Monte-Carlo Tracer Particles

RUM 2017, Nice

Corentin Cadiou

September 20, 2017

IAP, CNRS

Introduction

Different methods

Velocity method

Monte Carlo method

MC Implementation

Is it working?

Discussion

Introduction

Eulerian code (AMR like):

- no subgrid information
- no Lagrangian history of gas

Is it possible to overcome this issue?

• Where does the gas come from?

- Where does the gas go?
- Where does the gas come from?

- Where does the gas go?
- Where does the gas come from?
- How much gas is recycled in stars? in AGNs?

- Where does the gas go?
- Where does the gas come from?
- How much gas is recycled in stars? in AGNs?
- ... [TBC]

What are the properties we want for tracers?

What are the properties we want for tracers?

Physical properties

- Passive
- Behave like the gas on average
- Like individual H/He nuclei

What are the properties we want for tracers?

Physical properties

- Passive
- Behave like the gas on average
- Like individual *H*/*He* nuclei

Computational properties

- Cheap (CPU? RAM?)
- Go where the gas goes (star, sinks, grid, dust, ...)

Different methods

Velocity method

Move tracers using tri-linear interpolation of the velocity

$$v_j^p = \text{interpolation} \sum_{\substack{\text{neighbor } j}} v_j$$
 (1)

Pros

- smooth Lagrangian history (trace velocity)
- already implemented in RAMSES!

Velocity method

Move tracers using tri-linear interpolation of the velocity

$$v_j^p = \text{interpolation} \sum_{\substack{\text{neighbor } j}} v_j$$
 (1)

Pros

- smooth Lagrangian history (trace velocity)
- already implemented in RAMSES!

Cons

- *does not* follow the gas density: $\int dS v_i^p \rho \neq flux$
- how to trace stars? AGN?
- quite CPU expensive

Move tracers following flux

$$p_{i \to j} = \frac{\text{mass flux}_{i \to j}}{M_i}$$

Move tracers following flux

$$p_{i \to j} = \frac{\mathsf{mass flux}_{i \to j}}{M_i}$$

Pros

- CPU cheap
- follow gas density
- precision \propto N_{tracers}
- move onto stars, sinks, ...

Move tracers following flux

$$p_{i \to j} = \frac{\mathsf{mass flux}_{i \to j}}{M_i}$$

Pros

- CPU cheap
- follow gas density
- precision \propto N_{tracers}
- move onto stars, sinks, ...
- now implemented!

Move tracers following flux

$$p_{i \to j} = \frac{\mathsf{mass flux}_{i \to j}}{M_i}$$

Pros

- CPU cheap
- follow gas density
- precision \propto N_{tracers}
- move onto stars, sinks, ...
- now implemented!

Cons

- RAM expensive
- noisy Lagrangian history

MC Implementation

First and last equations: Let

$$M_{i,\text{out}} = \sum_{j \wedge i} M_{i \rightarrow j}$$
 if $M_{i \rightarrow j} > 0$,

then for all tracer particles in cell i:

$$p_{i,\text{out}} = \frac{M_{i,\text{out}}}{M_i}, \quad \text{\# Proba. of going out of } i$$
(2)
$$p_{i \to j} = \frac{M_{i \to j}}{M_{i,\text{out}}}, \quad \text{\# Proba. of going from } i \text{ to } j$$
(3)

following S.Genel et al, 13

1. Compute outgoing mass $M_{i,out}$ and $M_{i \rightarrow j}$.

- 1. Compute outgoing mass $M_{i,out}$ and $M_{i \rightarrow j}$.
- 2. Compute outgoing proba $p_{i,out} = M_{i,out}/M_i$ and $p_{i \rightarrow j} = M_{i \rightarrow j}/M_{i,out}$.

- 1. Compute outgoing mass $M_{i,out}$ and $M_{i \rightarrow j}$.
- 2. Compute outgoing proba $p_{i,out} = M_{i,out}/M_i$ and $p_{i \rightarrow j} = M_{i \rightarrow j}/M_{i,out}$.
- 3. For each particle:
 - 3.1 Draw random number r_j .
 - 3.2 Select particles $r_j < p_{i,out}$.

- 1. Compute outgoing mass $M_{i,out}$ and $M_{i \rightarrow j}$.
- 2. Compute outgoing proba $p_{i,out} = M_{i,out}/M_i$ and $p_{i \rightarrow j} = M_{i \rightarrow j}/M_{i,out}$.
- 3. For each particle:

3.1 Draw random number r_j .

- 3.2 Select particles $r_j < p_{i,out}$.
- 4. For each selected particle:

4.1 Draw random number r'_j . 4.2 If $r'_j < p_{i \rightarrow j}$, move to cell j.

- 1. Compute outgoing mass $M_{i,out}$ and $M_{i \rightarrow j}$.
- 2. Compute outgoing proba $p_{i,out} = M_{i,out}/M_i$ and $p_{i \rightarrow j} = M_{i \rightarrow j}/M_{i,out}$.
- 3. For each particle:
 - 3.1 Draw random number r_j .
 - 3.2 Select particles $r_j < p_{i,out}$.
- 4. For each selected particle:

4.1 Draw random number r'_j . 4.2 If $r'_j < p_{i \rightarrow j}$, move to cell j.

Small flux limit: $N_{\text{moved}} \sim \text{Poisson distribution}(p)$

Is it working?

Cosmo

 $$12/19$\ Cosmological Simulation, DM+hydro, left to right: MC tracer, gas and velocity tracers$

Star formation

- SF recipy: mechanical feedback
- homogeneous density

Gas and stars

Gas and star tracers

Discussion

TODO & wishlist:

- Get AGN feedback done (WIP).
- Other SN feedback.
- Quantify diffusion (esp. high flux limit)
- Explore other MC algorithms.

TODO & wishlist:

- Get AGN feedback done (WIP).
- Other SN feedback.
- Quantify diffusion (esp. high flux limit)
- Explore other MC algorithms.
- Get users!

"SAV" at corentin.cadiou@iap.fr

Thank you! Questions? **Advertisement**

yt now supports:

- sinks
- RT
- $\bullet\,$ custom particle + fluid fields
- BSD license (permissive)

http://yt-project.com