

When do cosmic peaks, filaments or walls merge? A theory of critical events in a multi-scale landscape arXiv:2003.04413

University College London

In collaboration with C. Pichon, S. Codis, Y. Dubois, J.F. Cardoso, D. Pogosyan, M. Musso, S. Prunet

1 May 2020

# Introduction

New Horizon collaboration

- Unique time in terms of data... DESI, *Euclid*, LSST → millions of datapoints to play with!
  - Better "halo" model to understand data (White 78, Cooray&Sheth 2002)
    - Origin of spin alignment? Origin of spin of galaxies?
    - Origin of scatter in star-to-halo ratio?
    - Origin of morphology diversity?
  - Extract relevant information about cosmic web (CW)





- Unique time in terms of data... DESI, *Euclid*, LSST → millions of datapoints to play with!
  - Better "halo" model to understand data (White 78, Cooray&Sheth 2002)
    - Origin of spin alignment? Origin of spin of galaxies?
    - Origin of scatter in star-to-halo ratio?
    - Origin of morphology diversity?
  - Extract relevant information about cosmic web (CW)





- Unique time in terms of data... DESI, *Euclid*, LSST → millions of datapoints to play with!
  - Better "halo" model to understand data (White 78, Cooray&Sheth 2002)
    - Origin of spin alignment? Origin of spin of galaxies?
    - Origin of scatter in star-to-halo ratio?
    - Origin of morphology diversity?
    - Extract relevant information about cosmic web (CW)





⇒ Need a way to encode evolution of anisotropy leading to structure formation...

- Unique in terms of (numerical) experiment → exascale, *i.e.* billions of datapoints to generate
  - How to not be trampled by amount of data?
  - How to compare to observations?
  - What matters and what does not?





- Unique in terms of (numerical) experiment → exascale, *i.e.* billions of datapoints to generate
  - How to not be trampled by amount of data?
  - How to compare to observations?
  - What matters and what does not?



⇒ Need a way to encode evolution of anisotropy leading to structure formation... ... in a compact way





# Make predictions in the initial conditions?



# Critical event theory

- Proto-halos ~ maxima
- Proto-filaments ~ filament saddle points
- Proto-walls ~ wall-saddle point
- Proto-voids
  - ~ minima





Dark matter density in numerical simulation.

Early time

Late time

[Peak-patch picture: BBKS+86] [Skeleton theory: Pogosyan+09, ...]

- Proto-halos ~ maxima
- Proto-filaments ~ filament saddle points
- Proto-walls ~ wall-saddle point
- Proto-voids
  - ~ minima





Dark matter density in numerical simulation.

Early time

Late time

[Peak-patch picture: BBKS+86] [Skeleton theory: Pogosyan+09, ...]

- Proto-halos ~ maxima
- Proto-filaments ~ filament saddle points

# Critical points:

*N*-dimensional field  $\rightarrow$  compressed in finite set of points in *N* dim at scale *R* 





Dark matter density in numerical simulation.

[Peak-patch picture: BBKS+86] [Skeleton theory: Pogosyan+09, ...]

Early

CITII



#### **BBKS (peak theory):**

Halos form out of peaks High  $\delta \rightarrow$  early formation High  $R \rightarrow$  high mass

 $\Rightarrow multi-scale analysis (different R) \\ \rightarrow mass as a function of time$ 

X Answer depends on scale considered

**×** Continuous information (*i.e.* M(z))



#### **BBKS (peak theory):**

Halos form out of peaks High  $\delta \rightarrow$  early formation High  $R \rightarrow$  high mass

 $\Rightarrow multi-scale analysis (different R) \\ \rightarrow mass as a function of time$ 

X Answer depends on scale considered

**×** Continuous information (*i.e.* M(z))



 $\Rightarrow$  Spot peaks disappearing

- Scale intrisic to theory!
- ✓ Efficient compression (*i.e.* (M(z), z))
- Applicable to peaks, filaments, walls, voids



#### **BBKS (peak theory):**

Halos form out of peaks High  $\delta \rightarrow$  early formation High  $R \rightarrow$  high mass

 $\Rightarrow multi-scale analysis (different R) \\ \rightarrow mass as a function of time$ 

- X Answer depends on scale considered
- **×** Continuous information (*i.e.* M(z))



- Scale intrisic to theory!
- ✓ Efficient compression (*i.e.* (M(z), z))
- Applicable to peaks, filaments, walls, voids







18



















Destruction critical events  $\rightarrow$  predictors for mergers

Mean density field near a critical event



#### interactive viz



#### interactive viz



#### interactive viz

### Net merger rates in 3D

$$n_{\rm me}^{(j)} = \frac{R}{\tilde{R}^2 R_*^3} C_{\rm odd} C_{j,\rm even} ,$$

$$C_{3,\text{even}}(\nu) = \sum_{i=5,6,9} c_{3,i} \exp\left(-\frac{\nu^2}{2(1-5\gamma^2/i)}\right),$$
  

$$C_{2,\text{even}}(\nu) = c_{2,6} \exp\left(-\frac{\nu^2}{2(1-5\gamma^2/6)}\right),$$
  

$$C_{1,\text{even}}(\nu) = C_{3,\text{even}}(-\nu),$$
(39)

with

$$\begin{split} c_{3,5} &= \frac{3\sqrt{5}\gamma\nu\sqrt{1-\gamma^2}\left(275\gamma^4+30\gamma^2\left(2\nu^2-23\right)+351\right)}{\pi\sqrt{2\pi}\left(9-5\gamma^2\right)^4} \,, \\ c_{3,6} &= -\frac{\mathrm{erf}\left(\frac{\gamma\nu}{\sqrt{2(1-\gamma^2)(6-5\gamma^2)}}\right)+1}{\sqrt{5}\pi\sqrt{6-5\gamma^2}} \,, \quad c_{2,6} &= \frac{2}{\sqrt{5}\pi\sqrt{6-5\gamma^2}} \,, \\ c_{3,9} &= \frac{\mathrm{erf}\left(\frac{\sqrt{2}\gamma\nu}{\sqrt{(1-\gamma^2)(9-5\gamma^2)}}\right)+1}{4\pi\sqrt{5}\left(9-5\gamma^2\right)^{5/2}} \times \\ &\left(\frac{3600\gamma^4\nu^4}{\left(9-5\gamma^2\right)^2} + \frac{120\gamma^2\left(27-35\gamma^2\right)\nu^2}{9-5\gamma^2} + 575\gamma^4 - 1230\gamma^2 + 783\right). \end{split}$$



Net merger rate for peaks (P), filaments (F) and walls (W).

Take home messages:

1) We can compute merger rates in the initial conditions...

- 2) ... and measure them in GRF data cubes...
- 3) ... and all of that agree!

# Results

New Horizon collaboration











How does **connectivity** evolve with cosmic web? Why 3 filaments?



How does **connectivity** evolve with cosmic web? Why 3 filaments?

 $\rightarrow$  Rely on random realisation + filamentary constrain + numerical estimator















#### At fixed smoothing scale, in nodes

- more halo mergers,
- less filament mergers,
- <u>growing</u> towards higher connectivity, than in voids.



# Conclusions / discussion

# Conclusion

#### Key points:

- Describes full change of topology of galactic infall (+ consistent w/ connectivity)
  - ➔ Halo mergers
  - → Filament mergers + wall (or void) mergers
- ✓ Very efficient compression
  - → 3D continuous space  $\rightarrow$  <u>finite</u> set of points in 4D

#### Achievements

- Derived theoretical expectations
- Can be used in numerical simulations
- Extension to non-linearities (modified gravity or non-linear Universe)
- Many applications:
  - ✓ Study of assembly bias
  - Merger rates in mass, time space
  - ✓ Alternative cosmological probe

#### Future

- One-to-one mapping in simulations? Nucleation? Assign mass and time?
- Input to machine learning / halo model







Position



Position



Position



Position



Number count derived from  $PDF(\delta, \nabla \delta, \nabla \nabla \delta, \nabla \nabla \delta)$ Critical point condition – 10 variables



Critical point condition - 10 variables





## Merger rate at **fixed** final mass around filament



Halo merger excess density

Filament merger excess density



with

$$C_{\text{odd}} = \frac{\hat{\gamma} + 3\hat{\gamma}^2 \tan^{-1}(3\hat{\gamma})}{4\pi^2}, \text{ given } \hat{\gamma} = \sqrt{1 - \tilde{\gamma}^2}.$$

### Connectivity and critical events – 3+1D case



Typical evolution of the connectivity and corresponding critical points.

# Comparison with N-body simulations



Analytical prediction of number counts at first-order in non-gaussianity.

# Conclusions

New Horizon collaboration

### Cosmic web does **influence** dark matter halo & galaxy formation

- <u>Large-scale filament</u>  $\rightarrow$  explain part of assembly bias signal
- Within Lagrangian patch → growing higher connectivity close to nodes

5

B

- <u>Galactic scales</u>  $\rightarrow$  large-scale angular momentum transported to inner regions  $\rightarrow$  gravity-driven
- Cosmic web evolution best described in terms of
- <u>Critical events:</u>
  - $\rightarrow$  halo mergers,
  - $\rightarrow$  filament mergers,
  - $\rightarrow$  wall mergers.



- Tidal interactions  $\rightarrow$  extend constrained excursion set theory
  - → *constrained* ellipsoidal collapse?

[Hahn & Paranjape 14; Ludlow+14; Castorina+16; Ramakrishnan+19]

- Predict galaxy morphology *from initial conditions* 
  - $\rightarrow$  use augmented merger tree (with filament & wall mergers)?

[Extending SAMs, see Benson+10 for review]

- $\rightarrow$  use machine learning; critical points as *compression* of information
- Galactic properties
  - $\rightarrow$  filament merger  $\Rightarrow$  spin flip *via* cold flows?
  - $\rightarrow$  control galactic spin from initial conditions?

[Roth+16; Rey&Pontzen 17]

 $\rightarrow$  control AGN activity from initial conditions?

[Porqueres+18; Man+19; Huang+19]

# Backup slides

New Horizon collaboration

# Accounting for Zel'dovich displacement



# Constrained Excursion Set – quantitative results





Typical mass (top), specific accretion rate (middle) and formation redshift (bottom) in the direction of the void (left) and the filament (top).

#### Connectivity and critical events – 2+1D case



Typical evolution of the connectivity and corresponding critical points.

## Monte Carlo tracers



• *M*<sub>ij</sub>:

• M:

- Mass flux between cells
- Newly-created star mass
- Stellar feedback
- Black hole accretion

- Cell mass
- Cell mass
- Star mass
- Cell mass

# Distribution of tracer particles





Gas tracer number density per cell mass bins

Star tracer particle number density per star mass bins

 $\rightarrow$  Number density consistent with Poisson distribution

# Torque along Lagrangian trajectory



Radius and mean torque magnitudes as a function of accretion time.



## Acceleration profiles



Acceleration profiles of one halo for the hot (dark) and cold-accreted (light) gas.

# Acceleration profiles





Force projections around one halo for the hot (top) and cold-accreted (bottom) gas.

# Conclusion AM acquisition



#### AM of cold gas

- Amplitude conserved down to inner halo
- Alignment ------

#### AM of hot gas

- Amplitude conserved up to virial shock
- Alignment preserved down to inner halo