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Observed gradients
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Advanced

explanations

e Mass effect (not only)

All galaxics

Star-forming ealaxics
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Advanced explanations

Mass effect (not only)

Density effect (not only)

All galaxies Star-forming galaxies
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Need to take into account large-scale
environment



Need to take into account large-scale
environment

For 2nd order effects



Need to take into account large-scale
environment

For 2nd order effects

How?



Theoretical framework

L L S . ¢},
R [Mpe/h f“ame‘)" - \
Desjacques, Jeong, Smith 2016

Use excursion set theory (Marcello’s talk) in the frame of the
cosmic web (this talk)

= compute quantities constrained to their large scale environment
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Describing filaments with saddle
point




Google Maps in the cosmic web

K. Kraljic et al, submitted 6/26



7/26



What'’s a saddle point?

Saddle point of p

e Direct access via number density, . ..

e Probe scales k?P(k) (small scale)

Saddle point of ¢

e Access via e.g. grav. lensing
e Proba scales P(k) (large scale)

e Theoretically tractable
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How do we define it?

1. Critical point

Vo = —gg =0 no acceleration.

2. Saddle pOInt Constrain (in frame of saddle point)

G 0 0
ViVie=q;=1 0 g¢q, 0 and g <0< gy < Q.
0 0 gz

Physically: local maximum in y, z directions, local minimum
in x direction.
3. Heigth of the saddle point

Ss P—P

=]

smoothed at scale Rs.
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Saddle Point Frame

Directions

e x: toward void
e y: toward wall

e z: toward node

Filament

e x dir. collapsed
(Zel'dovich)

e z dir. of filament

3D density contours
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http://pub.cphyc.me/Science/webgl/with_boost.html

Flow Around Saddle Point

Saddle point is stationary (critical point of the “streamlines”)
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Flow Around Saddle Point

Saddle point is stationary (critical point of the “streamlines”)
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Description of the saddle point

Variables

e Rs the smoothing scale
e Js the overdensity
e gs the acceleration

e gjj (next slide)
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Description of the saddle point

Variables Values
e Rs the smoothing scale e e.g. 10Mpc/h
e Js the overdensity e ~12
e gs the acceleration e (0,0,0)
e gjj (next slide) ® gj
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A few words about gj. ..

gij = ViVjp (1)

gij is a tensor of order 2 describing the tides at the saddle point.
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A few words about gj. ..

qij = V,'ngo ~ —V,'Vj5 (1)

gij is a tensor of order 2 describing the tides at the saddle point.

Signature Type of point
+++ peak
—++ filament-type saddle point
- —+ wall-type saddle point
- — = void
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A few words about g; [Stephane’s slide]

5 1 gii G2 qi3
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Information in Tr(q;;) (“diagonal” part)
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A few words about g;. .. [continued]

0s
= i (3)

gijj = traceless part of g;; = g;; —
Why do we care about g;;?

e contains geometric information
e no information on local density
e probe for LSS

= from theory: seem like good way to measure large scale
environment
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Saddle point frame

e Distance r = (ry, ry, r;) from saddle point

e Scale R ~ 1Mpc/h < Rs
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Angular variable

riqijt
szzjj‘rﬁ; (4)

e Filament: @ =§g,, ~ 1
e Void: O =gy ~ —1
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Angular variable

riqijt
Q= Z XJ: e (4)

e Filament: @ =§g,, ~ 1
e Void: O =gy ~ —1

In practice: all results are functions of r and O.

Q is the variable encoding anisotropic environmental effects
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Effect on assembly history




Typical mass

direction of filament

direction of void

&op: corr. density-tide +
AM,(r) o< 6s&20(r)Q ey

MM, CC et al., submitted 18/26



Accretion rate @ ~ 3 x 10' M, & z=10
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Formation time @ ~ 3 x 101! M, & z=0

Early

formation

direction of filament

direction of void

higher mass: later
Az (r) oc M&yo(r)Q

MM, CC et al., submitted

formation time
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Gradient alignment

e background: p
e dotted M
e dashed M

z [Mpc/h] (direction of filament)

4 6
x [Mpc/h] (direction of void)

K. Kraljic et al, submitted
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Gradient alignment

e background: p
e dotted M
e dashed M

= different gradients

z [Mpc/h] (direction of filament)

4 6
x [Mpc/h] (direction of void)

K. Kraljic et al, submitted
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(Temporary) conclusions

Halos in nodes ...

e form later,
e are accreting more,
e typically more massive,
compared to those in filaments (and same from voids to filaments).

In agreement with results from n-body simulations + hint for
different assembly w.r.t. cosmic web.
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Quantitative results

Direction of void Direction of filament

—10’ /—\ﬁ
g = e
" v Q‘“N
== ——
Voids to filaments Filaments to nodes

o M x 102 e Mx5
o M/M +30% o M/M +10%

e zr — 15% ® 7z — 5%
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Expected observations?




Effect of Zel’dovich
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Effect of Zel’dovich

e gradients align

e information attenuated
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Conclusion




Conclusion

Results

e Different gradients for different quantities

o Effects beyond mass & local density
e DM halo in nodes (filaments)

o form later
® accrete more
e are more massive

than in filaments (voids)

Questions
e Link between DM and baryons?

e Influence of SN/AGN feedback on the picture?

e Build more proxies (e.g. concentration)? 26/26



Thank youl!



Thank youl!
and read M. Musso, C. Cadiou et al, 2017!



Effect of large scale
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