Dark Halos Properties in the Frame of the Saddle

or how does the cosmic web impacts assembly bias

https://goo.gl/18oUAC

Marcello Musso, **Corentin Cadiou**, C. Pichon, S. Codis, K. Kraljic & Y. Dubois

Spine Meeting, Agay, September 21, 2017

Outline

Introduction

Describing filaments with saddle point

Effect on assembly history

Typical mass

Accretion rate

Formation time

Expected observations?

Conclusion

https://goo.gl/18oUAC

Introduction

Observed gradients

Horizon-AGN + GAMA: K. Kraljic et al, submitted

Advanced explanations

• Mass effect (not only)

Advanced explanations

- Mass effect (not only)
- Density effect (not only)

Need to take into account large-scale environment

Need to take into account large-scale environment

For 2nd order effects

Need to take into account large-scale environment

For 2nd order effects

How?

Theoretical framework

Use excursion set theory (Marcello's talk) in the frame of the cosmic web (this talk)

 \Rightarrow compute quantities constrained to their large scale environment

Describing filaments with saddle point

Google Maps in the cosmic web

K. Kraljic et al, submitted

Saddle point of ρ

- Direct access via number density, ...
- Probe scales $k^2 P(k)$ (small scale)

Saddle point of φ

- Access via e.g. grav. lensing
- Proba scales P(k) (large scale)
- Theoretically tractable

How do we define it?

1. Critical point

$$\nabla \varphi \equiv -\mathbf{g}_{\mathcal{S}} = 0 \quad \text{no acceleration.}$$

2. Saddle point constrain (in frame of saddle point)

$$abla_i
abla_j arphi \equiv q_{ij} = egin{pmatrix} q_{xx} & 0 & 0 \ 0 & q_{yy} & 0 \ 0 & 0 & q_{zz} \end{pmatrix} \quad ext{and} \quad q_{xx} < 0 < q_{yy} < q_{zz}.$$

Physically: local maximum in y, z directions, local minimum in x direction.

3. Heigth of the saddle point

$$\delta_{\mathcal{S}} \equiv \frac{\rho - \bar{\rho}}{\bar{\rho}}$$

smoothed at scale R_S .

Saddle Point Frame

Directions

- x: toward void
- y: toward wall
- z: toward node

Filament

- x dir. collapsed (Zel'dovich)
- z dir. of filament

Flow Around Saddle Point

Saddle point is stationary (critical point of the "streamlines")

Flow Around Saddle Point

Saddle point is stationary (critical point of the "streamlines")

Variables

- R_S the smoothing scale
- $\delta_{\mathcal{S}}$ the overdensity
- $\bullet~g_{\mathcal{S}}$ the acceleration
- q_{ij} (next slide)

Variables

- R_S the smoothing scale
- $\delta_{\mathcal{S}}$ the overdensity
- $\bullet~g_{\mathcal{S}}$ the acceleration
- q_{ij} (next slide)

Values

- e.g. 10 Mpc/h
- $\bullet ~\sim 1.2$
- (0,0,0)
- *q*_{ij}

$$q_{ij} = \nabla_i \nabla_j \varphi \tag{1}$$

$$q_{ij} = \nabla_i \nabla_j \varphi \sim -\nabla_i \nabla_j \delta \tag{1}$$

Signature	Type of point
+ + +	peak
-++	filament-type saddle point
+	wall-type saddle point
	void

$$q_{ij} = \nabla_i \nabla_j \varphi \sim -\nabla_i \nabla_j \delta \tag{1}$$

Signature	Type of point
+ + +	peak
-++	filament-type saddle point
+	wall-type saddle point
	void

$$q_{ij} = \nabla_i \nabla_j \varphi \sim -\nabla_i \nabla_j \delta \tag{1}$$

Signature	Type of point
+ + +	peak
-++	filament-type saddle point
+	wall-type saddle point
	void

Information in $Tr(q_{ij})$ ("diagonal" part)

$$\operatorname{Tr}(q_{ij}) = \frac{\partial^2 \varphi}{\partial x^2} + \frac{\partial^2 \varphi}{\partial y^2} + \frac{\partial^2 \varphi}{\partial z^2}$$

14/26

(2)

Information in $Tr(q_{ij})$ ("diagonal" part)

$$\mathsf{Tr}(q_{ij}) = \frac{\partial^2 \varphi}{\partial x^2} + \frac{\partial^2 \varphi}{\partial y^2} + \frac{\partial^2 \varphi}{\partial z^2} = \Delta \varphi$$

(2)

(2)

Information in $Tr(q_{ij})$ ("diagonal" part)

$$\operatorname{Tr}(q_{ij}) = \frac{\partial^2 \varphi}{\partial x^2} + \frac{\partial^2 \varphi}{\partial y^2} + \frac{\partial^2 \varphi}{\partial z^2} = \Delta \varphi = \underbrace{4\pi \bar{\rho} G(1 + \delta_{\mathcal{S}})}_{\text{Poisson equation}}$$
 14/26

(2)

Information in $Tr(q_{ij})$ ("diagonal" part)

$$\mathsf{Tr}(q_{ij}) = \frac{\partial^2 \varphi}{\partial x^2} + \frac{\partial^2 \varphi}{\partial y^2} + \frac{\partial^2 \varphi}{\partial z^2} = \Delta \varphi = \underbrace{4\pi \bar{\rho} G(1 + \delta_{\mathcal{S}})}_{\text{Poisson equation}}$$
 14/26

$$ar{q}_{ij} \equiv ext{traceless part of } q_{ij} = q_{ij} - rac{\delta_S}{3} \mathbb{I}_{ij}$$
 (3)

Why do we care about \bar{q}_{ij} ?

- contains geometric information
- no information on *local density*
- probe for LSS

 \Rightarrow from theory: seem like good way to measure large scale environment

Saddle point frame

- Distance $\mathbf{r} = (r_x, r_y, r_z)$ from saddle point
- Scale $R \sim 1 \,\mathrm{Mpc/h} \ll R_{\mathcal{S}}$

$$\mathcal{Q} = \sum_{i} \sum_{j} \frac{r_i \bar{q}_{ij} r_j}{\|\mathbf{r}\|^2}$$

• Filament:
$$\mathcal{Q}=ar{q}_{zz}\sim 1$$

• Void:
$$Q = \bar{q}_{xx} \sim -1$$

(4)

$$\mathcal{Q} = \sum_{i} \sum_{j} \frac{r_i \bar{q}_{ij} r_j}{\|\mathbf{r}\|^2}$$

• Filament:
$$\mathcal{Q}=ar{q}_{zz}\sim 1$$

• Void:
$$\mathcal{Q} = ar{q}_{xx} \sim -1$$

In practice: all results are functions of r and Q.

 ${\mathcal{ Q}}$ is the variable encoding anisotropic environmental effects

(4)

Effect on assembly history

Typical mass

MM, CC et al., submitted

Accretion rate $\mathbf{Q} \approx 3 \times 10^{11} \,\mathrm{M_{\odot}}$ & z = 0

$$\Delta \dot{M}(\mathbf{r}) \propto \left[\xi_{20}^{\prime} - \frac{\sigma - \xi_{1}^{\prime}\xi_{1}}{\sigma^{2} - \xi^{2}}\xi_{20}\right] \mathcal{Q}$$

MM, CC et al., submitted

 ξ'_{20} : corr. slope-tide + variance of field

19/26

Formation time $\mathbf{0} \approx 3 \times 10^{11} \,\mathrm{M_{\odot}}$ & z = 0

Gradient alignment

K. Kraljic et al, submitted

- background: ρ
- dotted M
- dashed \dot{M}

Gradient alignment

- background: ρ
- dotted M
- dashed \dot{M}
- $\Rightarrow \mathsf{different}\ \mathsf{gradients}$

K. Kraljic *et al*, submitted

Halos in nodes ...

- form later,
- are accreting more,
- typically more massive,

compared to those in filaments (and same from voids to filaments).

In agreement with results from n-body simulations + hint for different assembly w.r.t. cosmic web.

Quantitative results

Voids to filaments

- $M \times 10^2$
- $\dot{M}/M + 30\%$
- $z_f 15\%$

Filaments to nodes

- *M* × 5
- $\dot{M}/M + 10\%$
- $z_f 5\%$

Expected observations?

Effect of Zel'dovich

Need to take into account Zel'dovich-boost

Effect of Zel'dovich

Need to take into account Zel'dovich-boost

- gradients align
- information attenuated

Conclusion

Conclusion

Results

- Different gradients for different quantities
- Effects beyond mass & local density
- DM halo in nodes (filaments)
 - form later
 - accrete more
 - are more massive

than in filaments (voids)

Questions

- Link between DM and baryons?
- Influence of SN/AGN feedback on the picture?
- Build more proxies (e.g. concentration)?

Thank you!

Thank you! and read M. Musso, C. Cadiou et al, 2017!

Effect of large scale

