field and its second derivatives become uncorrelated (y = 0).

where the even part —27(Ou (—x11)0p(x22)0p(z12)dD(T — V)T11)
is nothing but

Ceven(l/) = <I12@H(*Il)§D(12)5D(5U — l/)> 5 (41)

once written in terms of the trace /; and determinant I of the Hes-
sian matrix.

After some algebra, given the knowledge of the 2D PDF writ-
ten in Appendix G, we get for the peak merger rate

2D 14 1—~2 2
B ) = 2 | TNV (g )
-7

R2R? (3—272)?
L VAT =73 =2 +°°)

(3—272)%/2
2

8 erfc( V20— ;%?3 = 272)) P (763#472)} @

with

3
8
The wall-filament merger rate is obtained by swapping v to —v
in equation (42). The two rates are plotted in Fig. 6, top panel,
and validated against Gaussian random fields later in Fig. 12. The
net merger rate, n2” (R) = 2CoaaR/(3v/3R*R?) follows by
integration over v.

Appendix A presents also the differential counts in dimension
4 to 6, together with asymptotic expressions in the large dimension
limit for the integrated count ratios. As expected, for any dimension
the number counts per unit log-volume are scale invariant (up to the

Clh=-(1-5%.

slow variation in the spectral parameters), i.e. R*nZ2° (v, R) for
any j € {1,...,d}, is a function of 7, 4 and v only.

2.5 Beyond Gaussian statistics

Let us finally compute the one-point statistics for weakly non-
Gaussian fields. Following Gay et al. (2012), the Edgeworth ex-
pansion around a Gaussian kernel of the joint statistics of the field
z and its derivatives, P(x, ;, ;j, Z:j,) involves the hierarchy of
cumulants and reads

P(z) = Ps() (1 + iagﬂ% : Hn(w)>  @3)

where * = (z, s, %5, Tijk), Hi is a vector of orthogonal
polynomials® with respect to the Gaussian kernel Pg, obeying
H, = (—1)"9"Pg/0z"/Pg. At tree level in perturbation the-
ory (Bernardeau et al. 2002), (Hy(x))/o2*~? is independent of
the variance at redshift z, oo(z), below & = 6. Cumulants such
as (z3x113) entering equation (43) could, in the context of a given
cosmological model, involve a parametrisation of modified grav-
ity (via e.g. a parametrisation of the perturbation theory kernel
F5(k1, k2)), and/or primordial non-Gaussianities (via e.g. the lo-
cal non-Gaussianity parameter fnr,), and enable us to study the first
stages of the non-linear evolution of the Universe under the action
of gravity. From this expansion, or relying on the connection be-
tween event ratio and connectivity discussed in Appendix A7, we
can for instance compute the non-Gaussian correction to the ratio
of critical events, defined in equation (28) as

LIP e, (8(TF) =10 ()21 (Nig)),  (44)

TF/P.G
where ¢, = (29v2+12v/3)/210/\/7, while ¢* = 3, 27 =
|V5|?/of is the modulus square of the gradient, and J; and Jo
are defined in equation (32) via the trace and minor of the Hessian.
These extended skewness parameters are isotropic moments of the
underlying bispectrum which, when gravity drives the evolution,
scale with o at tree order in perturbation theory (e.g. <J13> /oo is
independent of o). The correction to one entering equation (44)
is negative (approximately equal to —oo(1/7 — log(R)/5) for a
ACDM spectra smoothed over R Mpc/h), suggesting that grav-
itational clustering reduces the relative number of peak mergers
compared to filament mergers. When astronomers constrain the
equation of state of dark energy using the cosmic evolution of
voids disappearance, they effectively estimate o (via its depen-
dence in the cumulants) in equation (44). Conversely, for primor-
dial non-Gaussianities, the extended skewness parameters from
pure gravitational origin must be updated accordingly (see Gay
etal. 2012; Codis et al. 2013). For instance, (J1¢°%) = (J1¢%)grav—
2N/ 1+ fR /(L4 £%L).

Since the computation of the expectation (21) with the Edge-
worth expansion (43) is beyond the scope of this paper, let us in-
vestigate an alternative proxy for the event rate. Figure 7 makes use
of the perturbative prediction of Gay et al. (2012) to first order in
o for the gravitationally-driven non-Gaussian differential extrema
counts to compute the product of such counts as a proxy for the
events, namely nl. (v, 2) o nBy (v, 2) x nly (v, 2), nihe(v, 2) o
niy (v, 2) xni (v, 2) and nl, (v, 2) o< nd, (v, 2) x né, (v, 2). This
Ansatz is reasonable, since for a merger to occur, two critical points

5 Not to be confused with the Hessian matrix H used elsewhere in the
paper
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R'n,, (v, 2)

Figure 7. Predicted cosmic evolution of the product of extrema counts as
a proxy for the event counts (W in blue, F in green and P in red) for the
variances og(z) = 0,0.04,0.08, 0.12,0.16 (from light to dark) and an
underlying scale invariant power spectra of index n = —1. The F counts
have been rescaled by a constant 205/332 factor to better match the actual
counts. The predicted trend with o are in qualitative agreement with the
measured counts presented in Fig. 18.

of the same height must exist beforehand. We use the Gaussian PDF
as a reference, to recalibrate the relative amplitude of the filament
to peak merger counts. Since Gay et al. (2012) provide fits to the
critical point PDFs as a function of oy, it is straightforward to com-
pute their product.

From Fig. 7, we see that gravitational clustering shifts the peak
event counts to lower contrast. Less trivially, the filament merger
rates also shift towards negative contrasts. From these PDFs we
can re-compute the cosmic evolution of the ratio of critical events
which appears to closely follow rp/r = 7/34(1 — 00 /7) (forn =
—1), in good agreement with equation (44), suggesting that this
approximation indeed captures the main features of gravitational
clustering.

3 THEORY: 2-PT STATISTICS OF CRITICAL EVENTS

Let us now present a method to compute the two-point statistics
of critical events. Such statistics are of interest, as they allow us
to qualitatively understand the upcoming sequencing of processes
of importance for galaxy formation, for example to study the cos-
mic evolution of the connectivity of peaks, or to understand how
large scale tides bias mass accretion (the so-called assembly bias).
Section 3.1 presents the two-point statistics of merger events in
3D, while Section 3.2 provides analytical approximations assum-
ing mergers occur along a straight filament. Section 3.3 computes
the conditional merger rates subject to larger scale tides. We match
these predictions to simulations in Section 4 below.

3.1 Clustering of critical events in R, r space

We cannot generally assume that the orientation of two critical
events are aligned with respect to the separation vector, so the co-
variant condition for critical event of type j € {P, F, W}, cond;,
is given by the argument of the expectation in equation (14) multi-
plied by a requirement on the sign of the two non-zero eigenvalues.

MNRAS 000, 000-000 (0000)

For instance

condp(z)=J 51(33) (zi)op(H) %
Oy (—tr(l’ik ))Ou (tr2 (zin)— tr(l’umlk ),

where the two Heaviside conditions ensure that the trace is nega-
tive and the minor positive so that the two eigenvalues are negative.
Note that we use an implicit sum on repeated indices here. From
the joint two-point count of critical events, we can define the rel-
ative clustering of critical events of kind ¢, 7 smoothed at scales
(Rs, Ry) and located at positions (74, 7y), &i;(8) as

(cond;(z) x cond,(y))
(cond;(z)) (cond;(x)) ’

14+ fij(s) = (45)
where ¢ = {x, ©;, Zsj, Tijk } (resp. y) is the set of fields at location
T4 (resp ry), and

=2 <M> , (46)
VR2+ R?2

the event separation which we define as the spatial separation be-
tween the two points in units of the quadratic mean smoothing
length. We chose this definition as we expect the correlation lengths
to be proportional to the smoothing scale, hence events at differ-
ent scales can only be meaningfully stacked if distances are ex-
pressed in terms of the smoothing length. Because we focus on a
Gaussian smoothing, it is natural to associate the two smoothing
scales using a quadratic mean as the product of two Gaussian ker-
nels with scales R, R, is equivalent to smoothing at a single scale
R = \/(R2 + R2)/2. Evaluating the expectation in equation (45)
requires full knowledge of the joint statistics of the field P(x,y)
(involving 40 variables, see Appendix G2).

We rely on Monte-Carlo methods in MATHEMATICA in order
to evaluate numerically equation (45). Namely, we draw random
numbers from the conditional probability that  and y satisfy the
joint PDF, subject to the condition that x; = y; = 0, x = v and
y = va. For each draw (m<"‘),y(°‘>), a =1,...,N, we drop or
keep the sample, depending on the type of critical event given by
the signs of tr(x;;) and tr?(;;) —tr(zqa); if it is kept, we eval-
uate J(w)ég)(H(w)) J(y)ég)(H(y)) where 6](36) is a normalised
Gaussian of width €, which in the limit of ¢ — 0 would correspond
to a Dirac function imposing here that the two determinants are
zero. For small enough €, we then have

{cond; (x)cond; (y)) sz(x: YLy :NVQ’ 2=y =0) 47
> @)l (HE®)) Jy®)e) (H™)),

kES;

where N is the total number of draws, P, the marginal probabil-
ity for the field values and its gradients, and S;; is the subset of
the indices of draws satisfying the constraints ¢, j on the Hessians.
The same procedure can be applied to evaluate the denominator
of equation (45), which then yields an estimation of &;; (s, v1, v2).
This algorithm is embarrassingly parallel.

The result of the numerical integration is presented in Fig. 8,
which shows the auto-correlation of peak merger £&pp on the one
hand, and the cross-correlation of peak and filament merger &pr
on the other hand at fixed merger height, as labelled. Here we used
€ = 0.002. Note that because equation (45) is a ratio, the prefactors
in the counts involving scales all cancel out.
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Figure 8. The auto-correlation of peak merger £&pp (in shades of red, as
labelled in terms of the height of the two critical points) and the cross-
correlation of peak and filament merger £&p7 (in shades of yellow, as la-
belled) as a function of separation s. As expected, the saddle mergers are
clustered closer to the higher peak compared to the peak mergers.
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Figure 9. Same as Fig. 8 for the two-point correlation of events in 2D
fields with scale invariant power spectra of index ns = —1. Next filament
mergers will occur before next peak mergers. The rarer the event the more
delayed, and the higher the clustering amplitude.

3.2 Correlation of peak merger along filament

Let us briefly present the two-point statistics of high density peak
mergers while assuming for simplicity that the mergers occur along
the same (straight) filament (discussed in Section 2.2), as it is in-
structive and simpler. In this approximation we can resort to one
dimensional statistics. In the high density limit, we may drop the
Heaviside constraint on the sign of the eigenvalues since all high
density critical points tend to be automatically maxima. Then the
(1D) correlation function of peak mergers, 1 + &,,.,(s) of height
vy and v becomes

(b @—v1)zT116D (21)dp (#11) dp lY—r2)yT110D (¥1)dp (y11))
(0p@—v1)z;,0p(21)dD (211)) (6D Y —12) Y711 6D (y1)dD (Y11))

where the expectation is over the Gaussian PDF whose covariance
for the field (.T, 1,211,111, Y, Y1, Y11, y111) obeys

1 0 —v O 7o 71 Y2 703

0 1 0 —% 71 71 72 73
-y 0 1 0 72 712 Y22 723

0 - 0 1 73 713 723 733 (48)

Yoo Yo1 Yoz Yoz 1 0 —v 0 ’
Yor Y11 7viz Y13 O 1 0 -7

Yoz Y12 Y22 Y23 —y O 1 0

Y03 Y13 Y23 Y3 0 =4 0 1

where for instance Yo2(s) = (x(rz)y11(7ry)). The dominant con-
tribution in the large threshold v, v > 1, large separation s > 1
regime reads

2
€0, (s) = A2 (y00(s) + ¥ ( 7022(28) +112205)) (g
(1—=22)
which as expected scales like the underlying correlation, yoo(s),
boosted by the bias factor v1vo (Kaiser 1984). In that limit, the

next order correction to the correlation function involving the third
derivative of the field reads

2 (72711(s) + 23m3(s) +733(s))”

(1-752)
where 4-weighted linear combination of the auto-correlation of
VA6 and the cross-correlation of VV26 and V§ appear, evaluated
at events separated by s. The assumption of successive mergers of
peaks occurring along a straight filament is of course very simpli-
fied, and prevents us from considering cross-correlations between
peak mergers and e.g. filament mergers.

Eorun(8) = . (50

3.3 Conditional merger rates in the vicinity of larger tides

In the context of galaxy formation, it is of interest to quantify condi-
tional merger rates subject to tides imposed by the large scale struc-
ture to explain geographically the origin of assembly bias. To do so
one must compute the conditional event counts, subject to a given
large scale critical point at some distance s from the running point
x(7r;). The critical point can be e.g. a peak of a given geometry
and height, if one is concerned with the impact of clusters on merg-
ers trees of dark matter haloes in their vicinity (Hahn et al. 2009;
Ramakrishnan et al. 2019), or it could be a saddle point, as a proxy
for a larger scale filament, when studying how haloes growth stalls
in such vicinity (Borzyszkowski et al. 2017; Musso et al. 2018). In
turn this involves the joint expectation

(cond;j () 6p (y:)|det yij]) - (51)

Evaluating equation (51) requires the full knowledge
of the joint statistics of the field at =(r.) and y(ry),
P(z,xi,ij, Tijk, Y, Yi, Yij) (involving 30 variables). The correla-
tions of the PDF involves the covariance of the field and its deriva-
tives computed at two smoothing scales, R and R. corresponding
to the proxy for the timeline of the haloes and the large scale struc-
ture respectively. We can then marginalise over all variables, sub-
ject to e.g. imposing the height, v. and shape, i of the large scale
critical point

(cond(a)dp (y:)|det yi;[0p (2 —1)dp (y—ve)Ou(—Ai)0p (1i —417))

where \; are the eigenvalues of z;; and p; are the eigenvalues of
yi;. The conditions imposed by the mergers and the properties of

MNRAS 000, 000-000 (0000)
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Figure 10. Theoretical prediction for the conditional excess probability,
1+ of peak merger events in the frame of a 2D critical point at the origin as
labelled. The critical point defines a local exclusion zone whose geometry is
set by its fixed eigenvalues. For simplicity, we have chosen R. = R, while
the underlying power spectrum index is —1. See Fig. 17 for measured 3D
counterparts.

the peaks and large scale environment reduces the number of inte-
grals from 30 to 21. Appendix E describes how to sample condi-
tional event counts using constrained realisation of Gaussian ran-
dom fields.

For the sake of simplicity, let us restrict computation to the
conditional merger rates in 2D. Figure 10 presents the excess prob-
ability of having a peak/filament merger at some distance r and
orientation # with respect to the frame set by a given critical point.
Two configurations and types of events are considered. As ex-
pected, the tides impact merger rates. While it is beyond the scope
of this paper to explore systematically all possible geometries and
relative heights, let us stress that such two-point functions are phys-
ically very informative: for instance, the bottom panel is an indica-
tion of the early disappearance of filaments perpendicular to a wall
embedding a filament, which seems qualitatively consistent with
what is observed in N-body simulations.

4 MEASUREMENTS FOR GAUSSIAN RANDOM FIELDS

Let us validate the theory while counting critical events within re-
alisations of Gaussian random fields. We then bin them to estimate
their one and two-point statistics.

MNRAS 000, 000-000 (0000)

4.1 Method

For each power-law power spectrum with spectral index ns =
—2,—1.5,—1,—-0.5, we have generated 250 Gaussian random
fields. We have also generated 400 Gaussian random fields with
a ACDM power spectrum using mpgrafic (Prunet et al. 2008)
in a Planck Collaboration (2018b) cosmology generated using
the Eisenstein & Hu (1999) fitting formula. Each realisation will
henceforth be called a ‘cube’. Each cube has a size of 256° pix-
els and a physical extent of 100 Mpc/h.° Each cube has been
smoothed using a Gaussian filter with scale ranging from 1 Mpc/h
to 20 Mpc/h (2.56 px to 51.2 px). The smoothing was operated
in Fourier space, assuming periodic boundary conditions. At each
scale, all critical points are detected (maxima, minima and sad-
dle points) using the method detailed in Appendix H1. The critical
events are then detected by matching cubes of different smoothing
scales using the method detailed in Appendix H2.

Additionally, we have generated 200 20487 cubes with a
power-law power spectrum with spectral index ns = —1 and a
physical box size of 1000 Mpc /A which we smoothed with a Gaus-
sian filter with scale ranging from 1 Mpc/h to 20 Mpc/h.

4.2 Critical events counts

In this section we present the number density of critical events mea-
sured in cubes with a power-law power spectrum and compare the
theoretical predictions of Section 2.3.2 to measurements in cubes.

We first measured the ratio of the number of critical events of
different kind. We found rzp = 7y =~ 2.1, regardless of the
smoothing scale or the underlying power spectrum. This excess of
about 2% in the ratio originates from a slight over-detection of sad-
dle points with respect to local extrema. Theory predicts this ratio
to be Nsaddie/Npeak ~ 3.055 in 3D (see e.g. Codis et al. 2018,
equation 2) while the measured value is 3.1. In the following of the
paper, we have corrected the excess number density of JF critical
events so that the number density ratio matches the prediction.

Let us now proceed to the number count at fixed den-
sity. Figure 11 shows the PDF of the critical events as a func-
tion of their height for different power-law spectra (ns =
—2,—-1.5,—1,—-0.5, ACDM). The critical events have been se-
lected at scale 2.35 Mpc/h < R < 3.01 Mpc/h (6.0px < R <
7.7px). The lower boundary ensures that the critical points are
well separated”. The upper boundary is fixed so that the smoothed
cubes have consistent effective spectral parameters ~es(R) and
et (R). Indeed, the cubes have scale-dependent spectral param-
eters induced by the finiteness of the box and the discreteness of
the grid (see e.g. Gay 2011, figure 5.1). Error bars have been esti-
mated using a bootstrap method on 400 subsamples each made of
50 randomly chosen cubes. Solid lines show the result of a fit of the
theoretical formula to the cube data with free parameters 4, %

The effective spectral index ns is fixed using v =

(ns + 3)/(ns + 5). The measured values of « and 7 are con-
sistent with the effective values measured directly in the cubes
using equation (6). For example with ns = —2, the values mea-
sured in the cubes are veg = 0.62 + 0.02,9.g = 0.72 £ 0.01
(ns,er = —1.75 £ 0.13) using equation (6). The mean values have

6 The box size is only relevant in the ACDM case, as the power-law cases
are scale invariant.

7 critical points are typically separated by R. 2 0.6R (for ng < 0), so
R = 6px gives a typical separation of 3.6 px between critical points,
which is larger than the number of points used to infer the curvature.
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Figure 11. PDF of the critical events as a function of height in a scale invari-
ant GRF (Gaussian Random Field) as labelled. The left bundle corresponds
to wall mergers, the middle bundle to filament mergers and the right bundle
to peak mergers. The solid curve corresponds to the theory while the error
bars correspond to the error on the mean extracted from 160 simulations.
The grey lines are the results obtained for a ACDM power spectrum initially
smoothed over a scale of 2.5 Mpc/h. The top panel shows the residuals for
ns = —2. The detection algorithm is still accurate in 3D.

been estimated with a sample of 100 cubes and the errors are the
standard deviations of the sample. The fitting procedure on the PDF
of the critical events yields 4 = 0.621 +0.002,5 = 0.724+0.003
(ns = —1.75 £ 0.02). The relative difference between theory and
measurements, presented on the upper panel of Fig. 11, shows no
systematic deviation of the measurements and is within a few per-
cent in the region where most of the events are.

In order to further test the theoretical prediction, we have pro-
ceeded to the same analysis in the 2D case. The results are pre-
sented in Fig. 12 and show that the agreement between theory and
measurements is of the order of the percent. Once again, no sys-
tematic deviation of the measurements is noted. The results in 2+1
and 3+1D confirm the analytical formula derived in Section 2.3.2
and illustrate the accuracy of the detection algorithm presented in
Appendix H. Interestingly, since the algorithm has been designed
to make no assumption on the number of dimensions, it is expected
to work as well in d dimensions.

4.3 Two-point statistics

Let us now estimate the two-point statistics of critical events using
the critical events from the cubes presented above. For each cube
in the simulation, we select all critical events in a thick slice of
smoothing scales (AR/R = 0.3). The critical events are then split
in two subsamples, the first is selected at an overdensity v = 1 with
kind j and the second at v = 0.7 with kind k (5, k € {P, F, W}).
The correlation functions are then computed from the number of
pairs at distance s = r/R in all cubes.The pair counting was done
using a dual-tree algorithm, as described in Moore et al. (2001)%.
Figure 13 shows the measured correlation functions in 2D for
a power law power spectrum with spectral index ns = —1 (top
panel) and in 3D with a ACDM power spectrum smoothed at scales
between 1 and 20 Mpc/h (bottom panel). In both cases the PF
cross-correlation function (peak merger to filament merger corre-
lation) peaks at  ~ 1.5 while the PP auto-correlation function

8 See the scipy doc for more information.
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Figure 12. PDF of the critical events as a function of height in a scale invari-
ant GRF in 2D with spectral index ns = —1. The left curve corresponds
to filament mergers and the right curve to peak mergers. The solid curve
correspond to the theory while the error bars correspond to the error on the
mean extracted from 200 simulations. The top panel shows the residuals.
The agreement between the analytic prediction and the measurements re-
flects the accuracy of the algorithm presented in Appendix H in identifying
critical events.

(peak merger auto-correlation) peaks at » ~ 2.1R. This indicates
that each halo merger is more likely to be followed by a filament
merger compared to another halo merger. Interestingly, peak merg-
ers are also more likely to be followed by wall mergers. Indeed, a
halo merger induces a topological defect, as it leads to a resulting
over-connected halo. The defect is quickly corrected by a filament
merger, decreasing the local connectivity of the halo back towards
the cosmic average. Doing so, another topological defect appears
as a void becomes under-connected as one of its walls disappeared.
This last defect is then corrected by a last wall merger that makes
the under-connected void disappear. Note that, while the above se-
quence of critical events is a possible one, other sequences are
possible that leave the connectivity conserved. On average, critical
events happen so that the local ratio of peak-to-filament, filament-
to-wall and wall-to-void stays constant as smoothing increases, so
that the global connectivity is preserved. The link between critical
events and global connectivity of the cosmic web is further dis-
cussed in Section 5.2.

5 APPLICATIONS AND DISCUSSION

The scope of application of the present formalism is obviously very
wide. Rather than attempting to cover it all, only a few examples
will be presented, while a more thorough investigation is left for
future work.

In a cosmic framework, Section 5.1 will first translate the one-
point statistics presented in the previous section into destruction
rates as a function of mass and redshift. Section 5.2 explains how
mergers of filaments need to match that of haloes in order to pre-
serve the connectivity of peaks. Section 5.3 explains how condi-
tional merger counts in the vicinity of a filament explains how the
environment drives assembly bias. Section 5.4 compares theoreti-
cal predictions of the destruction rates to results from N-body sim-
ulations and shows that the theory is able to reproduce the early
non-linear stages of gravitational collapse. Finally, applications to
other fields of research in cosmology (semi-analytical models, ma-
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Figure 13. Top: Correlation functions between critical events P, F in 2D
at fixed smoothing scale. Bottom: Correlation functions between critical
events P, F, W in 3D at fixed smoothing scale. Pairs of critical events
have been selected at v = 0.7 and v = 1.0. The correlation function
of halo-merger with filament-merger, {p , peaks at r ~ 1.5R while the
halo-merger auto-correlation functions & z x peaks at r ~ 2R. This shows
that halo-mergers are more likely to be followed by filament-mergers. The
data have been filtered using a Savgol filter. Error bars have been estimated
assuming a Poisson noise on the sample.

chine learning, intensity mapping) and beyond are discussed in Sec-
tion 5.5.

5.1 Destruction rates as a function of mass and time

The predictions in the initial Lagrangian space bear theoretical in-
terest, yet they do not translate easily to measurable quantities. In
this section, let us show how one can map these predictions to ob-
servable quantities, and in particular destruction rates in mass M,
and redshift z, space. Qualitatively, each critical event encodes a
merger that involves three proto-structures (e.g. two proto-haloes
and their shared proto-filament). In the following of this section, we
will show that it is possible to relate the mass and the destruction
time of the disappearing structure’ to the density and smoothing
scale of the field at the same location.

Together with the results of Section 2.3, one can then com-
pute the destruction rates at different epochs for different object
masses. When dealing with void mergers, we will in this section
use the dual interpretation of critical events from the point of view

9 For halo mergers spotted by critical events, the disappearing halo is likely
to be, but not necessarily, the least massive of the two proto-haloes.
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of the low density objects (see Fig. C1). One can use the spheri-
cal collapse model to establish a mapping between collapse time
of spherical regions and their initial overdensity — high overdensity
regions collapse earlier in the history of the Universe than lower
densities. At the same time, larger overdensities enclose more mass
and will hence give birth to more massive structures. These rela-
tions mathematically read

b =T (s

ven(R) = D E) 3

where oru(R) is the variance of the field smoothed by a Top-Hat
filter on scale R, 6. = 1.69 is the spherical collapse critical over-
density, D(z) is the linear matter growth function and p is the mean
matter density of the Universe. The spherical collapse threshold can
also be adapted to study the formation of voids (Sheth & van de
Weygaert 2004; Jennings et al. 2013) with , = —2.7. Note that
this simple relation holds in principle for small enough voids only
(R £ 3Mpc/h).

From a theoretical perspective, the action of smoothing the
density field ¢ enables to probe the time-evolution of spherical
proto-haloes by following the density evolution of peaks as the
smoothing scale increases. In order to match the results of equa-
tion (52) with a Gaussian filter, one needs to establish a mapping
of the smoothing scales between Top-Hat filtering and Gaussian fil-
tering. This can be achieved by matching the variance of the field
smoothed with a Gaussian filter ¢ (R/a) = oru(R), although
different approaches have been used'®. Without loss of generality,
equation (52) becomes for a Gaussian filter and a prescription for
the value of «

M = %’rp(aR)?

(53)
This means that the volume associated to a Gaussian filter is equiv-
alent to the volume associated with a Top-Hat filter (a sphere) with
an effective size o times larger.

It is now straightforward to change variable from R to M and
from v to z using the spherical collapse condition with a Gaussian
filter (equations 52 and 53), so that for condition ¢ (peak or void)'!
the destruction rate reads

8271, _ (o) OR ov
dlog MOzl Mme (R V)alog]\/[ 8z

o] dD (30"
3ac(R)D(z)? dz '

; (54)

_ ()
= —nme(R, V) 15
where o ~ 2.1 and p ~ 2.8 x 10 h®Mg /Mpc® Qu, (see e.g.
Musso et al. 2018, Table A1). From equations (30) and (54), we
can now count explicitly how many peaks and voids of a certain
mass or within some mass range are destroyed early or late in the
accretion history, via straightforward integration.

Figure 14 shows the destruction rate of peaks and voids as
a function of the object mass. The cosmology-dependent terms of
equation (54) (D(z), dD/dz and o) have been computed using
the code CoLOSSUS (Diemer 2018) in a ACDM cosmology. The
power spectrum has been computed using the fitting formulas of
Eisenstein & Hu (1998). In order to evaluate the number density of
critical events (the nme term), we have assumed a scale-dependent

10 Ppossible prescriptions include matching (Srgdg) = O’%H or matching
masses Mg = Mry.
1 since dD/dz =—Df/(1+2) with f = dlog D/dloga ~ Q%8.
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equivalent power-law power spectrum’?. The figure shows that for
both peaks and voids, there is a cut-off mass scale above which
objects are not destroyed any more.

The high-mass cut-off comes from the exponential cut-oft of
high |v| objects, which suppresses massive objects (high R) at high
redshifts. Due to the dependence of the destruction rate to the ef-
fective spectral index of the power spectrum as well as o(R), the
destruction rates show significant redshift evolution. This is partic-
ularly emphasized on Fig. 14, bottom panel which shows the evo-
lution of the destruction rate with mass at different redshifts. The
evolution with redshift both depends on the rarity of the object, as
encoded by v but also on the local shape of the power spectrum, as
encoded by the equivalent spectral index ng cq-

Quantitatively, it should be noted that the mass scale of the
cut-off and the precise value of the merger rate-mass relation will
be subject to the same uncertainty in the value of . that also af-
fects the halo mass function (Robertson et al. 2009; Ludlow et al.
2014). The focus of this section is anyway to rephrase the critical
event theory in astrophysical variables: the implementation of re-
alistic merger tree models is left for future work. It should also in
principle be possible to generalise equation (54) to filament merg-
ers, but this would require the knowledge of a relation between the
initial overdensity (or any other functional of the initial overdensity
field) and the mass of the filament or its length, as well as a collapse
condition. Shen et al. (2006) and Pogosyan et al. (1998) suggested
this could be achieved using a spherical collapse criterion with a
critical overdensity smaller than d..

The impact of our results on filament merger rates in M, z
space will be done in a follow-up work. Beyond the scope of this
paper, those results could also be re-expressed in terms of the sur-
viving structure and take into account the two objects’ mass ratio,
so that they can be compared to merger ratios measured in nu-
merical simulations (e.g. Genel et al. 2009; Fakhouri et al. 2010;
Rodriguez-Gomez et al. 2015).

5.2 Consistency with cosmic connectivity evolution

The properties of the initial random field was shown by Codis et al.
(2018) to control to a large extent the connectivity of dark matter
haloes, as defined by the number of connected filaments (locally
and globally) at a given cosmic time. The upshot of this work is
that the packing of peaks (i.e. the ‘volume’ they occupy, as im-
posed by their exclusion zone) and saddles implies that 3-4 fila-
ments typically dominate locally. Interestingly, the rate of filament
disappearing must match the peak merger rate, in order to preserve
this number. Beyond numerology, this rate is important because
filaments feed coherently dark matter haloes, so their lifespan mat-
ters to understand the balance between filamentary cold gas inflow
(from subsisting filaments) and environmentally-driven disruptions
(from filament mergers).

Our qualitative understanding of the critical structure of Gaus-
sian random fields remains in close relation to packaging: each
vicinity of a critical point, and with the same argument, of a crit-
ical event, must by continuity occupy a certain volume of space,
as set by its eigenvalues, which puts constraints on the position of
other points in the vicinity. Indeed, critical points are found where
the gradient vanishes, with some local curvature, so that the field

12" At each scale, the equivalent power-law power spectrum is given by the
formula ng eq(R) = —3—2 dlogo/dlog R, where o is computed using
a ACDM power spectrum.

is quadratic in each eigenvector’s direction. As a consequence, the
gradient of the field is linear at non-null separation and cannot van-
ish, so that no other critical point can be found in the direct vicin-
ity of another critical point or event. At large separations the field
decorrelates from its values at the critical point, so that another crit-
ical point event becomes likely. In other words, before connecting
a given peak to a peak of a different height, the field must first go
through a local saddle point along the ridge, which distance is set
by the ‘width’ of that peak.

The same reasoning applies to critical events, except that the
field has a specific third order behaviour along the ridge defined
by the eigendirection of the vanishing eigenvalue (it is an inflection
point in that direction). For critical events, the process of smoothing
the field will impact both the local curvature but also the curvature
of all other critical points. Hence, it is expected that smoothing will
also disconnect neighbouring peaks as mergers occur: the ridges
are smoothed out because technically their saddle points vanish.

We can quantify this process via the two-point function of
these events. From the auto- and cross-correlations of the P and
JF events presented in Section 3, we can define the ratio of the
separation at the maximum of these two correlations (s;; =
argmax_&;;(s)) as a measure of the relative ‘proximity’ of the
two events. Since this ratio spr/spp &~ 3/4 is smaller than one
(see Figure 13), it means that filament mergers are more clustered
around halo mergers than halo mergers around halo mergers, so that
the rate at which filaments disappear matches the merger rate and
the typical number of filaments per halo remains constant through
cosmic time. As a result of this spatial clustering, the most likely
sequence happening is a PFFP in 2D (one halo merger, followed
by two filament mergers, followed by a halo merger), as presented
on the cartoon of Fig. 15. This sequence conserves the connectivity
of peaks, and is consistent with the relative rates of events. Fig-
ure 15 illustrates an analogous consistent 2F*P (one halo merger,
followed by four filament mergers, followed by a halo merger) se-
quence in 3D. Figure 16 shows how the local connectivity of 3 can
also be preserved, as the weaker filaments typically lie off the main
plane.

Finally, the clustering of filament disappearance impacts the
connectivity of peaks as they merge as discussed in the next section
(see Fig. 17, bottom right panel). This is a direct consequence of the
clustering of events of the various types.

5.3 Assembly bias in the frame of filaments

Previous works have highlighted the modulation effect induced by
the environment on the assembly of dark matter haloes and the
galaxies therein, which affect the secondary halo or galaxy prop-
erties, an effect often called ‘assembly bias’. Let us now make use
of the merger statistics to study the impact of the large scale struc-
tures on assembly bias, following Section 3.3. Indeed, it is expected
on theoretical ground that, at fixed mass, the typical accretion rate
increases when going from filament centre towards nodes (Musso
et al. 2018). Looking at galactic properties instead, Kraljic et al.
(2018) showed that the ratio of stellar rotation-to-dispersion (v/c)
is also modulated as a function of the distance and orientation to
the nearest filamentary structure. Kraljic et al. (2020) suggested
that galactic properties are linked to the the connectivity of the
halo, with more connected haloes hosting more quenched and less
rotation-supported galaxies.

In this section, we show that in our framework, the connectiv-
ity of haloes increases in nodes and decreases in voids, resulting in
a differential evolution of haloes depending on their spatial location
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Figure 14. Destruction rates of haloes (red lines) and voids (blue lines) from expansion factor 0.1 (light colour) to 1.0 (dark colour), linearly spaced, in a
ACDM Universe as a function of object mass (left panel) and as a function of mass relative to the non-linear mass (right panel).

in the cosmic web. In order to do this, a suite of Gaussian random
fields constrained to the presence of a proto-filament have been
generated. The proto-filament is modelled as a filament-type saddle
point at the centre of the box, the exact generation procedure being
described in Appendix E. It is defined at a scale R = 5Mpc/h,
is oriented along the z axis and lays in a wall in the yz plane. Us-
ing the set of constrained GRFs, we compute the excess density of
each kind of critical event with respect to the cosmic mean, at fixed
smoothing scale (hence at fixed object mass) 2.5 < R < 5 Mpc/h.
The results are shown in Fig. 17.

Let us first restrict ourselves to the halo merger rate (top left
panel of Fig. 17). Going from one void to the wall, from the wall
to the filament and from the filament to the nearest node, the halo
merger rate increases and the maximum halo merger rate is found
near the location where a node is expected (z ~ 10 Mpc/h). At
larger scales, the field becomes unconstrained so that the merger
rate falls back to its cosmic mean. We reproduce here from first
principle the results of Borzyszkowski et al. (2017), showing that
haloes close to the filament centre are stalled compared to those
in nodes: they do not undergo many mergers nor do they accrete
much as the local tidal fields channels all the matter towards the
two surrounding nodes, bypassing the centre of the filament. Quan-
titatively, haloes forming at the centre of the filament are found to
have a halo merger rate close to the cosmic average, while those
close to the nodes are expected to have 40% more mergers. Con-
versely, haloes forming in a void next to a filamentary structure are
expected to have a merger rate 20% smaller than the cosmic mean.

Let us now add to the emerging picture the filament coales-
cence rate. Filament merger rates act locally to decrease the con-
nectivity of haloes, as each merger will disconnect one filament
from two haloes. The top right panel of Fig. 17 shows that the
merger rate is maximal along the wall and minimal along the fil-
ament. Going off the plane of the wall (x direction), the filament
merger rate simply decreases towards the cosmic mean. The fila-
ment merger rate is minimal in the nodes (—13%) and maximal
in the wall (+10%). As a consequence, haloes forming in a fil-
ament and close to a node have a larger halo merger rate but a
smaller filament merger rate. This in turn will have an impact on
the assembly of dark matter haloes and their galaxies. In the wall
where the filament merger rate is the highest, we expect filaments to
merge faster than haloes, resulting in haloes with fewer connected
filaments. This can be interpreted using the results of Section 2.4.
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Indeed, in a cosmic wall, the geometry is locally 2D so that the
theoretically expected connectivity becomes 4 instead of 6.

The bottom left panel of Fig. 17 shows that the wall merger
rate is decreased in walls and even more strongly in filaments com-
pared to the rate found in voids. The minimum wall merger rate is
found at the location of the node with a rate —40% smaller than the
cosmic mean. Conversely, the wall merger rate is enhanced in the
two voids surrounding the wall with a rate 20% above the cosmic
mean.

The evolution of the connectivity with cosmic environment
is summarised by the bottom right panel of Fig. 17, which shows
the ratio of halo mergers (P critical events) to filament mergers
(F critical events), for which the cosmic mean is 2.055 (see equa-
tion 28). Small values of 7 zp indicate that haloes merge faster than
their surrounding filaments, so that the connectivity increases as
haloes grow. On the contrary, large values of 7 z/p indicate that fil-
aments merge faster than haloes, so that the connectivity decreases
as haloes grow. The bottom right panel of Fig. 17 shows that in
nodes, the ratio drops to about 7 z/p ~ 1.1. On the contrary haloes
forming in voids are expected to have a ratio of about 2.4.

We therefore expect that, at fixed final mass, haloes forming
next to a node will grow an increasing number of connected fila-
ments'3. The expected physical outcome of this process is that the
streams feeding a galaxy growing next to a node will become more
and more isotropic with increasing connectivity. Assuming that an
isotropic acquisition of matter leads to a smaller amount of angu-
lar momentum being transferred down to the disk, we propose that
this effect prevents the formation of gaseous disks in the vicinity
of nodes. Conversely, we expect that haloes growing in the neigh-
bouring voids see their filaments destroyed faster than they merge,
so that the halo is likely to grow with steadier flows coming from
a few filaments (only the dominant ones survive) (see also Codis
et al. 2015; Laigle et al. 2015, section 6.2.1, and 5 resp. for similar
conclusions reached via the kinematic structure of large scale flows
in filaments).

13 Conversely Codis et al. (2015) found that when averaged over all large
scale structures, connectivity increases with mass.
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Figure 15. Top: Snapshots of the density field in 2D at two smoothing
scales (colour coded from blue, low density to red high density). The black
line represents density ridges/trough connecting the red peaks, and the blue
voids via the green saddle points. As the two low persistence pair of peaks
(in white) merge the connectivity increases from 4 to 6 (as labelled). The
fate of this connectivity now depends on the nature and location of the next
merger events (inspired from Sousbie 2011). Bottom: As labelled from a) to
d) an abstraction of the merger sequence of a 2D ‘cosmic crystal’ impact-
ing the connectivity of the central peak. Ridges are shown in black while
troughs are shown in dark blue. The red circles represent the peaks, the
green stars the saddles and the blue diamonds the voids. A P; merger (high-
lighted in light grey) rises the mean connectivity of the central peak from
4 to 6, but the next two F1 > mergers (highlighted in darker grey) lower it
back to 4. The next P> merger (panel d) will reduce the void’s connectivity.
A more realistic representation of this process is also visible in Fig. 3.

5.4 Departure from Gaussianity at high z

Using the results of Section 2.5, we detail in this section the
evolution of the critical event number counts in the mildly non-
linear regime, at high 2. Let us briefly quantify the effect first on
simulations, and then compare to the proxy of Section 2.5 rely-
ing on known perturbative results. Figure 18 presents the redshift
evolution of critical event counts measured in 45 realisations of
ACDM simulations in boxes of 500 Mpc/h involving 256 parti-
cles evolved using GADGET (Springel et al. 2001). At each snap-
shot, the density field is sampled on a 256 grid smoothed with
a Gaussian filter over 6 Mpc/h. The algorithm described in Ap-

%’“‘_
\_
\s\o\:”
i—
N -
~

Figure 16. Following the cartoon shown in Fig. 15, the left panel shows
a smoothing sequence (from top to bottom) which would preserve the con-
nectivity of a 3D peak. It requires that each 7P merger should be followed
by four F mergers in the vicinity. The right panel highlights how the multi-
plicity is preserved if one starts with 3 dominant co-planar filaments.

pendix H is used to identify and match the critical points and criti-
cal events.

At high redshift (z £ 10), the measured number counts of
critical events is close to the Gaussian prediction. While we can-
not make definite statements given the level of shot noise in the
measurements and existing transients at high redshifts, clear trends
are seen in the counts. In particular, at lower redshift, the P and F
counts shift towards lower contrast, but resp. decrease and increase
in amplitude, while the YV counts increase in amplitude. Since ha-
los in low density environments form later, it is expected that the
low-z counts are biased towards low densities. Similarly, the mean
density of filamentary structure decreases with increasing time, as
the less dense filaments take more time to gravitationally form, so
that the PDFs of the filament mergers shifts to smaller densities
at low z. The evolution of void structures with cosmological time
mirrors that of peaks: early forming voids are the most underdense
while late-time voids form out of less underdense regions. At fixed
resolution, this results in a shift of the typical density of voids to-
wards higher densities which in turn shifts the n)Y, towards higher
densities.

Overall, the cosmic evolution of the measured event counts
seems to be in fairly good agreement with the model presented in
Fig. 7, suggesting that indeed, the set of critical events in the ini-
tial density field do capture the upcoming cosmic evolution of the
cosmic web. Further works beyond the scope of this paper will be
necessary to better match the weakly non-Gaussian regime in more
details.

5.5 Discussion

A useful confirmation of the theory, although beyond the scope of
this paper, would be to study how critical events in the initial den-
sity field can be mapped uniquely to merger events (of haloes, fil-
aments and walls) in an N-body simulation. One should note that,
even if the mapping between critical events in the initial conditions
and critical events in the density field evolved by the simulation
could not be established uniquely, the applications highlighted be-
low would be left unchanged as they only rely upon the detection
of critical events in the evolved field, but it would however limit
the scope of theoretical predictions. The study of the accuracy of
the mapping between critical events in the initial conditions and in
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Figure 17. From left to right and top to bottom, peak-merger, filament-merger and wall-merger excess density around a large-scale proto-filament, illustrated
by the vertical cylinder (z direction) and the wall in which it resides, illustrated by the grey plane (yz plane). The bottom right panel shows the local ratio of
filament to peak mergers rz/p. Each side of the cube shows a slice through the centre, shifted to the side of the plot for visualisation purposes. Red regions
have an excess of critical events while blue regions have a deficit of critical events with respect to cosmic average. Interactive versions of these plots can be
found online for the halo mergers, filament mergers, wall mergers and filament to peak merger ratio. Going from voids to wall, from wall to filament and
from filament to the nearest node (along the z axis), the halo merger rate increases and the filament merger rate decreases. Haloes in the filament are therefore
stalled: they merge less than those in the nodes. At the same time, the filament merger rate decreases when going from the filament towards the node so that
the mean connectivity, given by the ratio of halo merger to filament merger, is expected to increase.

simulations, and the quantification of the domain of validity of the
theory will be the subject of future work.

There is a long tradition of relying on merger trees of dark
matter haloes extracted from simulations as a mean to tag the haloes
with physical properties (see, e.g. Lacey & Silk 1991; White &
Frenk 1991; Benson & Bower 2010, and reference therein). It has
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been suggested that galactic properties, such as spin, do not seem
to be entirely encoded in the (halo) merger tree (Vitvitska et al.
2002; Benson et al. 2020), a conclusion which could indicate that
the anisotropy of the environment contributes to the spin of galax-
ies (Codis et al. 2015). One of the long term main motivations for
the present work was to provide a theoretically-motivated exten-
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Figure 18. Critical events number counts as a function of the rarity in dark-
matter only simulations in different redshift bins as mentioned in the legend,
with the same colours as Fig. 11. The curves have been normalised so that
in each redshift bin, the integral of the three curves (W, P, F) equals one.
At high redshift, the merger rates resembles the Gaussian prediction (thick
dashed grey lines, with an arbitrary normalisation). The skewness of the
distributions increases with decreasing redshift as the field departs from
Gaussianity.

sion to halo merger trees to the other two merger trees (filaments
and walls). Using the theory and the tools developed in this paper,
the set of critical events that define these merger trees could be fed
into semi-analytical modelling.

Another possible approach would be to rely on modern ma-
chine learning techniques to identify which combination(s) of crit-
ical events are most likely to lead to galaxies of a certain type to be
produced in cosmological simulations. This strategy is likely to be
efficient and rewarding, as the set of critical events is a very strong
compression of the set of initial conditions, and because once the
segmentation has been done, the subset of events which are in the
past history of a galaxy with a given tag have physical meaning.
For instance, recent disconnect of filaments are likely to impact gas
infall hence star formation and disc reformation (Danovich et al.
2012). The set of critical events represents a useful effective topo-
logical compression of the initial conditions which will impact the
upcoming ‘dressed’ merger tree (i.e. the cosmic evolution of peaks
and their filaments and walls). Note that the exact relative configu-
ration of critical events in the position-smoothing space may be of
relevance, and is not fully captured by the sole knowledge of the
one and two-point statistics.

Mapping of intensity of spectral lines, for instance HI 21 cm
line (Madau et al. 1997) across the sky, could also benefit from ap-
plying the present formalism to sequences of 2D maps as a function
of redshift. Existing (e.g. Chime, Shaw et al. 2014) or upcoming
surveys (e.g. SKA, Camera et al. 2015) will indeed provide both
extrema and merger counts extracted from sets of maps at various
redshifts. The cosmology dependence of extrema counts is through
(R«,y) and the relevant cumulants, whereas the cosmology depen-
dence of critical event counts also involve (R,4) and higher order
cumulants at fixed level of non-Gaussianity (e.g. involving 3rd or-
der derivative of the field to first order as discussed in Section 2.5).
Hence, studying both counts as a function of redshift will prove
complementary.

These possible applications highlight the versatility of critical
events: they yield diagnostics in the initial conditions, together with

a theoretically-motivated description of critical events driving the
evolution of the cosmic web in the evolved Universe.

Applications beyond cosmology The present analysis was mostly
restricted to (quasi-)Gaussian random fields, because of their rel-
evance in cosmology and also because in this context the theory
can be developed in some details (as a Gaussian process defines a
Morse function on a scale-by-scale basis). But the concept of bifur-
cation of critical points in a one parameter set of random fields ex-
tends beyond Gaussianity. Any system involving random field con-
trolled by one parameter could in principle be investigated with this
framework in order to identify bifurcation/merger of ridges (though
the specific role played by Gaussian smoothing would clearly gen-
erally not hold). For instance, critical events in dust maps (such
as Meisner & Finkbeiner 2013; Planck Collaboration 2018a) could
be used as an alternative statistics to quantify the properties of the
underlying turbulence.

The theory of critical events could also find applications in
fields where data are well described by their geometry, as critical
events describe how this geometry changes with scale. For exam-
ple, in the context of streaming of images, the set of critical events
within a 2D image characterises its multi-scale topology. It would
therefore be of interest to send the set of critical events, starting
from the ones at the largest smoothing scales, as a mean of priori-
tising which sub-region of the image needs to be streamed first be-
cause the topology of its excursion (i.e. the local parsimonious rep-
resentation of the image as iso-contours) has changed. This would
allow the received image to acquire its most important topological
features first.

Following the results of Appendix A, our formalism could be
extended to situations where the field whose evolution is investi-
gated corresponds to realisations of probability distributions living
in higher dimensions (or on more complex manifolds). In a more
abstract setting corresponding to a landscape drawn from a given
probability function, a wide range of important physical processes
occur when rare events collide, boosting detection probabilities and
passing a given threshold. For instance, dark matter annihilation
rates (which scale like the density squared) are boosted when two
substructures merges (Clark et al. 2018). In the context of this work
this corresponds to nucleation, or the appearance of pairs of critical
points as one ‘unsmoothes’ (or more generally evolves) the field.

6 CONCLUSION

As a proxy for cosmic evolution, we computed the merger rate of
critical points (peaks, saddle points and minima) as a function of
smoothing scale from the primordial density field to forecast criti-
cal events (halo, filament and wall mergers) that drive the assembly
of dark matter haloes and possibly galaxies. We recovered the net
density of peak merger found by Hanami (2001) and further con-
sidered all sets of critical points coalescence, including wall-saddle
to filament-saddle (filament mergers) and wall-saddle to minima
(wall or void mergers), as they modify the geometry of galactic
infall, such as filament disconnection or void disappearance, thus
generalising previous results that focused only on peaks. This ‘crit-
ical event theory’ is central to our understanding of the effect of the
cosmic web on the formation of galaxies, since their evolution is
the result of their past history, which is encoded in their extended
merger tree and the properties of their host halo.
The key results of the paper are the following.
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i) We studied critical events of all types and presented analyti-
cal formulas for the one-point statistics of these events in fields
of dimensions up to 6 (Section 2), and also their clustering
properties via their two-point statistics (Section 3).

ii) We have developed an algorithm to find critical events in
numerical datasets which we used as a confirmation of the
theory (Section 4). Such algorithm could be used e.g. to pre-
compress streaming of images, or as input to machine learning
as a mean to learn galactic morphology from the initial condi-
tions. We also developed an algorithm to generate Gaussian
random fields subject to a given critical event.

iii) We provided a covariant formulation of the critical event the-
ory which allowed us to also compute the two-point statis-
tics for critical events. The two-point statistics show that halo
mergers are typically followed by filament mergers, so that the
connectivity is preserved.

iv) We have shown that the critical event theory can be further
extended to take into account the early stages of non-linear
gravitational evolution. This has then been compared qualita-
tively to numerical simulations at high redshift. This extension
also probes the non-Gaussianities that arise from primordial
non-Gaussianities and can be used as a cosmological measure-
ment.

We also presented some practical applications of the theory
to astrophysical problems in Section 5. We computed the destruc-
tion rate of haloes and voids as a function of mass and redshift in a
ACDM cosmology using a simple model to assign a mass and time
to critical events (Section 5.1). This can be used as a test for the
critical event theory, as well as an alternative cosmological mea-
surement. We have established the link between critical events and
connectivity. This allowed us to compute the connectivity of peaks
and other critical events in arbitrary dimensions'*. Physically, a du-
ality between the evolution of the cosmic web (critical events) and
its topological features (connectivity) was highlighted (Section 5.2)
In addition, we showed that haloes forming near cosmic nodes do
so by increasing their connectivity, with possible implication for
the formation of their host galaxy (Section 5.3). Finally, using N-
body simulations, we have shown that the critical event theory sta-
tistically recovers the evolution of the merger rates of the different
structures (haloes, filaments, walls) in the mildly non-linear regime
at high redshift (Section 5.4).

We have only touched on practical applications for the fore-
casting of special events in a multi-scale landscape. It may prove to
be a fruitful field of upcoming research in astronomy and beyond.
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APPENDIX A: CRITICAL EVENTS IN ND

For the sake of completeness and possible interest in other fields
of research, let us present the one-point statistics of critical events
in arbitrary dimensions. We first generalise the spectral parame-
ters relevant to the critical event theory in d dimensions in Ap-
pendix Al. We then proceed to derive the joint PDFs of the field
and its second derivatives in Appendix A2, and its first and third
derivatives in Appendix A3. These results are then used in Ap-
pendix A4 to derive the critical event number counts in higher di-
mensions. From this, we then proceed to provide asymptotic for-
mulas in the high density limit (Appendix AS5), compute the ratios
of critical events (Appendix A6), and establish the connection be-
tween critical points counts and critical events in any dimension

oF(R)=

(Appendix A7). In Appendix A8, we finally provide a confirma-
tion of the net merger density derived using the number counts of
critical points in 3D.

Al Spectral parameters

In this section we provide definitions for the spectral parameters
of a d dimensional Gaussian random fields. Let us first define the
variance of the i-th derivative of the field

d o d—1 2i71,2

(@m)2T (14 g) /Odkk Py (k)K" W=(kR), (AD
where Py (k) is the ND power spectrum and W(kR) =
exp(—(kR)?/2). The characteristic scales Ro, R. and R are de-
fined by equation (4) and the spectral parameters « and 7 are de-
fined by equation (5). In d dimension for a power-law power spec-
trum with index n, we have

Ry 2 R 2 R 2

R2 n+4+d R? n+d+2 R n+d+4’
2 7’L+d ~2_ﬂ+d+2
YT nyd+2 T hntd+ 4 (A2)

A2 Joint PDF of the field and its second derivatives

From Pogosyan et al. (2009b) the joint distribution function for
the set of d eigenvalues of the d dimensional Hessian o2 {\;} and
density v is

1
P(v,\i) x H()\j — \i) exp (—iQW(V, {)\z})) . (A3)
i<j
where () is a quadratic form in \; and v given by

(Zz Ai + ’YV)Q

Q’Y(”’ {)‘Z}) =v + (1 _fyg)

+Qa({N}), (A4
with

Qa({Ai}) = (d+2)

%(d —-1) ZA? - ij] . (A5)

1<j

A3 Joint PDF of the first and third derivatives

Here, we will look into the pdf of the first and third derivatives in d
dimensions in order to compute the odd derivative term Coqq4 that
enters critical event number counts in d dimensions.

First, let us note that the first derivatives are Gaussian dis-
tributed with individual variance <x$> = 1/d so that the proba-
bility density of first derivatives near the configuration when they

all vanish is
d\ %2
Plx; =0)=( — . A
@ =0 = (5£) (46)

Now let us study the statistics of the third derivatives. By sym-
metry, one can note that

(5))s

since the third derivatives are rescaled by o3, and
1 .
<x%jj> = (z1117155) = 5 <ﬁ11> =3(z1jT10k) VjFEk#1L
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Table 1. Summary of notations and definitions used throughout the paper.

Notation Equation  Note

Definitions

6(R) (€8 Density field smoothed over a scale R

o2(R) 3) Variance of the i-th derivative of the density field

T, Ti, Tij, Tijk 2) Density, density first, second and third derivatives, normalised by their variance
Ro,R.«, R “4) Typical separation between zero-crossings, critical points and inflection points
¥,y (@) Cross-correlation coefficients between the field and its derivatives

H, H = det(H) ), (8) Density Hessian matrix and determinant

Notations

p,f,w,v Peak, filament-saddle, wall-saddle and void (minima) critical points

P, F,W Peak, filament and wall critical events

Critical point definitions

Nep Total number density

ng{) Total number density of kind j € {p, f, w, v}

ng,) (v) Number density of kind j € {p, f, w, v} at height v

Critical event definitions

Nce ), (1) Total number density
Nce,+ 5 Nce,—
Nme (15)
e @
nid(v) (30)
Therefore,

1 (ghh1) + (d = 1) (1j;) +2(d = 1) (m1117155)

d
+ (d—1)(d - 2) (x1rezrj;) Vi#k#1

implies that (x7;;) = 15/d(d + 2)(d + 4) and the full covariance
matrix of the third derivatives is therefore now known. However,
we are interested in statistics subject to a zero gradient constraint,
in particular the three quantities of interest are (choosing the last
dimension d as the degenerate one and assuming an implicit sum-
mation on the 7 indices)

L. 2
<x§dd‘$d =0)= <$?de> - %7 (A8)
d
2
(zais)? |ta = 0) = ((zaii)®) — M7 (A9)
( | 2
(x2)
(zdii®ddd|za = 0) = (TqiiTddd) — (ZaTaaa) (TaZan) (A10)

(x3) ’
which can easily be computed thanks to the additional relation
(zF;) = 3/d(d +2),

5 . 3 5 3
(Zaaalwa = 0) = d(d+2) [d+4 d—i—Z]’ (ALD)
~2
((zas)? |za = 0) = © - (A12)
(xaiiTadd|lza = 0) = ﬁ(l - 3. (A13)

A4 Critical event number counts in ND
It now follows that the critical event number counts of type j at
height v in dimension d reads
@ (- I
nd,cc(u) - RQR;%
The contribution from the odd part of the distribution function,
C4,0da depends on whether we consider total critical point count or

Ccc)lddcjd,even(y) . (A14)

MNRAS 000, 000-000 (0000)

(13) Total number density of nucleation (+) and destruction (—)
Total net merger rate (critical event net density)

Total net merger rate of kind j € {P, F, W}

Net merger rate of kind j € {P, F, W} at height v

net merger events, but can be obtained in a closed analytical form
for arbitrary d in both cases.

To count net merger events as defined in equation (14) we
evaluate C'g oqq as

Coaa = <Z @ jii 755501 (xi)> : (A15)

where the expectation in equation (A15) should be computed using
the results for odd-order derivatives given in Appendix A3. Note
that due to symmetries, the result does not depend on j. Using equa-
tions (A6) and (A11), we get

d 3 d\"?
Codd:m - (1=, (A16)

which is analogous to equation (39) in d dimensions.
If we are counting total density of critical events instead (equa-
tion (11) in d dimensions), one is led to introduce

ce,d __
Coda = < E Ljii
7

where once again the final results does not depend on j. After a bit
of algebra,

|$jjj|5gi)(a?z‘)> ; (A17)

d .
Ccc,d_(i)2% @-1)01A-5) (A8)

odd ™ \ o7 m | ?(d+2)2(d+4)

(i)% 6(0-7), \/@/d+4~/1 5
2w/ wd(d+ 2) 2 Vd—1 ’

The contribution from the even, density threshold dependent
term, Cﬁeven(u) is given by

CF even (V) = <5D (x —)dn(N) | [N > , (A19)

i#]
where the condition of critical point of type j refers to the vanish-
ing eigenvalue in the ordered list A1 < A2 < ... < Ag, j = d
corresponds to peak-filament mergers. The expectation value in



24  C. Cadiou et al.

equation (A19) is computed using the distribution function in equa-
tion (A3).

CJ‘-{ oven (V) 1s @ non-trivial function of v because of the correla-
tion between v and ). \; seen in equation (A4). It does not allow
for an exact analytical form, however we can obtain the asymp-
totical behaviour of CJ even (V) at large overdensities v, as will be
shown below . The PDFs of total critical events in 3+1D, 4+1D
and 5+1D can be obtained numerically using equations (A3), (A14)
and (A16), and are shown in Fig. Al. Note that the intermediate
signature events dominate in number over the extreme ones, in ac-
cordance with the relative number of critical points.

AS Asymptotics

In the large v limit, the number density of peak-filament mergers in
d dimensions will now be shown to scale like

2
d 2(d-1) AN
Cleven(v) o (79) S I E
(A20)

To get to equation (A20), first note that in d dimensions the

average over the full range of eigenvalues of any monomial [T, A}

behaves as
<H )\z”> x (yv

in the high-v limit. This follows from rewriting the exponential
argument in equations (A4) and (AS5) of the distribution in equa-
tion (A3) in terms of uncorrelated d-dimensional Hessian mvarlants
(Pogosyan et al. 2009a) J'¥ = 3", ; and JSV = (3, M) —

2d
ﬁ Z )\ZAJ as

yrimie 2, (A21)

1<J
Qa(v, {Ni}) = %(d+ 2)(d - 1757, (A22)
so that
J<d) + v : 1
Qi {A}) = v +((_72))+2<d+2><d—1>(f§d>, (A23)

where JQ(d) is also uncorrelated with the overdensity v. In the limit

vV — 00, Jl(d> — —oo and if all eigenvalues \; are unrestricted,
the exact boundaries of integration in \; space become irrelevant.
The average over de) and JQ(d) gives a power law in v, while the
factored out ? term in Q. is responsible for the exponential ‘con-
trolling factor’ of the asymptotic behaviour e="/2, A classical ex-
ample of this situation is found in the peak counts (Bardeen et al.
1986). For high peaks, all eigenvalues tend to be large and negative,
and asymptotically yield equation (A21).

The situation changes when one or more eigenvalues are re-
stricted to remain small and/or positive. This is the case for critical
events where \; = 0, and thus \; > 0 forall ¢ > j. Inthe v — oo,
Jl(d) — —oo limit, only the subset of j — 1 eigenvalues \;<; be-
comes large and negative, so the average over the Hessian terms is
effectively restricted to a subspace of dimension j — 1. This affects
the asymptotes, since de) and Jz(d) are correlated when projected
to lower dimensional hypersurface. Instead, we need to rewrite the
PDF using combinations of Jl(j_l) and Jéj_l).

In the case of peak filament critical events j = d. Setting

Aa = 0 leads to the following transformation

@ _, g(d-1) (d) L @, dd=2) ;@
Jl *)Jl 7bllt J2 WJI +WJQ 5
which displays a coupling to J;. Closing the square term for J §d71>
in equation (A23) now gives

B 3d 2, dd—2)(d+2) ;a1
&b 0 = g -
h, 2= \* 3d—(d+2)’
+<J{d i (d+2)72) 2a=n-7)

which yields a new coefficient in front of v2. The averaging in
equation (A19) leaves this term as controlling the exponential fac-
tor of the v — oo asymptote, and yields a polynomial in v
scaling like o< (y1)2(4~Y) as stated in equation (A20), given
that the Dirac in Aq changes the measure, J[,_;,(Xi — Aj) to
[Licjca1(Ai = Aj) X [, -4 Ai, hence the extra factor (yv)@=,

Incidentally, a similar situation arises when computing the
number density of filamentary saddle points (Gay et al. 2012),
where the largest eigenvalue, though not zero, is still restricted
to positive values, leading to an effective change of dimension by
one, and asymptotes with the same exponential behaviour as equa-
tion (A20).

A6 Ratios of critical events

From equation (A3), the integration over v yields the marginal
probability of {\;}:

[Tan] =N exp (Qd ) — < /\> ) (A25)

i<d  i<j

Finally, the d dimensional ratio of critical event of type j and k is
simply given by

Ti/k= <5D(>\j) Ik |>/<6D(>\k) I ]>
i

i#k
where the PDF to evaluate this expectation is given by equa-
tion (A25). Note that these counts correspond to the area below
each curve shown in Fig. Al. In 2+1D, we recover the ratio pre-
sented in the main text. In 3+1D the ratio is analytic and reads
2(57425m—50cot ™" (3)) /(75w —2(57+50 cot ™' (2))) = 3.17.
More generally,

d=2: rgw =1,
d=3: rrp =206,

d=4: rzp =317, nryp =317,
d=5: TFEP = 4.36, T™wy/P = 6.72, Twy/P = 4.36,
d=6: rzp =567, ryw,p=1197, ry,p=1197,

and 7w, p = 5.67. Note that these ratios are pure numbers and
do not depend on the detailed shape of the underlying power spec-
trum.

A7 Self-consistency links with critical points counts

The results of this paper can be used to derive the connectivity as
defined in Codis et al. (2018). Indeed, let us formally write n?,?
the number density of critical point of kind ¢ in d dimensions and

MNRAS 000, 000-000 (0000)
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R* ne0(v)

R® neef(v)

Figure Al. The PDF of critical events of the various types
(P, F, W1, Wo) in 3+1D (top), in 4+1D (middle) and 5+1D (bottom) for
ng = —2,—-3/2,—1,—1/2 from light to dark.

n) the net number density of critical event of kind d — ¢ + 1. The

evolution of ncp is given by
@ nin ifi =0,
Uz i i . .
—2 = Ll 4+ nllY ifo<i<d—1,  (A26)
dR @
Né ifi=d—1.

MNRAS 000, 000-000 (0000)

For Gaussian random fields, the number density of critical point
can be formally written as
3
> <51(3 (@) >7

ZQQHM
J
C;

where the PDF to evaluate the left part of the r.h.s. is given by
equation (A25). Here C; is a number common to all power spectra.

The derivative of nEZp) with respect to the smoothing scale is then

dngg _ ()

dlo *
iR —TNep X did%R .
Using equation (A26) and equation (A27) yields a simple relation
between the number density of critical points and the number den-
sity of critical events

(A27)

. iR ifi =0,
() _ () |l o
Nep dx dlog R JdR Nme + N, ifo<i<d—1,
n® ifi=d—1.

For Gaussmn random fields, one has the property that n( 9 =

ncp (w1th i € {0,...,d}), and pl) = pld=itn) (with ¢ €
{1,...,d}). This pr0v1des us with simple way to compute the ratio
of critical events as a function of the ratio of the critical points. For
any d, the ratio of filament to peak is connected to the ratio of F to
‘P critical events

f P F
TNep _ Nme T Mme =1+ rEp. (A28)

p
Ncp nge

As an example, let use derive the ratio of other critical points in
dimensions up to 6D. For d = 4,

nip n(l)
ngp_ (0)_1+T_7:/p~417
W2 g n) el
SRR e e
Ford =5,
£ (1)
Nep  Nep N
ngp = (O) =14+ TFEPp ~ 5367
ng)) _ ng)) (1) e+ TL(2) _TFmp +Twyp 2.07
n%) TL£3> (0) ) n<1) 1+rzep
For d = 6,
f (1)
Nep  Nep N
ncpp = (0) =l+rep~ 6.67,
ng)) _ ng’)) (1) e+ n(2) _ TEP T Twiyp 2.64
OO <o> ) 4 D) L+75p ’
.
o2

Note that in the previous expressions we have used the follow-

ing substitutions nf, = ng‘;) and nf:p = ng‘é Y and the fact
that n(d) = nff? and n.(;i_l) = ng) Given that Codis et al.

(2018) provides an asymptotic limit for the global connectivity
K= 2n£p /nE,, we can re-express it in terms of the ratio of critical

events as
3 (1)
n, TLC 1
Bee N ke~ d o (24— /DL (A29)
P Necp
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Figure A2. The ratio of peak to filament merger as a function of d. For
reference, the first diagonal is shown as a dashed grey line as well. The
ratio is approximately fitted as d—1+((2d — 4)/7)7/* /2 and shown as red
dots. The dashed line is the identity.

which, in the large d limit, asymptotes approximately to

dsoe 1 (27 774 _ L /4
ﬁﬁm ~ 5 <?> d N'I?d . (A30)

A8 Testing the link between critical points and events counts

From equation (A27) and because for a Gaussian filter, we have

dU? 2
dR2 = =041,
one can easily derive
dndy y . R1-7
T =) xdrg ﬁj (A31)
which in d = 3 for peaks reads
dn, R1-#
T 3n5pR72 = (A32)
3R _2.29/15 — 18+/10
= (15 (A33)
T wre 180072

which is equal to the net merger rate of peak type from equa-
tion (21) with Ceven and Cs 044 given by equations (24) and (25),
respectively.

APPENDIX B: RATE OF CHANGE WITH SMOOTHING

Let us show how the 3+1D number density of critical events is re-
lated to the rate of change of the 3D density of critical points with
R, dncp/dR. The 3D density of critical points is defined as

nep(R) = <¥6n(rrcp)>, (BI)

where the sum runs over the solutions ., of the equation V4§ = 0,
H is the Hessian determinant and brackets designate spatial aver-
ages on a 3D slice, (---) = $ [, d*r.... Critical points of a
given kind (peak, saddle or minimum) can be defined by further
imposing the signs of the eigenvalues of the Hessian.

Outside the critical events, the trajectory of each critical point
in the extended 3+1D space obtained by stacking spatial slices at
different smoothing scales can be parametrised by R to yield the

3+1D coordinates (r¢,(R), R). The equation for r,(R) is ob-
tained by requiring that the field gradient V§(r = 7, (R), R)
be constant, which gives

drep

_— . 71
i = ~0rVe-H . (B2)

T=7cp

If one considers a single critical point, its contribution to
the integral count is seemingly preserved along the track at one,
[ &7 p(r — rep) = 1. Thus, if this was valid for all trajectories
at every R, we would obtain a puzzling and incorrect conclusion
that the number of critical points is conserved with varying smooth-
ing. However, only trajectories that do not encounter a critical event
can be continuously parametrised with R everywhere. At the crit-
ical event a 3+1D geometrical line tracking the critical point turns
around and continues back in reverse direction in R with a change
of sign in H, and the R parametrisation breaks. Equivalently, the
lines of two critical points of different types with opposite signs
of H (now both taken in the same R direction) meet and termi-
nate. It can be shown that the merging of two branches is smooth
to first order, but when parametrised in R, dr.,/d R diverges at the
critical event and has opposite signs on the two branches (see Ap-
pendix D). This clearly demonstrates why it is the critical events
that are responsible for critical point number changes with smooth-
ing.

To resolve this difficulty, we shall consider counting only half
of the critical points, e.g. the ones with positive H (i.e. minima and
filamentary saddle points in 3D). The other half, with negative H,
has the same average number density due to the null Euler charac-
teristic of the space, so that the total density is twice that of critical
points with H > 0. Since the two sides of each merging pair of
tracks have opposite H signs, this leaves us with only one of the
two branches terminating at any critical event. So we have tracks
that go forever, and tracks that terminate at critical events, but along
all of them R is a suitable parameter, since there is no backwinding.

Thus, we can compute the change with R of the density of
critical points as

dnep

d
ey _ 2M<§6S’><r - rcp>@H<H<rcp,R>>>, (B3)

and differentiating under the averaging operation we find

dnep

d
B = 2<§5§>(T—TCP)M@H (H(rcp,R))>. (B4)

Note that the contribution from Dirac’s delta function vanishes,
since A6 (r — rep) /AR = —drep/dR - V8 (1 — 1), and
there is no = dependence left for the gradient to act on after inte-
grating by parts.

Next we express the full derivative dH (rcp(R), R)/dR via
field variables using equation (B2), and use the representation
>ep 5](33)(1* — rep) = |H|0p(V6) on a fixed R slice, to obtain

dnep
dR

having replaced volume averaging by ensemble averaging over the
field distribution. Here the expression is understood as the H — 0
limit, i.e. approaching the critical events along the positive H
tracks. This allows us to replace the absolute value |H| by H it-
self.'® In the term H(OrH — OrVS - H™' - V H) we recognise

=2 <|H|(8RH—8RV6 HL VH)ag’)(w)éD(H)> 7

15 Using tracks with negative H would lead to the same result due
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the 3+1D Jacobian of equation (10), and finally obtain

dnep
dR

In this expression, the factor of two reflects the fact that each critical
event affects two critical points; the appearance of .J, rather than its
absolute value |J|, the fact that different critical events change the
number of critical points according to the sign of J. Critical points
are created at a critical event if .J is positive, and destroyed if .J is
negative. Averaging over all J’s in equation (B5) counts the balance
of sources and sinks.

It is interesting to notice the analogy of equation (B5) with the
Press-Schechter expression for the crossing rate of random walks
through a threshold. Here the threshold is H = 0 rather than
6 = dc, and the random walks follow the critical point lines, but
the crossing rate is still the total derivative of the probability of
being above threshold, as in equation (B3), and it equals the expec-
tation value of the derivative dH/dR at H = 0 over all possible
trajectories, that is no>. The upcrossing probability (a better ap-
proximation to the first crossing rate, where up is meant towards
smaller scales) is on the other hand the expectation value over tra-
jectories with negative derivative only, and is therefore analogous

to ng’g,,

=2 <J 5§>(V5)5D(H)> . (BS)

APPENDIX C: DUALITY IN EVENTS RANKING

In the paper and unless stated otherwise, the physical interpreta-
tion of critical events was done from the perspective of the densest
structure. From this point of view, P, F, W critical events are in-
terpreted as peak (proto-halo) mergers, filament and wall mergers
respectively. It is however also possible to interpret critical events
from the perspective of the least dense structure, in which case
P, F, W critical events are interpreted as filament, wall and void
mergers respectively. In order to illustrate this, let us focus on the
central panel of Fig. C1, which illustrates a F critical event. Before
the critical event, the topology of the field is described, from left
to right, by a wall-type saddle point (W), a filament-type saddle
point (F'1), a wall-type saddle point (W32) and a filament-type sad-
dle point (F'2). The critical event records the merger of F'; with Wa.
Now, in order to interpret the critical event in astrophysical terms,
one is left with a choice of associating the merger to the surviving
wall (W) or the surviving filament (F5). In the former case, the
merger is interpreted as a wall merger while in the latter, it is inter-
preted as a filament merger. Note that if one interprets the critical
event from the perspective of the disappearing structures instead,
e.g. to compute disappearing rates (as is done in Section 5.1), one
faces the same dual interpretation as the critical event records the
merging of two critical events of different kinds (here, F'; and W3).

Wall critical events (W) share a similar dual interpretation.
From the point of view of the densest structures — the disappearing
wall or the surviving one — the critical event is interpreted as a
wall merger, where the void between two walls is crushed. This
is illustrated by the red arrow, bottom panel of Fig. C1. Conversely,
the critical event can be interpreted from the point of view of the
least dense structure, i.e. the two voids. In this interpretation, the
critical event records a void merger where the surviving void (green
arrow) is the result of the central wall being ‘swallowed’ into the
disappearing void (grey arrow).

to the minus sign after differentiating ©y(—H) and confirming that
limy_ o (—|HH™Y) =limgy_, o+ [HH™! = limg_,o HH™L
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Figure C1. Same as Fig. 4 but interpreted from the point of view of the least
massive structure. @ symbols are peaks, X symbols are filament-type sad-
dle points (filament centres), ® symbols are wall-type saddle points (wall
centres) and O symbols are minima (void centres). Each critical event can
be interpreted as the destruction of a pair of critical points (grey arrows)
with a surviving structure. In the Fig. 4 description, the merger is associ-
ated to the densest surviving structure (peak, filament and wall mergers, red
arrows) while in a dual description, the merger is associated to the least
dense surviving structure (filament, wall and void mergers, green arrows).

It is worth noting that this duality follows from self-
consistency relations between critical events with connectivity. In-
deed, after a critical event the densest surviving structure (e.g. Fa,
or a peak after a P critical event) becomes connected to the least
dense surviving structure on the other side of the critical event (e.g.
‘W1 or a filament after a P critical event), each of these two struc-
tures being equally valid candidates as the ‘astrophysical outcome’
of the merger.

Finally, the dual interpretation also reflects the fact that, apart
from extrema, all critical points have two channels of destruction.
They can merge with a critical point of either the next or the previ-
ous kind. For example, a filament can be destroyed in a P critical
event (where a filament between two peaks disappears) or in a F
critical event (where a filament between two walls disappears). This
can be mathematically expressed by relating the rate of change of
the number density of critical points of a given kind to the number
density of critical events (see Appendix A7).

APPENDIX D: LOCAL ANALYSIS OF NUCLEATION

Let us consider the problem of merging or nucleation of a pair
of critical points near the critical event V§ = 0, H = 0 as one
changes the smoothing radius R by AR (either positive in case of
anucleation or negative in case of a merger). Smoothing is assumed
to be Gaussian. Calculations are done in 2D but are easily gener-
alised to higher dimensions. The 1D case is a special case, with
separate conclusions as discussed briefly at the end of this section.
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D1 Probing local vicinity of critical events

The idea is to start with a particular, but sufficiently general con-
figuration of the field at smoothing R and see how it changes with
smoothing. We take the field at smoothing R to be described by the
form

5yy 2 5111 3 591/90 2

5R:50+7y+ G Lt vat

Sty 2y, O
where g is the field at smoothing R, position x,y and J is the
field at smoothing R at the origin. Here we have used the short-hand
notation §, = 00/0x (and similarly for higher derivatives). This
can be viewed as one specific realisation of the random field, or as
the terms of Taylor expansion up to cubic order near the critical
point x = 0,y = 0, where, with our choice of coordinates

62 =0, =0, 04z=0. (D2)

We want to find out under which conditions the shift by AR
out of a critical event will create two critical points. This can be
done by solving the problem perturbatively in AR, to the lowest
order in AR. For this purpose, the terms used in the expression
(D1) are sufficient, higher order terms do not modify the result.
Given our choice of filtering, the evolution of the field with R is
given by the diffusion equation (12). Hence, to first order in AR,

SriaRr ~ Or + RARV’6R , (D3)
with the Laplacian,
VQ‘SR = Oyy + (Ozzz + Oyyz)T + (Syyy + Ozay)Y (D4)

which is to be substituted in equation (D3) for the final form of the
field configuration at the shifted smoothing. The shifted field will
have extrema where the gradient is zero

riar 1 2 1 2

RAR(8uaz + Oyyz) = 0, (D3)
drin 1 1
% zﬁyyy =+ §5gcacy$2 + (Syyxxy + §§yyyy2+

RAR(‘Swy + 6yyy) =0. (D6)

Since we are looking for appearance of critical points near the crit-
ical event, i.e. at position z,y close to 0 as AR — 0, we should
solve the system of equations (D5, D6) perturbatively in AR.

We start with the y-derivative, equation (D6). At leading or-
der in y, the terms y? and xy can be dropped, leaving us with the
following relation

1
Syyy + iémya:2 ~ —RAR(8zzy + Oyyy)- (D7)

There are two viable possibilities. Either y ~ AR, or y ~ z2. Let
us now check equation (D5) for these possibilities. If y ~ AR we
see that the zy and 3> terms are subdominant w.r.t. the linear RAR
term, but if y ~ 2 these same terms are subdominant to z2. Thus,
the zy and 3> terms can be always neglected, and we find that
§0urat® ~ ~RAR(Gras + Oye), (DS)
i.e. we always have a parabolic # ~ ARY? and y ~ AR be-
haviour (see Fig. 5). Note that it is not possible to have y subdomi-
nant to 22 or AR, since in this case equations (D7) and (D8) will be
in general inconsistent. The solutions to equations (D7) and (DS8)

are two points (z+,y) and (z—,y), where

2 — \/fQRAR(észréyyz)’ D)

6zzz

6yyz($zzy + 6yyy(szmz )

6:1"1‘1‘ 6yy

Y —RAR (D10)
For dimensions higher than two, this standard linear dependence
appears for all regular directions in which the second derivative of
the field at the critical point does not vanish. The only condition for
the existence of a pair of extrema near the critical event now arises
from requiring that the square root argument in the expression for

x4 be positive

5xacx + 5yyac

TTT

—2RAR >0. (D11)
The type of critical points created or merged at a critical event is
determined by the signs of the eigenvalues of the Hessian at the
critical point locations. The Hessian of the smoothed field is given
by

O’6riar 5 5 b1

T = Ogzz® + zxyl, ( )

9%5

;7:;;“ = Oyy + OyyaT + Syyyy, (D13)

0*0riar

a9, ~ Oz zY- D14
dzdy Oway® + Oyyay ( )

Conversely, it is easy to show that to leading order in A R the eigen-
values of the Hessian at the critical points are

M = Cpools = j:\/—ZRAR( , (D15)

5mmm

A2 = Oyy- (D16)

This explicitly demonstrates that two merging or created critical
points in a pair differ in nature with the sign of one eigenvalue.
If 5,4 < O (as well as the rest of the eigenvalues in higher dimen-
sional case), the process describes interaction of one maximum and
one filamentary saddle. If §,,, > O the process describes interaction
of a minimum and a saddle. In multi-dimensional case it is the set
of signs of all non-zero eigenvalues that determine the type of inter-
action. In 3D, we have three cases: when both eigenvalues are neg-
ative 0y, < 0, 6., < 0, it describes maxima and filamentary saddle
coalescence, one negative and one positive, §,, < 0,d.. > 0, cor-
responds to filamentary and wall-like saddles interacting, and both
positive 6y, > 0,d.. > 0 correspond to a wall and a void coales-
cence. Note that in this discussion we do not consider eigenvalues
as sorted, so the first (degenerate) direction is arbitrary.

D2 Discussion of the existence condition

The merging of a critical point pair corresponds to the situation
when two critical points disappeared as smoothing reached R.
Thus, two critical points existed for AR < 0. This happens when

6zzz

> 0. (D17)

Conversely, if the solution exists for AR > 0 then two critical
points appear out of a critical event as smoothing increases from R
value. We see that this happens when

6111

<0. (D18)
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This analysis thus proves that the nucleation process is in general
possible — even for Gaussian smoothing — if the number of dimen-
sions exceeds one.

The condition on merging or nucleation that we have derived
by this local analysis is equivalent to the condition on the sign of
the Jacobian defined in equation (10) presented in the main text
(J > 0 for nucleation and J < 0 for merging events), since in
our local coordinate representation the sign dependent part of this
Jacobian is exactly J &< —0zea p; diiz. Thus, we conclude that
the regions in the space of third derivatives with negative Jacobian
describe the merging (disappearance) of peak/saddle pairs, while
regions with positive Jacobian describe the creation of peak/saddle
pairs.

Note finally that in 1D we do not have y or higher directions,
so all mixed derivatives vanish. A solution for finding extrema pair
requires simply 23 = —2RAR > 0. This solution exists therefore
only for negative AR, so in 1D extrema pairs can only merge and
never be created at a critical event if the field is smoothed with
Gaussian filters.

Two example of nucleation are presented on Fig. D1, that
shows successive slices of the density field around a nucleation crit-
ical event at different smoothing scales. For both plots, the value of
the density, its Hessian and third derivative are drawn from a Gaus-
sian PDF until a P nucleation critical event is found in direction
x. These values are then used to constrain the density field at fi-
nite distance and different smoothing scale. The slice direction is
oriented parallel to the critical event, so that peaks and minima in
each 1D slice coincide at first-order with peaks and filaments of the
3D density field.® The figure illustrates that pairs of critical points
emerging from a nucleation critical event are either long- or short-
lived, and an investigation using multiple constrained field showed
that the latter is the most common type. Interestingly, it seems that
pairs created from a nucleation critical event are very unlikely to
annihilate, at least in this somehow contrived setup. A likely astro-
physical counterpart to peak nucleation event may be splashback
haloes (i.e. the temporary reappearance of a sub halo which as only
recently been accreted Aubert & Pichon 2007; More et al. 2015,
and for filament nucleation, the temporary re-appearance of an en-
closed wall as two filaments merge etc.). More work will however
be required to astrophysically interpret them and study their prop-
erties in the initial density field.

APPENDIX E: EVENT GENERATION ALGORITHM

E1 Constrained field — peak constraint

We have used CONSTRFIELD coupled with MPGRAFIC from
Prunet et al. (2008) to generate constrained realisations of a Gaus-
sian random field. We generate an unsmoothed Gaussian random
field, constrained to have a filament-type saddle point of height
6 = 1 (v = 1.17) at smoothing scale R = 5Mpc/h. The
eigenvalues of the Hessian are constrained to be {A\1, A2, A3} =
02{—1/2,—1/2, -1} with eigenvectors {Z, §, 2}. Fig. E1 shows
the mean density profiles as well as one realisation. As expected,
the density is locally entirely set by the constraints and has a
parabola-like shape. At larger scales, the field decouples from the
constraints resulting in large fluctuations around the mean value.

16 As critical points mostly slide along ridges of the skeleton.
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Figure D1. Multiple 1D slices of the conditional mean density field in
3+1D at different smoothing scales (from R’ = 0.56Rg to R’ = 1.80Ry,
equally spaced) around a nucleation critical event (red () symbol), defined
at scale Rp, with peaks (red @ symbols) and filaments (green X symbols)
of the 1D slice. The nucleation critical event creates a pair of peak-filament
that is either shortly destroyed (top panel) or long-lived (bottom panel). The
fate of the pair depends on the particular values taken by the field and its
derivatives at the critical event.

E2 Constrained field — higher order constraints

We developed a code that is able to numerically compute the co-
variance matrix between any derivative of the field up to third or-
der or any anti-derivative of the field up to second order (potential),
smoothed by any filter function and at any separation. The code
relies on the numerical integration of the correlation function be-
tween any two functionals of the field. Formally, let us define a
linear functional F' and its Fourier representation

F[5)(k) = /d3r e T R[8)(r). (E1)

Functionals that can be written as a convolution with a distribution,
which includes notably derivation operators and smoothing opera-
tors, can be further simplified as F[8](k) = 6(k)F(k), where F is
now a function of k only.Common operators take a simple form in
Fourier space; for example the third derivative operator in direction
i, 4, k reads (—4)>k;k;k;, the shift operator (that shifts the field by
Ax) reads exp(ik - Az) and the Gaussian filter has its usual form
exp (ka R?/ 2) . The covariance between two linear functionals of
the field then simply reads

(PG = G [ RPRIFRG R, )
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Figure E1. Density profile of a random field constrained to a density § = 1,
null gradient and a Hessian with eigenvalues o2 /2, —02/2, —o2 in direc-
tions x,y, z at the centre of the box, assuming periodic boundary condi-
tions. The expectation of the field is shown in dashed lines and the value
of the field in one realisation is shown in solid lines. Dotted lines show the
second order Taylor series of the field around the constrained point. The
inset shows a zoom on the constrained zone. For the sake of clarity, each
curve have been shifted by 0.02. At small distances from the constraint, the
field resembles its mean and its Taylor expansion.

where the star symbol denotes here the complex conjugate. As
a worked example, the covariance between the field smoothed
by a Gaussian filter at scale R; at the origin and the field
smoothed by a Gaussian filter at scale R», position 7 is given
by equation (E2) with F(k) = exp(—k*R7/2) and G(k) =
exp(—k*R3/2+ ik - 7).

Let us writt X = {Xi, X2} where X is the den-
sity field sampled at p different locations and X o contains the
q values (the field and/or its (anti-)derivatives) that will later
be constrained to the value a. For example, a critical event
constraint (at fixed scale) could be represented by X, =
{1', x1,x2,x3,T11,T111, T221, .1‘331} subject to the constraint a =
{v,0,0,0,0, a1, @2, oz }. The conditional mean fz and covariance
C of the field are then obtained from the full mean p = (X) and
covariance C = (X T X)), computed using equation (E2), by sim-
ple arithmetic

i =p, +Ci2C5) (a—p,), C=Ci—Ci2C5, Cly, (E3)

where we assumed here that the covariance is decomposed as C =
(Cu Ci2

Clz Cx
respectively and similarly for the mean. One can then easily draw
samples from the conditional multivariate distribution using fz, C.

),with sizes p X p, p X qand g X q for C11, C12, Ca2

APPENDIX F: PAIR DESTRUCTION & CREATION
COUNTS

Three different definitions of the number count have been discussed
in the text and presented in equations (11), (13) and (15). In this
section, we present the results obtained in three dimensions for a
Gaussian random field using these three definitions. For a Gaus-
sian random field, the expectation of the even-derivatives is left un-
changed but the odd part is modified.

Using the total merger density definition of equation (11), the
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Figure F1. C,4q as a function of 4 when the definition for the total or
the net merger density is used. The difference between the two curves is at
the percent level, at least for relatively small values of of 4. At higher 7
(typically above 0.8 i.e for a spectral index above -1), both nucleations and
destructions become rarer and their ratio tend towards unity.

odd part reads
ce 1 3 3/2 ~2
odd_g<g) (1-97)x
21(1 — 42
% 2 # 4+ tan ! M . (FD)
m 21(1 —4?) 2

Using the pair destruction and pair creation definition of equa-
tion (13), the odd part reads

1/ 3\%?
ce,— ~2
Coda :g<g) (1-%7)x% (F2)
1 21(1 — A2
X — #-Fﬁﬁ-tanilﬁ ,
s 21(1 —42) 2 2
e _ L3N\
Cod'd*=g<§) (1=7)x (F3)
21(1 — 42
(A2 VAT
™ 21(1 —42) 2 2

respectively. For the sake of completeness, let us reproduce here
the result, already presented in equation (23), using the net merger
rate definition of equation (15)

1/ 3\%2 )
odd = = | =— 1—-75%). F4
Coda 5 <2Tr) ( %) (F4)

A comparison of Cyqq between total and net merger density is
given in Fig. F1 and is shown to be at a few percent level only. For
4 above 0.8 (i.e for a spectral index above -1), there are at least 30
times fewer nucleations than destructions (this ratio is an increasing
function of 7).

APPENDIX G: JOINT PDFS

Let us present here the PDF of the field and its (up to 3rd) derivative
which will allow us to compute the expectations involved in the
main text.
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G1 One-point PDFs

Since the odd and even-order derivatives of Gaussian random
fields do not correlate, let us write the joint PDF as Pgq =
Po(x, zk) Pi(xi, x:51). The expression for Po(x,zk;) for the
Gaussian field was first given by Bardeen et al. (1986). Introduc-
ing the variables

u= Ve = —(x11 + 22 + 33), (G
1

w= §(x11 — x33), (G2)
1

v = 5(2@2 — T11 — T33), (G3)

in place of diagonal elements of the Hessian (11, z22, z33) one
finds that u, v, w, x12, 13, x23 are uncorrelated. Importantly, the
field, z is only correlated with v and

(zu) =7,

where 7y is the same quantity as in equation (5). The full expression
of Po(x, zx1) is then

(20) =0, (zw) =0, (aww)=0, k#1,

51/2152 4
PO (QZ‘, xkl) _ e |:_ QO QQ

(271')7/2(1 772)1/2 2

with the quadratic forms Qo and ()2 given by

} , (G4)

(u—y2)®
Qo =1" + —
(1=17%)
Q2 = 50° + 15(w® + 275 + 235 + x33)
1
= ?5 Iabwab 3 (GS)

where the last identity is demonstrated in Pogosyan et al. (2009b)
and involves the detraced tensors:

- 1
tij = tij — §taa5ij s (G6)

tijk = tijk — = taa(i0K) (G7)

3
5
with an implicit summation over repeated indices and symmetriza-
tion between parenthesised indices (for instance: tqqo(;0k) =
[taa;jOki + taakdij +taard;jk] /3 and so on). Equation (G5) depends
only on a single correlation parameter: . A similar procedure can
be performed for the joint probability of the first and third deriva-
tives of the fields, Py (x;, zi;1) by defining the following nine pa-
rameters (see also Hanami 2001)

1 .
u =Viu, v = §e”kvi (V;V,

—J2v (vv _3v2
w; = 12VZ (V,VZ 5V ) T, (G8)

and replacing the variables (z11, Zi22, Zi33) With (ui, vi, w;).
In that case, the only cross-correlations in the vector
(z1, T2, 3, U1, V1, W1, U2, V2, W2, U3, U3, W3, T123) Which do
not vanish are between the same components of the gradient and
the gradient of the Laplacian of the field:

(ziwi) = 7/3,
where 4 was defined in equation (5). This allows us to write:

Q1+ Qs
2 b
(G10)

—ViVi)z, with j <k,

i=1,2,3, (G9)

1057/23%
@RI =577 P {‘

Pi(zi, zijre) =
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(ii)) Remove all critical points found at |x%, x|

with the quadratic forms:

Q1= 32 (
3
Qs = 105 <w%23 +) i+ wf)) :

i=1

’71'7, +x>7

35 _  _
= 5 TijkTijk - (G11)
G2 Two-point PDFs

Calling & = (x, T4, Tij, Tijr) and y = (y, yi, Yij, Yijk ), the joint
PDF reads

=[G ) e (3)
Py(z,y) =

det|C|1/2 (2m)"°

, (G12)

where C is the covariance matrix which depends on the separation
vectors only because of homogeneity

C C
C= b *y > . (G13)
( CIy ny

Note that 2T - C,t - is given by Qo (2)+Q2(z) +Q1 (2)+Qs(x),
where the (; are given by equations (G5) and (G11). The cross
terms will involve correlations of all components of « and y

Cxy =(z-y ) (G14)

The correlation length of the various components of Cx, differ, as
higher derivatives decorrelate faster. Note that the separations are
measured in units of R, whereas the @Q; are independent of R.

APPENDIX H: DETECTION ALGORITHMS

The source code of the implementation is available upon request. It
is based on Python and the Scipy stack (Jones et al. 01 ).

H1 Critical points detection

This section presents the algorithm used to find the critical points
in a N-dimensional field. Let F', F; and Fj; be a field evaluated on
a grid, its derivative and its Hessian. For any point & on the grid,

we have the following relation
Fj(x) = Fj(@e) + (2 — wc,0) Fij(x) + O(Ax?).  (HI)

Critical points are found where FJ’ = 0 by solving the linear system
of equation

ALIJZF” = —Fj, (HZ)

where Ax = & — x.. The algorithm works as follows:

(1) Solve equation (H2) for each cell on the grid. We then get a set

of points (z%, x), where the former is the cell centre and the latter
the closest critical point.

> Az, where Az
is the grid spacing.

(iii) For all critical point, compute the value of the Hessian by interpo-

lating linearly from the 2N (4 in 2D, 6 in 3D) neighbouring cells.

(iv) Compute the eigenvalues of the Hessians and the type of the crit-

ical point (maximum, saddle point(s) or minimum).
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(v) Merge all critical points of the same kind closer than Ax. To do

this, we first build a KD-Tree of the critical points and find all the
pairs located at a distance d;; = |2* — &’ | < Az. For each pair,
we keep only the point that is the closest to its associated cell.

H2 Ciritical event detection

The algorithm is based on the idea that each critical event has two
predecessors at the previous smaller smoothing scale (two critical
points). Conversely, each critical point has either a critical point
successor of the same kind at the next (larger) smoothing scale or
a critical event. Therefore, a way to detect critical events is to find
critical points that do not have a successor. These points will be
referred to as ‘heads’ as they are the tip of a continuous line of
critical points in the smoothing scale direction. Critical events are
then found between pairs of heads of kind £ and k£ + 1 (e.g. a peak
and a filament).

Following this idea, the algorithm can be decomposed in two
steps: compute the heads of each kind, than find pairs of heads to
detect critical events. In the following of the section, let us call Ro
(resp. R1) the smallest (resp. largest) scale at which the field is
smoothed. Let Cr,x = {ri, R}i—1,...,n be the set of the IV critical
points of kind & at scale R. The whole detection algorithm reads

1: procedure FindCritEvents(Cg k, @)

2: E «+ {} > All critical events

forkinl,... ,ddo > Find heads of critical points
Hj, < BuildHeads(k, A log R)

end for

R+ Ro

while R < R; do > Find pairs of heads (crit. events)
AR+ R x AlogR >
E + E+FindHeadPairs(H1, ..., Hq, R,aAR)

10: R+ R+ AR

11: end while

12: return F/

13: end procedure

R I

The parameter v controls how far heads can be in the smoothing
scale direction, in units of log R. A value of 1 looks for pairs of
heads at the same scale, a value of 2 looks for pairs of heads at
scales R, R + AR.

The first step (line 4) of the algorithm builds the set of heads
Hi,. It works as follows

1: procedure BuildHeads(k, Alog R) © Build heads of kind &
2 Hy <+ Cgr, x > Initialise heads
3 Py < Hy, > Initialise progenitors
4: R+ Ri

5: while R > Ry do

6 P+ {} > Initialise new progenitors at R
7 for p, ¢, d in SortedPairs(Py, Cr,x, R) do

8 if c ¢ P, then

9: P/ + P, +{p,c} > Found new progenitor
10: end if
11: end for
12: P, <+ P},
13: for cin Cr i do > Loop over crit. points
14: if c ¢ P;, then > Keep only unpaired ones. . .
15: Hy < Hi +{c} ©...and add them to heads
16: Py +— P, + {c}
17: end if
18: end for
19: R+ R(1— AlogR)

20: end while
21: return H; > Heads are points with no successors at larger
R
22: end procedure
Here, SortedPairs(X,Y, Rmax) returns (x,y, d), where z,y are
points in X, Y and d < Rmax is their relative distance (in (7, R)
space). The tuples are sorted by increasing distance. This can be
efficiently implemented using a KD-tree with periodic boundary
conditions. BuildHeads builds all heads by using a watershed ap-
proach. Starting from the largest smoothing scales, it finds and dis-
cards all critical events that are progenitors of a head at any larger
scale. The remaining points have no successor (they are the pro-
genitor of nothing) and are hence heads.
Once the heads have been computed, the second step of the
algorithm pairs them (line 9)
1: procedure FindHeadPairs(H1, ..., Hq, R, AR) > Find pairs
of heads (crit. events)
2: Hri < {c€ Hy | R<c.R< R+ AR} > Keep heads

at scale R
3 P+ {} > Head pair list
4 forkinl,...,d —1do
5: P < P+SortedPairs(HRg 1, Hr, k+1, R)
6: P + P+SortedPairs(Hg k+1, Hr,k, R)
7: end for
8 P + SortByDistance(P)
9: P+ {} > Pairs with no double counts
10: for c1,ca,din P do
11: ifci € P and c2 € P’ then
12: Pl<—Pl+{C1,C2}
13: end if
14: end for
15: E+{} > Critical events
16: for c1,co in P’ do
17: FE < E+ CritEventData(cy, c2)

18: end for
19: return £
20: end procedure

Lines 5-6 ensure that the detection method is invariant by permu-
tation of k « d — k + 1. CritEventData(ci, c2) computes the
properties (position, kind, gradient, ...) of the critical events given
two critical points. FindHeadPairs works as follows. It first finds
all pairs of heads separated by less than a smoothing scale. It then
loops over all pairs (sorted by increasing distance) and greedily
consumes heads. Each head can only be paired once, to its closest
not-yet-paired head of either the previous or next kind. This pre-
vents for example F’ critical points from being paired to a P and a
W critical point, which would result in a double count. Note that
this procedure may leave some heads unpaired (e.g. critical points
at the largest smoothing scale do not merge but have no successor).
In practice the unpaired heads typically account for less than a per-
cent (0.5 % for AR = aRA log R with a = 2) of the total number
of heads.
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