How does the cosmic web impacts assembly bias?

Impact of large-scale structures on halo & galaxy evolution

Corentin Cadiou – PhD Student – IAP, Paris, France Supervisors: Yohan Dubois & Christophe Pichon In collaboration with M. Musso & C. Codis Journe des Doctorants, March 24, 2017

Table of contents

Introduction

Effect on assembly

Typical mass Effect on (DM) accretion rate Effect of halo formation time Tension with observations? Filamentary accretion at high zSimple 2D setup Predicting the torque

Conclusions

Introduction

What's the link between galaxy/halo formation and large-scale structures?

Describing galaxies?

Theory

- + star forming?
- + bulge?
- + mass?
- + DM halo mass?
- + DM profile?
- $+ \ldots$

Observations (HDF)

Describing galaxies?

Theory

- $+ \ {\rm star} \ {\rm forming}?$
- + bulge?
- + mass?
- + DM halo mass?
- + DM profile?

 $+ \ldots$

And all the properties change with cosmic time...

Observations (HDF)

Cosmic Web

Horizon-AGN simulation with skeleton, Dubois+12

And all the properties **change with cosmic time** and location w.r.t. **the cosmic web** (see .e.g K. Kraljic+2017)!

- Geometry of the density/potential field
- Voids, walls, filaments, peaks (resp. 3, 2, 1, 0D)

- Geometry of the density/potential field
- Voids, walls, filaments, peaks (resp. 3, 2, 1, 0D)

Cosmic web

- Geometry of the density/potential field
- Voids, walls, filaments, peaks (resp. 3, 2, 1, 0D) or
- Critical points (0D)

Effect on assembly

Theoretical setup

Excursion set theory

Galaxy properties & evolution from initial conditions

 \Rightarrow Find largest mass that will collapse by z at given location

Typical mass of DM halo

The typical mass at z = 0.

M. Musso, C. Cadiou et al., MNRAS

Larger galaxies in nodes
Smaller galaxies in voids
In agreement with *n*-body
simulations.

Effect on (DM) accretion rate

M. Musso, C. Cadiou et al., MNRAS

- 1. High accretion rate in node
- 2. Small accretion rate in voids

Effect of halo formation time

M. Musso, C. Cadiou et al., MNRAS

- 1. Late formation in node (low z)
- Early formation in voids (high z)

Effect of halo formation time

- 1. Late formation in node (low z)
- Early formation in voids (high z)

Tension with observations?

Theory

Higher DM accretion + late formation:

blue central galaxy?

Observations Massive red central galaxies

Theory

Higher DM accretion + late formation:

blue central galaxy?

Observations Massive red central galaxies

Beyond Mass-Density

4 parameters dictate mass/accretion/formation time/...:

- mean density δ
- mean derived density

 $\delta' = \frac{\mathrm{d}\delta}{\mathrm{d}R}$

Beyond Mass-Density

4 parameters dictate mass/accretion/formation time/...:

- mean density δ
- mean derived density $\delta' = \frac{\mathrm{d}\delta}{\mathrm{d}R}$
- variance of density
- variance of accretion

Beyond Mass-Density

4 parameters dictate mass/accretion/formation time/...:

- mean density δ
- mean derived density $\delta' = \frac{\mathrm{d}\delta}{\mathrm{d}R}$
- variance of density
- variance of accretion

Environments with different variance do not behave the same: what matters is $(\delta - \langle \delta \rangle) / \sqrt{\operatorname{Var}(\delta)}$

Filamentary accretion at high z

From simulations

Density maps of galaxies from New Horizon simulation @ z = 6, Dubois+, in prep.

Typical setup: planar with 3 filaments

Simple 2D model

Open questions

- Net torque on filaments?
- Galaxy spin-up or down?
- Typical coherence scale?

Simple 2D model

Open questions

- Net torque on filaments?
- Galaxy spin-up or down?
- Typical coherence scale?

Model

- Planar (2D)
- 3 voids \rightarrow 3 filaments
- 1 central peak

Predicting the torque

Using constrained theory + $\Lambda\text{-}\mathsf{CDM}$ power spectrum Voids are pushing filaments

C. Cadiou, C. Pichon & S.Codis, in prep

Predicting the torque

Using constrained theory + Λ -CDM power spectrum Voids are pushing filaments V_1 V_2 $-\rho$ gradient toward denser void φ C. Cadiou, C. Pichon & S.Codis, in prep

Conclusions

Conclusions

Assembly of DM halo

- Influenced by LSS
- Recovers *n*-body sim
- Still need baryonic physics

Torque on filament

- Expect torque on filament
- Quantitative results?
- Compare with simulations?

Thank you!

More torque plots

Torque on filament

Effect of AGN

