How does the cosmic web impacts assembly bias?

Impact of large-scale structures on halo & galaxy evolution

Corentin Cadiou – PhD Student – IAP, Paris, France Supervisors: Yohan Dubois & Christophe Pichon In collaboration with M. Musso & C. Codis Journe des Doctorants, March 23, 2017

Table of contents

Introduction

Effect on assembly

Typical mass

Effect on (DM) accretion rate

Effect of halo formation time

Tension with observations?

Filamentary accretion at high z

Simple 2D setup

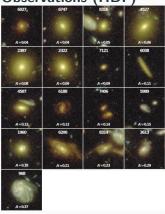
Predicting the torque

Conclusions

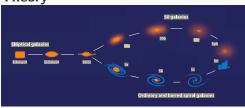
Introduction

What's the link between galaxy/halo

formation and large-scale structures?


Describing galaxies?

Theory


- + star forming?
- + bulge?
- + mass?
- + DM halo mass?
- + DM profile?
- + ...

Describing galaxies?

Theory

- + star forming?
- + bulge?
- + mass?
- + DM halo mass?
- + DM profile?
- + ...

Observations (HDF) A=0.08

And all the properties change with cosmic time. . .

Cosmic Web

 $\label{eq:horizon-AGN} \mbox{Horizon-AGN simulation with skeleton, Dubois} + 12$

And all the properties **change with cosmic time** and location w.r.t. **the cosmic web** (see .e.g K. Kraljic+2017)!

Cosmic web

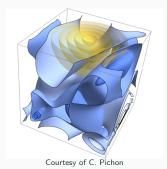
- Geometry of the density/potential field
- Voids, walls, filaments, peaks (resp. 3, 2, 1, 0D)

Cosmic web

- Geometry of the density/potential field
- Voids, walls, filaments, peaks (resp. 3, 2, 1, 0D)

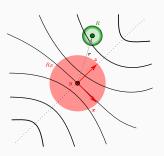
Cosmic web

- Geometry of the density/potential field
- Voids, walls, filaments, peaks (resp. 3, 2, 1, 0D) or
- Critical points (0D)

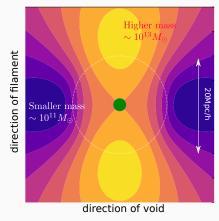

Effect on assembly

Theoretical setup

Excursion set theory

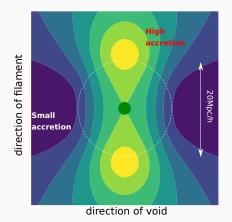

Galaxy properties & evolution from initial conditions

 \Rightarrow Find largest mass that will collapse by z at given location



Simulation	Theory
М	R

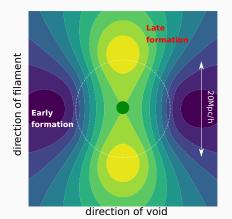
z, t $\delta = \frac{\rho - 1}{\bar{\rho}}$	z, t	$\delta =$	$\frac{\rho - \bar{\rho}}{\bar{\rho}}$
---	------	------------	--


Typical mass of DM halo

- The typical mass at z = 0.
- M. Musso, C. Cadiou et al., MNRAS

- 1. Larger galaxies in nodes
- 2. Smaller galaxies in voids In agreement with *n*-body simulations.

Effect on (DM) accretion rate

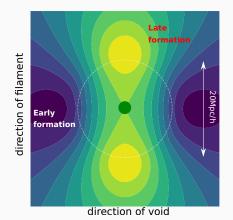


Accretion rate at **fixed** final mass $\label{eq:mass} \textit{M} \simeq 3 \times 10^{11} \; \text{M}_\odot.$

M. Musso, C. Cadiou et al., MNRAS

- 1. High accretion rate in node
- 2. Small accretion rate in voids

Effect of halo formation time



Formation time at **fixed** final mass $M \simeq 3 \times 10^{11} \ M_{\odot}.$

M. Musso, C. Cadiou et al., MNRAS

- Late formation in node (low z)
- Early formation in voids (high z)

Effect of halo formation time

Formation time at **fixed** final mass $M \simeq 3 \times 10^{11} \, \text{M}_{\odot}.$

M. Musso, C. Cadiou et al., MNRAS

- Late formation in node (low z)
- Early formation in voids (high z)

Tension with observations?

Tension with observations?

Theory

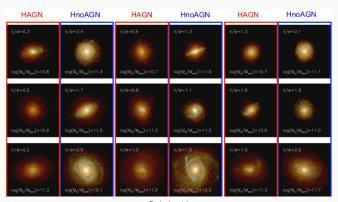
Higher DM accretion + late

formation:

blue central galaxy?

ObservationsMassive red central galaxies

Tension with observations?

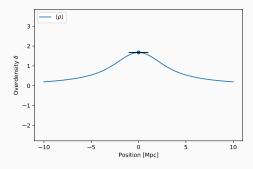

Theory

Higher DM accretion + late

formation:

blue central galaxy?

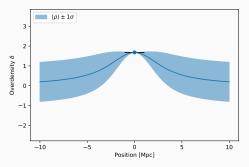
ObservationsMassive red central galaxies



Dubois+16

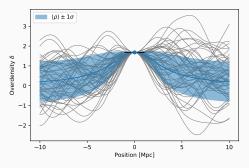
Beyond Mass-Density

4 parameters dictate mass/accretion/formation time/...:


- ullet mean density δ
- mean derived density $\delta' = \frac{\mathrm{d}\delta}{\mathrm{d}R}$

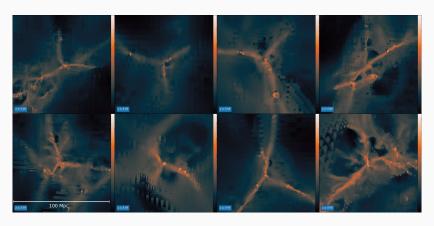
Beyond Mass-Density

4 parameters dictate mass/accretion/formation time/...:


- ullet mean density δ
- mean derived density $\delta' = \frac{\mathrm{d}\delta}{\mathrm{d}R}$
- variance of density
- variance of accretion

Beyond Mass-Density

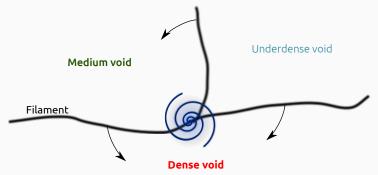
4 parameters dictate mass/accretion/formation time/...:


- ullet mean density δ
- mean derived density $\delta' = \frac{\mathrm{d}\delta}{\mathrm{d}R}$
- · variance of density
- variance of accretion

Environments with different variance do not behave the same: what matters is $(\delta - \langle \delta \rangle)/\sqrt{\mathrm{Var}(\delta)}$

Filamentary accretion at high z

From simulations

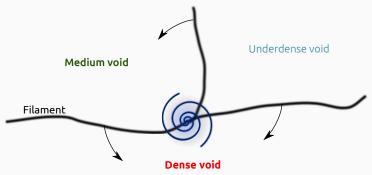

Density maps of galaxies from New Horizon simulation @ z = 6, Dubois+, in prep.

Typical setup: planar with 3 filaments

Simple 2D model

Open questions

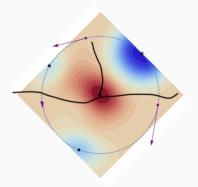
- Net torque on filaments?
- Galaxy spin-up or down?
- Typical coherence scale?


Simple 2D model

Open questions

- Net torque on filaments?
- Galaxy spin-up or down?
- Typical coherence scale?

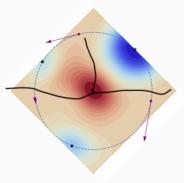
Model


- Planar (2D)
- 3 voids \rightarrow 3 filaments
- 1 central peak

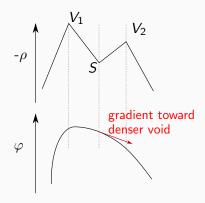
Predicting the torque

Using constrained theory $+ \Lambda$ -CDM power spectrum

Voids are pushing filaments



C. Cadiou, C. Pichon & S.Codis, in prep


Predicting the torque

Using constrained theory + Λ -CDM power spectrum

Voids are pushing filaments

C. Cadiou, C. Pichon & S.Codis, in prep

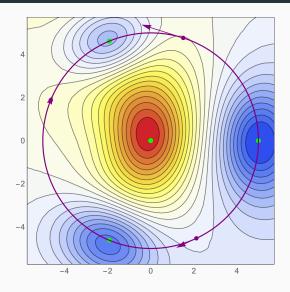
Conclusions

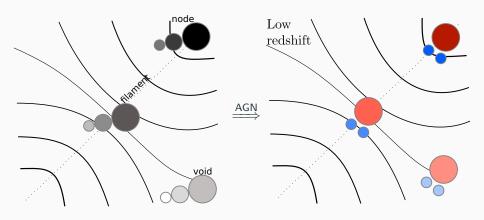
Conclusions

Assembly of DM halo

- Influenced by LSS
- Recovers n-body sim
- Still need baryonic physics

Torque on filament


- Expect torque on filament
- Quantitative results?
- Compare with simulations?



More torque plots

Torque on filament

Effect of AGN

