How does the cosmic web impacts assembly bias?

Impact of large-scale structures on halo & galaxy evolution

Corentin Cadiou – PhD Student – IAP, Paris, France Supervisors: Yohan Dubois & Christophe Pichon West Coast Swings 17/09/2018

IAP, CNRS

Table of contents

Introduction

Quick intro to Excursion Set Theory

Including anisotropy

Results

Link with galaxy formation

Comparison to observations & simulations

Improvements

Filamentary accretion at high z

Setup

Predicting the torque

Conclusions

Introduction

What's the link between galaxy/halo formation and large-scale structures?

DM/Galaxy properties

Horizon-AGN simulation with skeleton, Dubois+12

DM Halo & Galaxy properties **change with cosmic time** and location w.r.t. **the cosmic web** (see e.g. K. Kraljic+2017)!

- Geometry of the density/potential field
- Voids, walls, filaments, peaks (resp. 3, 2, 1, 0D)

- Geometry of the density/potential field
- Voids, walls, filaments, peaks (resp. 3, 2, 1, 0D)

- Geometry of the density/potential field
- Voids, walls, filaments, peaks (resp. 3, 2, 1, 0D) or
- Critical points (0D, minima, saddle points and maxima)

Quick intro to Excursion Set Theory

Excursion set theory – saving a few M CPU.hrs

Excursion set theory – saving a few M CPU.hrs

Excursion set theory – saving a few M CPU.hrs

Press&Schechter 74, Bond+91, ...

Theoretical setup

Excursion set theory

Halo properties & evolution from initial conditions

 \Rightarrow Find largest mass that will collapse by z at given location

Excursion Set illustrated

Excursion Set illustrated

High density \rightarrow early collapse Large smoothing scale \rightarrow large mass Large slope \rightarrow small accretion rate

Schematical picture

Red: in filament, green: in void

Typical mass of DM halo

Larger galaxies in nodes
 Smaller galaxies in voids
 In agreement with *n*-body
 simulations.

M. Musso, C. Cadiou et al., MNRAS

Effect on (DM) accretion rate

- 1. High accretion rate in node
- 2. Small accretion rate in voids

Effect of halo formation time

M. Musso, C. Cadiou et al., MNRAS

- Late formation in node (low z)
- Early formation in voids (high z)

Effect of halo formation time

- Late formation in node (low z)
- 2. Early formation in voids (high z)

Tension with observations?

Trying to fill gap with galaxy formation

Theory

Higher DM accretion + late formation:

blue central galaxy?

Observations Massive red central galaxies

Trying to fill gap with galaxy formation

Theory

Higher DM accretion + late formation:

blue central galaxy?

Observations Massive red central galaxies

Take home message

Assembly variables are functions of

- mass
- density

This is a non local effect! (to balance with e.g. Paranjape+18, Alam+18)

Take home message

Assembly variables are functions of

- mass
- density
- anisotropy, induced by saddle

Encoded by

$$\mathcal{Q} = rac{r_i ar{q}_{ij} r_j}{r^2} = ext{anisotropy} + r = ext{distance}$$

This is a non local effect! (to balance with e.g. Paranjape+18, Alam+18)

How does that compare to reality?

How does that compare to reality?

How does that compare to reality? like observation or actually simulations

Link to observation

Need to map Lagrangian space (theoretical space) to Eulerian space (simulation/observation space).

Link to simulations

Typical halo mass (in $10^{11}\,M_\odot)$ theory vs. simulation

Kraljic+, submitted.

Link to simulations

Typical halo mass (in $10^{11}\,M_\odot)$ theory vs. simulation

Kraljic+, submitted.

Theoretical improvements

 Improve model by including local corrections spherical

 → ellipsoidal collapse
 (Castorina+16, Paranjape+18, Alam+18).

 Numerical improvements Study connection between...

- 1. large scale DM structures and cold filaments (baryons)
- cold filaments and angular momentum buildup?

WIP with Y. Dubois, method paper coming up soon, simulations running. Come to me for questions!

Filamentary accretion at high z

From simulations

Density maps of galaxies from New Horizon simulation @ z = 6, Dubois+, in prep.

Typical setup: planar with 3 filaments

2D model

Open questions

- Net torque on filaments?
- Galaxy spin-up or down?
- Typical coherence scale?

C. Cadiou, C. Pichon & S.Codis, in prep

2D model

Open questions

- Net torque on filaments?
- Galaxy spin-up or down?
- Typical coherence scale?

Model

- Planar (2D)
- 3 voids \rightarrow 3 filaments
- 1 central peak

C. Cadiou, C. Pichon & S.Codis, in prep

Predicting the torque

Using constrained theory $+ \Lambda$ -CDM power spectrum Voids are pushing filaments

C. Cadiou, C. Pichon & S.Codis, in prep

Predicting the torque

Using constrained theory $+ \Lambda$ -CDM power spectrum Voids are pushing filaments V_1 V_2 $-\rho$ gradient toward denser void φ C. Cadiou, C. Pichon & S.Codis, in prep

Preliminary results

- 1. Void depth decreases relative torque effect.
- 2. Peak height (rarity) increases relative torque effect.

Improvements

- Use real power spectrum instead of (2D) power law
- Assess validity of model on baryons/DM

Conclusions

Conclusions

Assembly of DM halo

- Influenced by LSS
- Recovers *n*-body sim
- Still need baryonic physics

Torque on filament

- Expect torque on filament
- Quantitative results
- Compare with simulations?

Thank you!

"Lagrangian in Eulerian code", see Genel+13 Fill the gap between large scale (filaments) and galaxy properties More torque plots

Torque on filament

Effect of AGN

Beyond Mass-Density

4 parameters dictate mass/accretion/formation time/...:

• mean density δ • mean derived density $\delta' = \frac{d\delta}{dR}$

 $\langle \rho \rangle$

Environments with different variance do not behave the same: what matters is $(\delta - \langle \delta \rangle)/\sqrt{\operatorname{Var}(\delta)}$

Beyond Mass-Density

4 parameters dictate mass/accretion/formation time/...:

- mean density δ
- mean derived density $\delta' = \frac{\mathrm{d}\delta}{\mathrm{d}R}$
- variance of density
- variance of accretion

Environments with different variance do not behave the same: what matters is $(\delta - \langle \delta \rangle)/\sqrt{\operatorname{Var}(\delta)}$

Beyond Mass-Density

4 parameters dictate mass/accretion/formation time/...:

- mean density δ
- mean derived density $\delta' = \frac{\mathrm{d}\delta}{\mathrm{d}R}$
- variance of density
- variance of accretion

Environments with different variance do not behave the same: what matters is $(\delta - \langle \delta \rangle)/\sqrt{\operatorname{Var}(\delta)}$

Tension with other results?

Hahn+2009: less accretion due to tidal effects from neighboring large halo

