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Résumé

A grande échelle, il est frappant de voir que la distribution anisotrope de la matiére forme un
large réseau de vides délimités par des murs qui, avec les filaments présents a leurs intersections,
tissent la toile cosmique. La matiére qui doit former plus tard les halos de matiére noire et leurs
galaxies afflue vers les nceuds compacts se situant a 'intersection des filaments et garde dans ce
processus une empreinte de la toile cosmique.

Dans cette these, je développe une extension contrainte de la théorie de excursion dans son
approximation dite “du franchissement vers le haut” pour prédire la masse, le taux d’accrétion et le
temps de formation des halos de matiére noire au voisinage des proto-filaments (qui sont identifiés
comme des points-selles du potentiel). Les points-selles sont utilisés comme un référentiel local
dans lequel I’évolution des propriétés physiques et morphologiques des galaxies est quantifiée aux
grandes échelles. A masse fixée, le modéle prédit que le taux d’accrétion et le temps de formation
varient avec 'orientation et la distance au point-selle, confirmant que le biais d’assemblage est
sensible aux forces de marées de la toile cosmique. Les halos peu massifs, s’étant formés tot et
“affamés” sont regroupés le long de I’axe principal des filaments, tandis que les halos plus massifs,
plus jeunes sont répartis autour des nceuds. Les différents gradients observés pour différentes
quantités, tels que la masse typique et le taux d’accrétion, ont pour origine ’anisotropie du
point-selle et leur dépendance distincte aux moyennes et aux variances du champ. Pour les
faibles décalages vers le rouge, ce modele prédit qu’a masse fixe il y a un excés de galaxies rouges
dans des directions préférentielles, comme ’ont montré des relevés spectroscopiques (GAMA) et
photométriques (COSMOS), mais aussi les simulations hydrodynamiques (Horizon-AGN).

J ai également calculé les taux de fusions par analyse multi-échelle des conditions initiales pour
prédire 'assemblage anisotrope des halos et comprendre son impact sur la formation des galaxie.
Outre les fusions de halos, j’ai aussi pris en compte les fusions de murs et de filaments qui ont un
effet sur 'accrétion galactique et j’ai calculé leurs statistiques a un et deux points en fonction du
temps cosmique. J’ai établi le lien entre les taux de fusion et la connectivité. J’ai ensuite exploité
ce lien pour estimer l'effet des structures a grande échelle sur le biais d’assemblage. Cette théorie
décrit I'anisotropie de la toile cosmique, qui est un élément important pour décrire conjointement
I’évolution de la physique et de la dynamique des galaxies dans leur environnement, en particulier
les alignements intrinséques ou les diversités morphologiques.

Afin d’étudier I'accrétion cosmique a de plus faibles échelles, j’ai implémenté une nouvelle
méthode de particules traceuses dans le code a raffinement de grille adaptatif Ramses. Cette méth-
ode est basée sur un échantillonnage de Monte-Carlo et est capable de reconstruire la trajectoire
lagrangienne du gaz et son retraitement. Je démontre que la distribution spatiale des particules
traceuses reproduit précisément celle du gaz, et je propose une extension capable de suivre tout
le cycle des baryons dans leurs échanges avec les étoiles et les trous noirs. Cette approche est
particuliérement adaptée aux problémes astrophysiques qui requiérent simultanément d’avoir
une résolution efficace des chocs avec un solveur de Godounov et de suivre 'histoire lagrangienne
des baryons. Je I'utilise ensuite dans plusieurs simulations zoomées pour étudier I’acquisition
du moment angulaire par les galaxies via leur accrétion bi-modale pour les hauts décalages vers
le rouge. J'y observe que 'amplitude et 'orientation du moment angulaire du gaz froid sont
conservées jusque dans le halo interne ou le moment angulaire contribue a ’augmentation de la
rotation des galaxies. Les couples de pressions sont plus importants en amplitude mais, de par
leur turbulence, ils sont incohérents et sont dominés globalement par les couples gravitationnels.
Les couples de la matiére noire dominent dans le halo externe, ceux des étoiles dominent dans le
disque.



Abstract

The strikingly anisotropic large-scale distribution of matter is made of an extended network of
voids delimited by sheets, with filaments at their intersection which together form the cosmic
web. Matter that will later form dark matter halos and their galaxies flows towards compact nodes
at filaments’ intersections and in the process, retains the imprint of the cosmic web.

In this thesis, I predict the mass, accretion rate, and formation time of dark matter halos
near proto-filaments (identified as saddle points of the potential) using a conditional version of
the excursion set theory in its so-called up-crossing approximation. The (filament-type) saddle
points provides a local frame in which to quantify the induced physical and morphological
evolution of statistical properties of galaxies on large scales. The model predicts that at fixed
mass, mass accretion rate and formation time vary with orientation and distance from the saddle,
demonstrating that assembly bias is indeed susceptible to the tides imposed by the cosmic web.
Starved, early-forming halos of smaller mass lie preferentially along the main axis of filaments,
while more massive and younger halos are found closer to the nodes. Distinct gradients for
distinct quantities such as typical mass and accretion rate occur because the saddle condition is
anisotropic, and because the statistics of these observables depend on both the means and their
covariances. The signature of this model corresponds at low redshift to an excess of reddened
galaxies at fixed mass along preferred directions, as recently reported in spectroscopic (GAMA)
and photometric (COSMOS) surveys and in hydrodynamical simulations (Horizon-AGN).

I also compute the rate of merger events in the multi-scale initial conditions to forecast special
events driving the anisotropic assembly of dark matter halos and understand their impact on
galaxy formation. Beyond halo mergers, I consider all sets of mergers, including wall and filament
mergers, as they impact the geometry of galactic infall. Their one- and two-points statistics
are computed as a function of cosmic time. I establish the relation between merger rates and
connectivity, which is then used to assess the impact the large scale structures on assembly bias.
The anisotropy of the cosmic web, as encoded in this theory, is a significant ingredient to describe
jointly the physics and dynamics of galaxies in their environment, e.g. in the context of intrinsic
alignments or morphological diversity.

In order to explore the impact of cosmic infall on smaller scales I implemented a novel tracer
particles algorithm in the Eulerian adaptive mesh refinement code Ramses. The tracer particles
are based on a Monte Carlo approach and keep tracks of where fluid elements originate, so as to
follow their Lagrangian trajectories and re-processing history. I show that they reproduce the gas
distribution very accurately and I extend them to also trace the stars and black holes through
the full cycle of baryons. These tracer particles are ideal to study complex astrophysical systems
where both the efficiency of shock-capturing Godunov schemes and a Lagrangian follow-up
of the fluid are required simultaneously, in particular in cold flows. Thanks to this accurate
tracer particle algorithm, the acquisition and loss of angular momentum of both cold and hot
accretion flows onto galaxies at high redshift can be studied reliably. I find that the amplitude and
orientation of the specific angular momentum of the cold gas is preserved down to the inner halo
where the angular momentum contributes to the spin-up of galaxies, while for the hot gas it is lost
at larger radii. Pressure torques, stronger in magnitude than gravitational torques are, however,
spatially incoherent, which leads them to have no significant impact on the redistribution of
angular momentum of the accretion flows. Gravitational torques, which dominate globally, are
the main driver of the loss of angular momentum of the accretion flows in those halos, with
dark matter gravitational torques dominating in the outer halo and stellar gravitational torques
dominating in the disk.
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1.1

From a single galaxy to an expanding Universe

From the 18th century, most of the observed objects in the sky were thought to be located in a
single entity — the Milky Way — whose borders were the borders of the Universe. Setting apart
planets and stars, these objects were broadly classified as nebule, from the Latin word for cloud
or fog, as they resemble diffuse clouds in sky. In 1771, Charles Messier published his “Catalogue
des Nébuleuses et des Amas d’Etoiles” (Catalogue of Nebulz and Star Clusters). Charles Messier
first interest was in comets, but in order to observe them, he had to be able to distinguish moving
objects from fixed objects in the sky, such as stars, star clusters and nebule. This led him to
systematically compile a list of the objects in the sky that were impairing his observations. This
catalogue, known as the Messier Catalogue is still today one of the most popular catalogues
among amateur astronomers.

With the advent of better observations and the systematic classification of the objects, as-
tronomers started distinguishing star clusters from diffuse nebulee from spiral nebulee. During the
18th and 19th centuries, many philosophers and mathematicians (E. Swedenborg, P.L. Maupertuis,
T. Wright) speculated that the Milky Way is itself a “spiral nebula”, made of a flattened disk
of stars and that the spiral nebule are its analogues, but reside outside the Milky Way, while
others argued that the spiral nebulee were part of the Milky Way. This questioned not only the
location of the Milky way and the spiral nebulz in space, but also their relative sizes. However,
observational evidences were missing to rule out any of the two models and it was not until the
20th century that it was finally shown that these nebulee live outside of the Milky Way. One of
the first proofs of the extra-galactic nature of the nebule can be attributed to Vesto Slipher. In
1912, he made spectrographic observations of the brightest spiral nebule ; all of them showed
significant Doppler shifts, suggesting that the nebule are receding at velocities of hundreds to
thousands of kilometres per seconds, much greater than the relative velocities of the stars of the
Milky way. In 1917, observations of supernovee in the Great Andromeda Nebula (now called the
Andromeda galaxy) revealed that the supernovee were 10 magnitudes fainter than supernove in
the Milky Way, suggesting that they were much further away than the ones observed in the Milky
Way. Using conservative assumptions, Shapley and Curtis, 1921 estimated that the Andromeda
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Figure 1.1.1: The 110 objects of the Messier catalogue, taken and compiled by an
amateur astronomer. Credits: Michael A. Phillips.

Observed

Rotational velocity

No dark matter

Radius

Figure 1.1.2: Left: Rotational profile of the Andromeda galaxy from Rubin and Ford,
1970. Right: Scheme of the rotational velocity profile. The expected rotational velocity
profile with no dark matter is shown as a dashed line, the observed rotational profile is
shown as a solid line. Without dark matter, the rotation profile decreases after some radii
while the addition of dark matter makes the profile flatter at large radii, in agreement
with observations.

Nebula could not be any closer than 20 000 ly, but still 7000 ly off the plane of the Milky way.
This was further confirmed by the distance estimations of the nebule by Edwin Hubble, which
definitely showed that nebulee were too distant to be part of the Milky Way. We now call spiral
(and elliptical) nebulee “galaxies” from the greek words yéAo (“milk”) and &iog (“way”).

In 1929, Hubble was able to show that galaxies were receding at increasing velocities with
increasing distance, so that galaxies further away are receding faster, a relation now known as
Hubble-Lemaitre’s law. The law states that the receding velocity is proportional to the distance
times the Hubble constant H. Even though the measurements were largely inaccurate — Hubble’s
measurements gave H = 500 km/s/Mpc while modern estimates are around 70 km/s/Mpc —
the result showed that the Universe is not only made of multiple galaxies, but it is also expanding,
paving the way to modern cosmology. At this point, the basic building blocks of the Universe
were broadly found: the Universe is made of a multitude of individual galaxies, each of which has
millions to several hundred billions stars, and sizes of the order of 10 kly to 100 kly, while the
distances between galaxies are of the order of the Mly.

The next step in our current understanding of the structure of galaxies and cosmology appeared
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in the course of the 20th century. The discoveries of the distances and sizes of galaxies was shortly
followed by estimations of their mass. In order to do so, a simple way is to use the laws of gravity:
objects orbiting massive objects have smaller periods according to Kepler’s laws. By measuring
the velocities of objects gravitating in or around galaxies, one can infer their gravitational mass.
Since galaxies are made of stars, one can also estimate the stellar mass from the galaxies’ apparent
luminosity. The ratio of gravitational mass required to explain the observed velocities to the
observed stellar mass, known as the “mass-to-light” ratio was initially thought to be one. However,
observations in the 1920s showed that the mass required to explain the motion of stars in the
neighbourhood of the Sun is much larger than the observed one. Later in the 1930s, observations
of the motion of galaxies in the Coma cluster led to the same conclusion that the gravitational
mass should be much larger than the observed ones. These evidences were later confirmed when
Rubin and Ford, 1970 showed that most of the mass of galaxies is not in stars. This was shown by
measuring the rotational velocity of HII regions in the Andromeda galaxy. If the bulk of the mass
of the galaxy was due to its stars, then the rotational velocity should increase from the centre to
a radius of 10 000 ly, reaching a maximum of ~ 200 km /s before decreasing. The observations
however showed that the rotation curve rises as a function of radius before reaching a plateau
at a radius of 10000 ly at about 250 km/s, as shown on figure 1.1.2, left panel. This discovery,
followed by multiple similar results, all confirmed that most of the mass in galaxies — and similarly
in galaxy clusters — is hidden and is invisible. This matter that interacts via gravity but cannot
be seen is now called Dark Matter (DM). In order to match observations, galaxies should be
embedded in an extended DM halo, so that the decrease of stellar density with increasing radius
is mitigated by the extended dark matter halo in the outskirts of the galaxy. This is schematically
illustrated on figure 1.1.2, right panel. In addition to a correct distance ladder, astronomers now
had access to a mass scale, albeit imprecise: in addition to the billion of stars that make galaxies,
an extended and massive halo of dark matter surrounds each galaxy.

At about the same time other evidences for dark matter emerged with the discovery of
the Cosmic Microwave Background (CMB) by Penzias and Wilson, 1965. This electromagnetic
emission, emitted at the infancy of the Universe, shows that the Universe started in a quasi-
homogeneous hot and dense state, with tiny density fluctuations of the order of the 10~ to
1075. In a model missing dark matter, these initial density fluctuations would be too small for
gravitational collapse to have time to pull matter together and form the observed large-scale
structures of the Universe. This is a consequence of the interaction of baryonic matter with
radiation: up to the emission of the CMB, gravitational collapse was prevented due to the radiative
pressure of photons scattering from atoms to atoms. Dark matter provides a solution to the
problem because it does not interact with light. Therefore, its density perturbations can grow first
and create a potential well into which baryonic structures will later collapse. In addition to the
CMB observations, several other observations such as gravitational lensing by galaxy clusters or
the temperature distribution of hot gas in galaxies and clusters all pointed towards dark matter.

These discoveries, in conjunction with the development of general relativity led to the emer-
gence of the standard model of cosmology, the A Cold Dark Matter (ACDM) model. The ACDM
describes the evolution of the Universe after the CMB and is made of the following building bricks

1. the CMB is described by a Gaussian random field with known statistical properties,

2. the Universe is homogeneous and isotropic with no spatial curvature,

3. the Universe contains dark energy (A term), cold dark matter (CDM) in addition to ordinary
matter and radiation.

According to the ACDM model, the Universe started from a hot dense state some 14 Gyr ago
and has been expanding since then, as measured by Hubble, 1929 and is now in accelerated
expansion, as a result of the non-null A term in Einstein’s equations. About 85 % of the current
matter of the Universe is DM, the remaining 15 % being ordinary baryonic matter (gas, stars,
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Figure 1.2.1: (Left:) The galaxy distribution obtained from spectroscopic redshift sur-
veys (blue) and from mock catalogues (red) constructed from cosmological simulations.
From Springel et al., 2006. (Right:) Catalogue of the spectroscopic HectoMAP survey in
the local Universe (Hwang et al., 2016). The cosmic web made of large voids, filaments
and dense nodes is clearly visible.

etc.). All this matter only adds up to 30 % of the total energy density of the current Universe, the
remaining 70 % being dark energy. The success of the ACDM is well illustrated by the advent of
the “precision cosmology” era, in which the parameters of the model can be fitted to observations
down to percent levels using a variety of measurements, from CMB observations (Bennett et al.,
2013; Planck Collaboration, 2018a), baryonic acoustic oscillations (e.g. Eisenstein et al., 2005;
Moresco et al., 2016; Alam et al., 2017), type Ia supernovee (e.g. Riess et al., 1998; Perlmutter et al.,
1999; Abbott et al., 2019), weak lensing, cluster abundances (see e.g. Weinberg et al., 2013, and
references therein for a detailed review).

The large scale structure of the Universe

Since the assumption of homogeneity clearly breaks down on small scales, as revealed by the
presence of galaxies or stars, there must be certain homogeneities present at a certain time in
history of the Universe. The homogeneities can be traced back in time to the CMB, but also to much
larger scales, as can be seen in galaxy surveys that have revealed the existence of superstructures
(cluster of galaxies, super-clusters and filaments and walls connecting them) on scales up to a
few tens to hundreds of Mpc!, as can be seen on figure 1.2.1. While each of these structures,
from galaxies to super clusters or filaments, is unique in its morphology and mass, their overall
statistical properties are homogeneous: the probability of any configuration is independent on
the spatial location. Recent surveys, like the Sloan Digital Sky Survey (Abazajian et al., 2003), the
2MASS redshift survey (Huchra et al., 2012) or HectoMap (Hwang et al., 2016) have improved
significantly our knowledge of the galaxy distribution showing with no doubt that galaxies form
a complex web-like network on large scales made of voids, walls and filaments that interconnect
with clusters of galaxies. This pattern is known as the cosmic web.

Due to the laws of gravity, the initial tiny fluctuations evolved into large and complex
anisotropic structures that shape the current Universe. At scales of up to a few tens of Mpc,
large under-dense regions called voids are found (Pan et al.,, 2012). Put together, the voids form a
foam-like structure where each bubble is bound by denser walls or pancakes, sometimes called
Zel’dovich pancakes (Zeldovich, 1970). The initial motion of particles can be well approximated
in their linear regime by a rectilinear trajectory where the direction is set by the initial peculiar

The pc length unit is commonly used in astronomy, where 1 pc ~ 3.08 x 10 m ~ 3.31y.
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gravitational forces. Similar to parallel light rays bent by a disturbed water surface, the particles
will travel until they form caustics. The first caustics to form, resulting from the collapse of matter
along one direction, are bi-dimensional in nature. Following this first collapse, a second direction
may collapse to form secondary caustics, resulting in uni-dimensional filamentary structures.
Finally, filamentary structures may also collapse to form “knots” or nodes of the cosmic web.

As the cosmic web builds up, dense and spheroidal regions will undergo spherical collapse,
resulting in the formation of dark matter halos. These primordial halos will later merge to form
larger halos that in turn will also merge. This continuous accretion and successive merger scenario
is often referred to as hierarchical formation. In classical models, galaxies form in (sub-)halos
(Kauffmann et al., 1993) themselves located in the cosmic web. The distribution of galaxies in the
Universe follows that of the large-scale structures as most of them are found in walls, filaments
and nodes of the cosmic web. Recent developments have also shown that not only does the spatial
distribution of galaxies relate to the cosmic web, but also some of their properties such as the
orientation of their spin or their colour.

From the cosmic web to galaxy formation

According to the classical galaxy formation paradigm, gas falling on a proto-galaxy heats up to
the Virial temperature of its host halo when crossing the virial radius (Rees and Ostriker, 1977;
Silk, 1977). In this scenario, the gas acquires the same angular momentum distribution as dark
matter before turning around and flowing towards the proto-galaxy, which has been confirmed
by hydrodynamic simulations that do not describe cooling (e.g. van den Bosch et al., 2002). This
process of angular momentum acquisition, at the core of the understanding of the formation of
disk galaxies at high redshift, is well explained by the Tidal Torque Theory (TTT, Peebles, 1969;
Doroshkevich, 1973; S. D. M. White, 1984). It predicts that the angular momentum of the dark
matter increases under the effect of the gravitational torques of the cosmic web before dark matter
decouples from the expansion of the Universe. In the classic scenario, the gas undergoes the
same tidal field before decoupling but loses all dynamical and causal connection with the large
scale structures at the Virial radius. Following this idea, classical models of galaxy formation
typically ignore any explicit coupling of the baryons to their large scale environment, so that
galaxy properties are directly inherited from the mass history of their host halo or some quantities
averaged over all angles.

It has been established that the clustering of dark matter halos, as measured by halo bias, not
only depends on halo mass but also on other halo properties such as formation time, concentration,
spin and ellipticity (Gao et al., 2005; Wechsler et al., 2006; Gao and S. D. M. White, 2007; Hahn
et al., 2007). This problem, commonly referred to as the “assembly-bias problem” can be rephrased
as follows: the clustering of dark matter halos and their properties are correlated, beyond a mere
mass and density relation. On large scales, systematic galactic surveys (de Lapparent et al., 1986;
Geller and Huchra, 1989; Colless et al., 2001; Tegmark et al., 2004; Abazajian et al., 2003) have
revealed that the Universe is structured around voids, sheets, filaments and knots that form the
cosmic web. Using a different approach, a growing number of evidence have since showed that
some halo and galaxy properties present distinct features at different locations in the cosmic web.
As presented in Kraljic et al.,, 2018, void galaxies are found to be less massive, bluer and more
compact than galaxies outside of voids (Rojas et al., 2004; Beygu et al., 2016); galaxies infalling
into clusters along filaments show signs boosted star formation rate even before becoming part of
the clusters while those infalling from the voids do not (Porter et al., 2008; Martinez et al., 2016);
Kleiner et al., 2017 find systematically higher HI fractions for massive galaxies near filaments
compared to field population, interpreted as evidence for a more efficient cold gas accretion from
the intergalactic medium. A small but significant trend in the distribution of galaxy properties
within filaments was reported in the spectroscopic surveys VIPERS (Malavasi et al., 2017) and
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GAMA (Kraljic et al., 2018) and with photometric redshifts in the COSMOS field (Laigle et al.,
2018). When corrected for large-scale density effects, these studies find significant mass and
type segregations, where the most massive or quiescent galaxies are closer to filaments than less
massive or active galaxies, emphasizing that large-scale cosmic flows play a role in shaping galaxy
properties. On the other hand, other works reported that the most important driver of galaxy
properties is stellar mass, as opposed to environment (Robotham et al., 2013; Alpaslan et al., 2015;
Alpaslan et al., 2016), while the environment may impact the efficiency of galaxy formation (Guo
et al., 2015; Eardley et al., 2015).

On large scales, the Tidal Torque Theory (TTT) naturally connects the distribution of matter
to the angular momentum of halos (see section 2.1.6, e.g. Lee and Pen, 2001; Hirata and Seljak,
2004) in its recently revisited, conditioned formulation (Codis et al., 2015), with low-mass galaxies
being preferentially aligned with filament’s direction while more massive ones have their spin
perpendicular to it. While it is far from obvious that the alignment of halo spin implies that the
galactic spin are also aligned (Tenneti et al., 2015; Chisari et al., 2017, e.g. ), the effect has also
been confirmed for galaxies in numerical simulations (Dubois et al., 2014; Welker et al., 2014;
Martizzi et al., 2019) and recently observationally (e.g. Trujillo et al., 2006; Lee and Erdogdu, 2007;
Paz et al., 2008; Tempel et al., 2013; Tempel and Libeskind, 2013; Pahwa et al., 2016, see also for
B.]. T. Jones et al., 2010; Cervantes-Sodi et al., 2010; Andrae and Jahnke, 2011; Goh et al., 2019 for
contradictory results).

Classical models have proven quite successful in explaining many observed properties of
galaxies, via the so-called halo model (see Cooray and R. Sheth, 2002, for a detailed review),
in particular against isotropic statistics such as the two-point correlation function, yet they
fail to capture some galactic properties, such as spin alignments, which are specifically driven
by scale-coupling to the cosmic web (Codis et al., 2015), nor do they fully take into account
how a given galaxy is gravitationally sensitive to the larger scales anisotropies. Indeed, when
gas cooling is accounted for, it has been shown that a substantial part of the baryon mass and
angular momentum is acquired via cold filamentary flows (Birnboim and Dekel, 2003; Ocvirk
et al., 2008; Dekel et al., 2009; Keres et al., 2009), feeding the galaxy in a highly anisotropic way.
Unlike shock-heated gas, cold flows are able to penetrate halos to reach their innermost regions,
feeding galaxies with pristine fuel for star formation. A three-dimensional visualization of galactic
formation processes at intermediate scales (made possible by the joint use of tracer particles for
the cold gas phase, and well-resolved zoom simulations) reveals that these gaseous flows stem
from the cosmic web. In fact, the spatial distribution of caustics (the geometric location of the dark
matter shell crossing and the isothermal shock of cold gas) provides us with direct information
on the dynamical state of the gas likely to be accreted on the proto-galaxy: in this scenario, the
gas first flows towards the caustics created by the dark matter to form wall-like structures, in
which galaxies are embedded (Danovich et al.,, 2012). The gas then radiatively cools and looses
its velocity component in the direction perpendicular to the walls to condense at the centre of
dark matter filaments found at the intersection of walls. In the process, the gas retains a net
transverse motion that sets the direction and amplitude of its angular momentum which will later
be fed coherently into growing proto-galaxies. Doing so, it retains its angular momentum — and
hence its causal connection to the cosmic web — until it reaches the innermost part of the galaxy
(Pichon et al., 2011; Danovich et al., 2015), providing a unique testbed to assess the effect of the
cosmic web on the formation of galaxies.

With the advent of large spectroscopic surveys (GAMA, Driver et al., 2011; VIPERS, Guzzo
et al., 2014) and cosmological simulations (Illustris, Vogelsberger et al., 2014; Horizon-AGN
Dubois et al., 2014; Dubois et al., 2016; Eagle, Schaye et al., 2015; Massive-Black II, Khandai et al.,
2015), astronomers can now explore time modulations of the galactic properties with statistically
meaningful data, but also their spatial modulations in the frame of the cosmic web (e.g. Alpaslan
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et al., 2016; Malavasi et al., 2017; Laigle et al., 2018; Kraljic et al., 2019). There is now a dire need
for both new methods and models to understand the coupling between the anisotropic cosmic web
and the baryonic physics of galaxies. In particular one needs to build new estimators to quantify
the spatial modulation of galaxy properties beyond isotropic two-point correlation functions on
top of the classical halo model. As the effect of the cosmic web is expected to be second-order
(after mass and local density dependence), new estimators and models have to be built that take
into account explicitly the anisotropy of the cosmic web to prevent the signal from being lost
when averaging over all possible angles.

The aim of this dissertation is to provide such estimators and models, with a novel framework
devoted to the study of the effect of anisotropic features on the formation of dark matter halos
and their galaxies. The approach followed in my work is two-fold: I study the effect of the cosmic
web on large and small scales on the assembly of dark matter halos across cosmic time using
conditional excursion set and critical set theory and use numerical simulations to unveil how
these effects impact galaxy formation.

Chapter 2 describes the context on which this dissertation is based, presenting the different
models and tools used in the course of my work. Chapter 3 presents an extension of the excursion
set theory and predicts the accretion rate, formation time and typical mass of dark matter halos
as a function of their environment. Chapter 4 presents a framework based on the peak theory to
quantity the environmental effects acting on halo formation. In particular, it aims to provide a
comprehensive description of the major events relevant to the assembly of galaxies. Chapter 5
presents a new numerical scheme able to accurately track the cosmic accretion in mesh-based
hydrodynamical simulations. Chapter 6 presents results obtained from a numerical study of how
angular momentum is acquired from the cosmic web and transported towards galaxies via cold
flows. Chapter 7 wraps things up and discusses perspectives.
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Disclaimer

The results presented in chapter 3 have led to a publication in MNRAS (Musso, Cadiou et al.,
2018). I have derived all the equations of the paper independently and checked their correctness
using numerical simulations. I also produced all the plots of the paper. The writing of the paper
was done in collaboration with M. Musso, with contributions from C. Pichon, S. Codis, K. Kraljic
and Y. Dubois.

The results presented in chapter 4 have been obtained in collaboration with C. Pichon and
S. Codis, with contributions from Y. Dubois and M. Musso.

The results presented in chapter 5 have led to a publication in A&A (Cadiou et al., 2019). I
have produced all the results of the paper, with contributions from Y. Dubois and C. Pichon.

I have produced all the results of chapter 6, with contributions from Y. Dubois and C. Pichon.

I have read and contributed to to all publications presented in appendix B, albeit not as the
main author. More specifically, I contributed to the theoretical sections of Kraljic et al., 2018;
Kraljic et al., 2019. I contributed to the numerical setup of Beckmann et al., 2019 by providing the
tracer particle code.

To the best of my knowledge, all the results presented in the dissertation are original.



2.1

In this chapter, I will present the different models used throughout my work. In section 2.1, I
will present the cosmological context in which galaxies form, before describing the processes
involved in galaxy formation in section 2.2.

Cosmology

In this section, I detail the different models that describe the initial conditions of the Universe in
section 2.1.1. In section 2.1.2, I detail how these initial fluctuations grow to form the large-scale
structure of the Universe and dark matter halos. In sections 2.1.3 to 2.1.5, I present models suited
to study the statistical properties of dark matter halos and detail how they then acquire angular
momentum in section 2.1.6. Finally, in section 2.1.7, I provide some tools to describe the initial
conditions of the Universe.

Figure 2.1.1: Map of the CMB as observed by the Planck satellite in 2013. Credit: ESA,
Planck Collaboration.
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Properties of the initial conditions of the Universe

In the standard model of cosmology, the time and space frame of the Universe was created at
the Big Bang. Between 107305 and 10733s ~ 107325, the Universe experienced a phase of
exponential growth known as inflation. Quantum fluctuations in the microscopic scales were
quickly expanded to cosmological scales to yield a flat, statistically homogeneous and isotropic
Universe. After the end of inflation, the hot initial plasma cooled until light and matter decoupled
at about 3 000 K, a moment known as the Last Scattering Surface (LSS). Photons emitted from the
LSS were able to travel freely through space and experienced only the expansion of the Universe
since then. Today, they can be observed in the microwave range of the light spectrum — as they
have been emitted at z ~ 1100 — and form the well-studied CMB illustrated on figure 2.1.1.

The CMB is as-of-today the best example of a black body spectrum with a temperature of
2.726 K. It is characterised by very small temperature fluctuations of about 0.0013 K. These
fluctuations can theoretically have two forms. Isocurvature perturbations have the property that
the total energy density is constant in space so that the sum of the fractional variation of each
component compensates exactly. An increase of 1 % of any component is compensated by a net
decrease of 1% of other components. Cosmic strings are commonly associated to isocurvature
perturbations.

On the other hand, for adiabatic perturbations, the fractional variation of each component of
the matter (baryons, photons, DM, neutrinos) are the same so that an excess of 1 % of photons
results in an excess of 1 % of baryons. This is the model favoured by cosmic inflation. In the
following, we will assume that the initial perturbations are adiabatic perturbations. Under this
assumption, regions that are hotter are also denser ones so that the CMB is therefore also an
observation of the density fluctuations of the Universe at z ~ 1100. The fluctuations in the
initial density field are very well described by a homogeneous Gaussian Random Field, whose
mathematical properties are described in section 2.1.1.1.

The evolution of the Universe after inflation is well described by the ACDM model, as already
mentioned in the introduction. The ACDM is made of cold DM and a cosmological constant, A,
entering Einstein’s equation, resulting in an expanding Universe. At low redshifts (later times),
the expansion becomes accelerated once the density of the Universe is A-dominated. The model
is described by six parameters: the baryon density €2, the dark matter density €., the age of the
Universe ¢y, the spectral index ng, the normalization of the amplitude of the primordial fluctuations
A% and the reionisation optical depth. From these parameters, one can derive the Hubble constant
Hy, the total matter density €, = € + (2}, the root-mean-square of the field linearly evolved at
z = 0 and smoothed with a Top-Hat filter of size 8 Mpc/h, os. The values of the six parameters
are now measured from observations of the CMB (WMAP, Planck Collaboration, 2018a), as well
as many other independent observations (see Weinberg et al., 2013, for a detailed review). The
best-fit values from CMB observations are reported in Table 2.1. They show that today’s Universe
is in accelerated expansion, with 70% of the energy density in the form of dark energy (A term),
25% as DM and only 5% as baryonic matter while other particles — such as photons or neutrinos
— make a negligible contribution.

In the following, we will particularly focus on the density contrast §
s=P"" (2.1)

Here p is the mean density of the Universe and p is the local density. This field is well represented
by a Gaussian random with zero mean.
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Table 2.1: Planck collaboration best-fit cosmological parameters. See Planck Collabora-
tion, 2018a for more details.

Parameter Comment Value Unit

N Scalar spectral index 0.9667(40)

Hy Hubble constant 67.74(46) kms~—! Mpc!
Qp Baryon density 0.0486(10)

Qe Dark matter density 0.2589(57)

Qm Matter density 0.3089(62)

Qp Dark energy density 0.6911(62)

o8 R.m.s. of the matter fluctuation 0.8159(86)

Zs Redshift at decoupling 1089.90(23)

Gaussian Random Field
Since the initial conditions of the Universe! are very well described by a Gaussian random field, it
is worth providing a mathematical description of their structure and properties. While a more
in-depth and mathematical description of random fields and their geometry is provided in Adler
and Taylor, 2007, let us provide some basic definitions and properties.

A random variable X € R has a Gaussian distribution (or normal distribution) with mean p
and variance o if its PDF reads

P(X) = 21 exp(—

(2.2)

2 202

2
(X —p) )
This definition can easily be generalized to d dimensions: a random vector X € R? has a
multivariate Gaussian distribution with mean g € R? and variance 3 € M (R?), where X is a
positive-definite matrix, if its PDF reads

S A P
PX) = s o5 - W= ). (23)

The element 7, j of the covariance matrix is the covariance of the ith element of X with its j-th
element. It can be formally written as

i = ((Xi — i) (X5 — 1j)), (2.4)

where the brackets indicate an ensemble average. For a function F' : R? — R, the ensemble
average over the ensemble of possible realizations (2 is defined as

(F) = /Q diX' F(X"P(X'). (2.5)

In the following, brackets symbols are expectation, integrated over all possible realisations. Using
ergodicity in an isotropic and homogeneous field, this is equivalent to averaging over space.
Using multivariate Gaussian distributions, we can also define a discrete Gaussian random
field. Let X be a discrete field defined at positions {7;};=1 .. n. The field is said to be a Gaussian
random field if the vector X = {X(r;)}i=1, n is distributed following a multivariate Gaussian
distribution. In cosmology, it is very common to use the two-point correlation function instead of

'In the following of the manuscript, I will call “the initial conditions” the initial conditions in the matter dominated
Universe, which are set by the measurements of the CMB.
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the covariance. For a given pair of point r;, r;, the two-point correlation function of a field is

defined as
E(ri,my) = (X (ri) — u(ro)) (X () — u(r)))) . (2.6)
where u(r) = (X (r)) is the mean of the field (it is a field itself). This is the generalization of
equation (2.4) to a discrete field.” Since a multivariate Gaussian distribution is described uniquely
by its mean and covariance, a discrete Gaussian random field is entirely described by its mean
and two-point correlation function.
We are now in a position to define a (continuous) Gaussian random field. Let X by a field in
d dimensions. The field is a Gaussian random field if for any given position r there exists y, o
such that
X(r) ~ N(p,0), (2.7)
and the covariance of the field at any pair of point r, 7’ is given by the two-point correlation
function
E(r,r’) = ((X(r) — p(r)(X(r") — p(r')) - (2.8)
The standard model of cosmology further assumes that the Universe is statistically homoge-

neous and isotropic. Mathematically, a Gaussian random field is homogeneous and isotropic if its
correlation functions verifies

g(Tvrl) :f(HT—T/H) :é(s)a (2.9)
where s = || — r’'|| is the separation and its mean is a constant
pu(r) = po. (2.10)

As a consequence, the statistical properties of the field are invariant by translation and rotation.

Power spectrum
In a statistically homogeneous Universe, it is convenient to represent the random the field § by
its Fourier components using the following convention

§(k) = / Bro(re*T §r) = (271T)3 / APk d(k)e* T, (2.11)

The power spectrum P(k) of the field is the expectation value
(5(k)6*(K")) = P(k)(2m)*op (k — K') . (2.12)

Here the superscript * stands for the complex conjugate, which makes P (k) positive definite.
The Dirac delta is a consequence of translational invariance (homogeneity). Otherwise, the
ensemble average (0(k)d(k')) would acquire a phase factor when » — r + Ar. If the field is
real 0*(k) = 0(—k), and we obtain

(5(k)S(K')) = P(k)(27)36p (k+ k) . (2.13)

Requesting further rotational invariance implies that the power spectrum depends only on
k=|k

, Le.

(5(k)5*(K)) = P(k)(2m)36p (k — k) . (2.14)

Taking the Fourier transform of equation (2.12), we obtain the relation between the two-point
correlation function and the power spectrum

£(r) = (2;)3 /kd?’kp(k)e““‘. (2.15)

*Note that this definition is not specific to Gaussian random fields.
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Figure 2.1.2: (Left:) Plot of the matter power spectrum as a function of the wave number
assuming a Planck 2018 (Planck Collaboration, 2018a) cosmology. At scales involved in
galaxy formation (0.1 Mpc/h to 10 Mpc/h), the spectrum resembles a power-law with
slope ~ —2. (Right:) Standard deviation of the field smoothed with different filters as
labelled.

For a statistically homogeneous and isotropic Gaussian random field in three dimensions this can
be rewritten in a more compact way as

€)= gz [ AEP(R) (), (216)

where j; is the second spherical Bessel function. For the sake of completeness, note that in one
and two dimensions we have

£0(r) =< [ abP@yio(hn) (217)
™ Jo
P(r) = % /0 dk kP(k)Jo(kr), (2.18)

where Jj is the first Bessel function and jg the first spherical Bessel function. The ACDM power
spectrum depends on the properties of inflation and of the early Universe. It features notably
a peak at ~ 100 Mpc/h and then decreases roughly as a power-law with index ng ~ 1 — 2, as
shown on figure 2.1.2, left panel.

Generating Gaussian Random Field
Because the initial conditions of the Universe are well described by a Gaussian random field, the
generation of Gaussian random field is the first step of any numerical simulation that aims at
simulating the Universe from its birth. Let us describe a method to generate Gaussian random
fields on a periodic grid with a given power spectrum P (k). The first naive approach works as
follows

1. generate a white noise field from a Gaussian distribution with zero mean and unit variance

pu(r) ~ N(0,1),

2. compute j(k), the Fourier transform of x(7) (using e.g. the Fast Fourier Transform (FFT)
algorithm),
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Table 2.2: Correspondence of linear operators between their real-space and Fourier-
space representations. Note that real space filters are convolution operators while their
Fourier representation is a multiplication.

Operator Real space Fourier space
Gradient v ik
Laplacian V2 —k?
Spatial shift 5(r) — d(r + Ar) lk-Ar
1 -
Gaussian filter Wal(r) = me_r2/2R2 Wa(k) = e~ (FR)?/2
3 PN o 3jukR)
Top-Hat filter Wrn(r) = 471']%?191; (1(—/§)) Wrn(k) = R
_ J1\T z
Sharp k filter Weharp (1) = s 7’/7]% Weharp (k) = 9u(1 — kR)
3
Derivative of TH Wiy = Or[WrH] & J2(kR)
1 k2
Derivative of Gaussian W (r) = —Q—RQWg(r) —?Wg(k:)

3. compute the Fourier field
(k) = v/ P(k)u(k),

4. obtain the real-space overdensity §(r) using an inverse Fourier transform of 6 (k).
While the naive approach is easy to implement, it has a number of issues for small boxes (see e.g.
Pen, 1997). Indeed, the power spectrum is assumed to be spherically symmetric, an assumption
that does not hold on a finite rectangular box. One way to partially solve the problem is due to
Hahn and Abel, 2011, where they suggested sampling the power spectrum in real-space instead
of Fourier space, so that the periodicity of the box is correctly accounted for. This is the approach
used in the Music software to generate initial conditions for cosmological simulations.

Correlation of the field and linear operators

In the context of excursion set theory and peak theory, discussed in sections 2.1.3 and 2.1.5, one
needs to be able to compute correlation functions of the field and its derivatives with respect
to space or smoothing scale. The motivations to compute these correlation functions will be
discussed in further details in sections 2.1.3 and 2.1.5 for excursion set theory and peak patch,
while the importance of the smoothing operation is discussed in section 2.1.2.2. One of the
properties of Gaussian random field is that any linear combination of a Gaussian random field is
itself a Gaussian random field. Stated differently, any linear transformation of a Gaussian random
field is a Gaussian random field itself so that, in general, any linear operator will conserve the
Gaussian property of a field. Following the lines of section 2.1.1.2, let us define the two-point
cross-correlation function between two Gaussian random fields §; and o

EAGE (2717)6 / d*k / A3k (51 (k)55 (K')) e' k=R T, (2.19)

The results of section 2.1.1.2 can be recovered setting d; = do.
Let F be a linear operator. We define its Fourier representation J as

Flo)(k) = / d3r e~ FI5)(r). (2.20)

The Fourier representation of convolution filters, such as the Top-Hat filter and the Gaussian filter,
become simple multiplications in Fourier space. Noting that any derivation operators (V, V2, ...)
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can be written as a convolution with the relevant distribution, their representation in Fourier
also become a simple multiplication, where the multiplication factor does not depend on the
underlying field. This means that F[6](k) = F(k)d(k). Some common operators and their
Fourier representations are given in Table 2.2. In the following, we will restrain ourselves to
operators that can be written as multiplications in Fourier space®. Using this formalism, we can
compute any correlation function between two operators applied to a Gaussian random field. The
correlation between Fi[6] and F»[d], where F; and F> are linear operators, reads

5}—1}—2 = <

F1[0]F2[0])
! I F T / * (1]
(2m)6 /dgk/d% Fi(k)F3 (k') (5(k)6*(K))

(271T)6 /dgk/d3k'ﬁl(k)ﬁ;(k')(Qw)?’P(k)aD(k k)

1
(2m)?

/ d*k P(k)F1(k)F5 (k). (2.21)

Note that in general the fields returned by the operators may not be invariant under rotation
or even translation, even when the underlying field is itself isotropic or homogeneous. This is
for example the case when considering the gradient of the field in a given direction of space. As
an example, let us compute the correlation function between the field smoothed by a Gaussian
filter at scale R; and the field smoothed by a Gaussian filter at scale Ry at a separation r* using
equation (2.21)

Ry Ry (1) = (Wa R, % 0)(0) x (W, R, * 0) (7))

= (271-r)3/dgkp(k)WG»Rl(k)WQRz(k‘)e““"
_ (2;)3 / &k P(k) eXp(_k’Q(R%;R%) _ik.r) .

Formation of the structures of the Universe

In this section, I detail the models that describe the formation of the structures of the Universe. In
section 2.1.2.1, I present how initial tiny fluctuations grow in the linear regime. In section 2.1.2.2, I
detail the analytical solution of the spherical collapse that will be at the base of our understanding
of the formation of dark matter halos. In section 2.1.2.3, I detail how the first structures emerge
from the displacement of matter in the Zel’dovich approximation.

Linear perturbations

Since the initial conditions of the Universe are given by tiny fluctuations of the density field
around its mean value, it is expected that the initial evolution can be described in the linear regime,
expressed as perturbations of the density contrast ¢. In the linear regime, the variance of the
density contrast increases as matter departs from under-dense regions to reach over-dense regions.
In order to study this regime, let us first restrict ourselves to a pressure-less fluid approach that
describes well DM in the ACDM model. In this model, the DM is assumed to start from a state
where the velocity field has no velocity dispersion (the velocity field is single-valued). Linear
perturbations aim at providing a description of the density contrast up to the moment where
multiple particles with different velocities are found at the same location, a moment known as

*This includes any operator that can be written as a convolution operation with a distribution, in particular
convolution and linear differential operators.
*The separation can be interpreted as a shift operator applied to the field.
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shell-crossing. It turns out that this regime provides a good description of the first steps of the
formation of the large scale structures of the Universe.
The equations of interest are the continuity, Euler (with no pressure) and Poisson equations

p
En +V.pv =0, (2.23)
% +(v-V)v=-V, (2.24)

V2® = 47Gp. (2.25)

Equation (2.24) can be obtained from the Vlasov-Poisson equation, assuming that a single velocity
is found at each location. Here spatial derivatives have been done in proper units. We can compute
the comoving position via 7 = a(t)x. In these variables, the peculiar velocity w is the sum of the
Hubble flow and the comoving velocity v

u=a(t)r+v, v=ax. (2.26)

Under the change of variable » — «, equations (2.23)—(2.25) can be rewritten using the following
transformation for the time derivative and gradient operators

Ve 0 9 a

2.2
V%a’at ot aa:V (2.27)
Recalling that §(r,t) = (p(r,t) — p(t))/p(t), this yields in comoving coordinates
1
g(z + -V [(1+6)v] =0, (2.28)
A @
A %+ HUN ANELY (2.29)
ViU = 47Gpa®s, (2.30)
with ¥ = ® + adz?/2. (2.31)

These equations can then be linearised at first order in ¢, v and ¥

a5 1
5t Evgc cv =0, (2.32)
a—v+9v——vw¢ (2.33)
ot a a '
ViU = 47Gpa®s. (2.34)

We then derive equation (2.32) w.r.t. ¢ and use equations (2.33) and (2.34) to finally get the second
order partial differential equation

0?6 L 2 2a 09

oz a ot
In order to move forward, we can use the Fourier representation of the overdensity d(k). This
yields a second order ordinary differential equation

d25(k, t) N 2a dé(k, t)
de? a dt
We can immediately see that equation (2.36) does not have any scale dependence: all modes grow

(or decay) at the same rate. The perturbations evolve as a function of time only and can formally
be written as

— 4nGps = 0. (2.35)

— 4nGpi(k,t) = 0. (2.36)

5(k,t) = A(k)Do(t) + B(k)D_(t), (2.37)
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where D () is a growing mode and D_(?) is a decaying mode and A and B are constants of
time. D is usually normalized to its value at ¢t(z = 0) so that D, (z = 0) = 1. The decaying
mode can be directly expressed as a function of the Hubble constant

D_(t) & H(t), (2.38)

and the growing mode is obtained using

t d / e’} 1 /
Dy () x H(t) /0 m ~ H(2) Ej(;,) dz (2.39)
where
E(z) = H;Z) = \/Q,m +(1=Q0)(1+2)2 4+ Qumo(l + 2)3 + Qe o(1 + 2)%. (2.40)

g is equal to one in a flat Universe, while {24 ¢, Qo and €, ¢ are the current A, matter and
radiation density. They are linked to their value at redshift z by

Qro Qm0(1+2)3 Qr0(1+z)4
Q = : O (2) = —————, Ahiz)=—F7———. 241
A(Z) E2(Z) ’ (Z) EQ(Z) (Z) E2(Z) ( )
In the matter dominated era or in an Einstein de-Sitter (EdS) universe’, the growing mode scales
as )
Di(z) ~t23 v ——. 2.42
+(2) T2 (2.42)

In the general case in a ACDM cosmology, there is no explicit formula for D, but equation (2.39)
can be integrated numerically, as shown on figure 2.1.3. Alternatively, a good approximation is
due to Carroll et al., 1992

Dy(2) ?‘1(? OH7(2) — Qp(2) + (1 + QmQ(Z)> (1 + Qgéz)ﬂ o (2.43)

This approximation holds for a close Universe with non-null matter density and a A contribution.
In the remainder of the dissertation, the linear growth factor will be noted D(z) = D (z) for
the sake of simplicity, while the decaying mode will be neglected.

Spherical collapse

Let us consider a region of the Universe with uniform initial density p; and radius R;. For the
sake of simplicity, we will assume to be in an EdS Universe, but similar results can be found
including a cosmological constant (see e.g. Lacey and Cole, 1993; Lahav et al., 1991). Following
section 2.1.2.1, we assume that there is no shell-crossing. We thereforce assume that collapse will
happen in concentric spheres, with the outermost spheres collapsing in a time larger or equal
to the collapse time of the inner spheres. Under this assumption, the total mass in a sphere is
constant. Let 0; = (pi — Pm,i)/Pm,i be the initial overdensity of the region w.r.t. the cosmic mean
matter density py, ;. The total mass in the region is given by M = (47/3)R}pi(1 + &;). The
region evolves under the action of gravity following

d?R  GM _ H!R}

T = am (1+6), (2.44)

®An EdS Universe is a flat, matter-only Universe with no cosmological constant. It is a good approximation to our
Universe after the radiation-dominated era z < 300 and before the A-dominated era z > 2.



18 Chapter 2. Context

z
100 10 5 2 1 0.5 0.2 0
1.0 Exact
084 =" Carroll
0.6
o
Q
0.4
0.2 1
0.0
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Figure 2.1.3: Linear matter growth factor in a Planck 2018 cosmology (Planck Collabo-
ration, 2018a) using the exact expression of D (equation (2.39), solid black) and the fit
by Carroll et al. (equation (2.43), dashed blue).

where H; is the initial Hubble rate. It is worth noting that at fixed initial overdensity, equation (2.44)
is scale invariant: the evolution of the sphere depends on the initial density only. Let us now
integrate equation (2.44) over time to get the specific energy equation®

ey  HER

If £ > 0, the solution is unbound and the radius will grow forever. If £ < 0, the solution is

bound and the radius will eventually collapse to R — 0. At early times, the bulk velocity is due
to the Hubble flow R; ~ H;R; so that the total energy reads

H} Ry
2
The energy is negative for overdensities J; > 0 and positive otherwise. This shows that in the
spherical collapse model, any initial overdensity will eventually collapse. Let us now assume that
d; > 0 to derive the evolution of the spherical region. Under this assumption, the solution of

equation (2.44) can be written parametrically

E=— 8. (2.46)

r = A(l — cosf), t = B( —sin#). (2.47)
Here A and B are set by the initial conditions
GM (GM)?
A=-—"" Br= 1 2.4
. - (248)
The evolution for a spherical region collapsing in a Hubble time (r(ty) = 0) is shown on

figure 2.1.4. Using the conservation of energy and equations (2.45) and (2.46), we can compute
the turnaround radius — or maximum radius — Ry for which the radial velocity vanishes
(14 6) 146

s

®Since the mass of the sphere is assumed to be constant, this specific energy is conserved.



2.1 Cosmology 19

t/tt
00 02 04 06 0.8 1.0 1.2 14 16 1.8 2.0
! ! ! ! ! ! ! ! ! !
6 ]
5Sc 02
o 0.1 A
o (ACDM /
4 1 : ( ) 0.0 7 |, T T
0.0 0.2 0.4
o
t (Gyr)
2 7 |
) /

T
0.0 2.5 5.0 7.5 10.0 12.5
t (Gyr)

Figure 2.1.4: Plot of the evolution of spherical collapse overdensity dsc (blue) and linear
overdensity d; (orange) in a EAS Universe and in a ACDM Universe (dotted orange). The
spherical collapse solution diverges in a time ¢ = t, = 2t; (here t, =ty ~ 13.8 Gyr).
At this time, the linear overdensity has a value d. ~ 1.69 (horizontal solid grey line). At
turnaround (vertical solid grey line) the spherical-collapse overdensity is dgc ~ 4.55
and the linear overdensity &; ~ 1.06. At early times (inset), the spherical collapse model
and the linear evolution coincide with &(¢) ~ (1 + z)~1.

After turnaround, the region will start contracting until R(t¢) = 0 with ¢y = 2t;. For small initial
overdensities, turnaround time and radius scale like

By 72T(§/2 (2.50)
1
This shows that small overdensities have large turnaround radii, since collapse time is inversely
proportional to the initial overdensity. This regime is the one of interest assuming cosmological
initial conditions, as the observation of the CMB gives us |§;| ~ 1073 at z ~ 1000.
In practice, the region will not collapse to a single point. As the region collapses, the effect of
the initial (random) velocity dispersion will become non-negligible so that the assumption of a
perfectly spherical collapse will break. Instead of converting all the gravitational energy to kinetic
energy, both terms will eventually reach equilibrium. This process, known as “virialization” will
relax to the state where the Virial theorem is verified, i.e.

2K +U =0, (2.51)

where K = R?/2 is the specific kinetic energy and U = —GM /R is the specific gravitational
energy. Combining equations (2.46) and (2.51) and introducing the Virial radius Ry, we find that

_ B

Rvir 9

(2.52)
After virialization, the radius of the region will be half the radius at turnaround and the density
is eight time the density at turnaround. It can be shown that the overdensity at the time of
virialization is

14 6(tyir) = 1872 =~ 178. (2.53)
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This overdensity is frequently used in numerical simulation to define the radius of dark matter
halos and is written A17g or quite frequently Aygy when using a value of 200. The corresponding
linear density contrast at the time of virialization, which defines the critical density & is

3/3 2/3 3 /3 2/3
bc = 0y(tvir) = s <4> (Byir — sin Oyip)?/3 = : (2”) ~ 1.6865. (2.54)

As underlined in the introduction of the section, equation (2.54) only holds in an EdS Universe,
but similar values can be derived for a ACDM Universe. This critical density is of interest, as it
provides a way to find regions that will collapse non-linearly following the spherical models using
the linear overdensity field: any region with their linear density > J. should be considered as
collapsed and virialized. This will be further discussed in section 2.1.3

Zel’dovich approximation

An interesting approach to understand the genesis of the cosmic web is to adopt a Lagrangian
view dual to the Eulerian description used in section 2.1.1. Instead of expressing quantities at
fixed comoving coordinates (Eulerian view), one can indeed write the cosmic fields as a function
of the initial position g. This initial position is related to the comoving coordinate «x at time ¢ by
a displacement term

m(qa t) =q+ Q:b(qa t)? (2.55)

where (g, t) is the displacement field. Starting from a homogeneous initial density field, the
local density at time ¢ then reads

p(g,t) = 'OSI), (2.56)
where J is the Jacobian of the Eulerian-to-Lagrangian transformation J = |dx/dq| given by
;i
J =05 2.57

with (55 the Kronecker delta. Lagrangian Perturbation Theory finds a perturbative solution for
the displacement field,

"#((L t) = "P(l) (q7 t) + ¢(2) (q> t) +oee (2.58)
The Zel’dovich approximation is the first-order approximation to equation (2.58), which reads
dk gtk
t) ~ W (q,t :/ ka2 5k (1) 2.59
U@~ 60 (a0) = [ e T (259

Applying the same formalism as in section 2.1.2.1, we find that the displacement field has a
growing and a decaying mode. Keeping only the growing mode, we can express equation (2.59)
in terms of the linear matter growth function

P(q,t) = YT (q) Dy (2). (2.60)

Plugging equation (2.60) into the Jacobian of equation (2.57) we find that the density reads

P
1= Dy (t)M)(1 = D+(t)A2)(1 — D4 (t)A3)]

plat) = (2:61)
with A\; > Ay > A3 the eigenvalues of — (%ﬁr / 0q; . Note that the deformation tensor — wa / 0q;
is equal to the hessian of the gravitational potential — the tidal tensor — up to a time-dependent
factor (47Gp(t)a®(t)D(t))~! (Porciani et al., 2002). The Zel’dovich displacement is therefore a
rectilinear trajectory that moves particles along the direction of the initial force that converts the
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Figure 2.1.5: Scheme of the triaxial collapse under the Zel’dovich approximation,
showing the collapse of an initial spherical shell as consecutive ellipsoids. The last shell
is represented in shaded red and resembles a flattened spheroid (a Zel’dovich pancake)
in the yz plane, the first axis to collapse is the x axis, the second y and the last z.

three-dimensional sphere in g-space to a flattened ellipsoid in the real r-space, see figure 2.1.5.
Multiple studies have shown that the Zel’dovich approximation holds up to the mildly non-linear
regime of structure formation (e.g. M. White, 2014) and describes well the anisotropic collapse of
matter that shapes the cosmic web. Indeed, equation (2.61) suggests that for D (t)\; — 1, the
density diverges resulting in the formation of a caustic. The approximation clearly does not hold
any more for particles that shell crossed, but it still provides a good approximation for particles
that surround the shell-crossed region. In addition, the Zel’dovich approximation gives us a
physical understanding of the next likely direction(s) of collapse. If Ay > 0, the region contracts
in the corresponding direction, eventually leading to the formation of a filamentary structure.
Finally, if A3 > 0, the region will also contract along the third direction, leading to the formation
of a node of the cosmic web. While the details of the secondary and third collapse are not well
predicted by the Zel’dovich approximation, various models have been designed to overcome this
shortcoming, such as the adhesion model (Kofman et al., 1992) or more recently the origami model
(Neyrinck, 2014).

The excursion set theory

The excursion set approach, originally formulated by Press and Schechter, 1974, assumes that
virialized halos form from spherical regions whose initial mean density equals some critical value.
The distribution of late-time halos can thus be inferred from the simpler Gaussian statistics of
their Lagrangian progenitors. The approach implicitly assumes approximate spherical symmetry
(but not homogeneity), and uses spherical collapse, as presented in section 2.1.2.2, to establish a
mapping between the initial mean density of a patch and the time at which it recollapses under
its own gravity.
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According to this model, a sphere of initial radius R shrinks to zero volume at redshift z if
its initial mean overdensity § equals 6.D(zin)/D(z), where D(z) is the growth rate of linear
matter perturbations, zj, the initial redshift, and J. = 1.686 for an Einstein—de Sitter universe,
or equivalently, if its mean overdensity linearly evolved to z = 0 equals d./D(z), regardless of
the initial size. If so, thanks to mass conservation, this spherical patch will form a halo of mass
M = (47 /3) R3p (where p is the comoving background density). The redshift 2 is assumed to be
a proxy for its virialization time.

Bond et al., 1991 added to this framework the requirement that the mean overdensity in all
larger spheres must be lower than J., for outer shells to collapse at a later time. This condition
ensures that the infall of shells is hierarchical, and the selected patch is not crushed in a bigger
volume that collapses faster (the so-called cloud-in-cloud problem). The number density of halos of
a given mass at a given redshift is thus related to the volume contained in the largest spheres whose
mean overdensity 0 = §(R) crosses d.. The dependence of the critical value d. on departures
from spherical collapse induced by initial tides was studied by Bond and Myers, 1996, and later by
R. K. Sheth et al., 2001, who approximated it as a scale-dependent barrier.

As the variation of § (R) with scale resembles random diffusion, it is convenient to parametrize
it with the variance

k2P (k)
272

0?(R) = Var(6(R)) = / dk W24 (kR) (2.62)
of the stochastic process, smoothed with a real-space Top-Hat filter Wiry, rather than with R or M;
see section 2.1.1.3 for the details of the filter and its Fourier representation. In equation (2.62), P(k)
is the underlying power spectrum. The three quantities o, R and M are in practice interchangeable.
The mass fraction in halos of mass M at z is

M dn 'da

?dM: ENYi f(o), (2.63)

where dn/dM is the number density of halos per unit mass (i.e. the mass function) and f (o) —
often called the halo multiplicity — is the probability distribution of the first-crossing scale of the
random walks, that is of the smallest o (largest R) for which

1
(2m)?

dc

I(R,r) = D)’

/ A3k O (k) W (kR)e™ ™ = (2.64)
where 0y, is the (unsmoothed) matter density. The first-crossing requirement avoids double
counting and guarantees that f (o) is a well-behaved probability distribution, and the resulting
mass fraction is correctly normalized.

The first-crossing probability, f(c)Ao, is the fraction of walks that cross the threshold
between 0 — Ao and o for the first time. Considering discretized trajectories with a large number
of steps o1,...,0n of width Ao = o; — 0;—1 (corresponding to concentric spheres of radii
Ry, -+, Ry), the first-crossing probability is the joint probability that j > . and 6; < d for
i < N,with §; = 6(0;) and oy = 0 = NAo. Hence, the distribution (o) is formally defined as
the limit

N-1
flo) = lim i <79H(5N —6¢) [ vu(0e - 5i)> : (2.65)

where Uy (z) is Heaviside’s step function, and the expectation value is evaluated with the multi-
variate distribution p(d;, ..., dn). This definition discards crossings for which ¢; > . for any
i < N, since 9y (d. — 0;) = 0, assigning at most one crossing (the first) to each trajectory. For
instance, in figure 2.1.6, trajectory B would not be assigned the crossing marked with (3), since
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Figure 2.1.6: Pictorial description of the first-crossing and upcrossing conditions to
infer the halo mass from the excursion set trajectory. The first-crossing condition on o
assigns at most one halo to each trajectory, with mass M (o). Upcrossing may instead
assign several masses to the same trajectory (that is, to the same spatial location), thus
over-counting halos. Trajectory B in the figure has a first crossing (upwards) at scale
op (1), a downcrossing (2) and second upcrossing (3), but the correct mass is only given
by op. However, the correlation of each step with the previous ones makes turns in
small intervals of ¢ exponentially unlikely: at small o most trajectories will thus look
like trajectory A. Thanks to the correlation between steps at different scales, for small o
(large M) simply discarding downcrossings is a very good approximation.

the trajectory lies above threshold between (1) and (2). Since taking the mean implies integrating
over all trajectories weighed by their probability, f(o) can be interpreted as a path integral over
all allowed trajectories with fixed boundary conditions 6(0) = 0 and 6(0) = J. (Maggiore and
Riotto, 2010).

In practice, computing f (o) becomes difficult if the steps of the random walks are correlated,
as is the case for real-space Top-Hat filtering with a ACDM power spectrum, and for most realistic
filters and cosmologies. For this reason, more easily tractable but less physically motivated
sharp cutoffs in Fourier space have often been preferred, for which the correlation matrix of the
steps becomes diagonal, treating the correlations as perturbations (Maggiore and Riotto, 2010;
Corasaniti and Achitouv, 2011). The upcrossing approximation described below can instead be
considered as the opposite limit, in which the steps are assumed to be strongly correlated (as is the
case for a realistic power spectrum and filter). This approximation is equivalent to constraining
only the last two steps of equation (2.65), marginalizing over the first N — 2.

The upcrossing approximation to f(o).

Indeed, Musso and R. K. Sheth, 2012 noticed that for small enough o (i.e. for large enough masses),
the first-crossing constraint may be relaxed into the milder condition

s

§=—
do

>0; (2.66)
that is, trajectories simply need to reach the threshold with positive slope (or with slope larger
than the threshold’s if 6. depends on scale). This upcrossing condition may assign several halos
of different masses to the same spatial location. For this reason, while first-crossing provides a
well-defined probability distribution for o (e.g. with unit normalization), upcrossing does not.
However, since the first-crossing is necessarily upwards, and down-crossings are discarded, the
error introduced in f(o) by this approximation comes from trajectories with two or more turns.
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Musso and R. K. Sheth, 2012 showed that these trajectories are exponentially unlikely if o is
small enough when the steps are correlated. The first-crossing and upcrossing conditions to infer
the halo mass from excursion sets are sketched in figure 2.1.6: while the trajectory A would be
(correctly) assigned to a single halo, the second upcrossing of trajectory B in the figure would be
counted as a valid event by the approximation, and the trajectory would (wrongly) be assigned
to two halos. The probability of this event is non-negligible only if ¢ is large. This is further
illustrated on figure 2.1.7. The figure presents bundles of random trajectories drawn using a
ACDM power spectrum constrained to a crossing (up or down) at a given radius. For small
values of o most of the trajectories that are first-crossing are also upcrossing. The fraction drops
significantly for larger values of o.
Returning to equation (2.65), expanding d—1 around éy gives

I (0c — On—1) ~ V(6 — On) + 0p(6c — 6) 8’ Ao, (2.67)

where the crossing scale o, giving the halo’s final mass M, is defined implicitly in equation (2.64),
as the solution of the equation §(c) = §./D’. The assumption that this upcrossing is first-crossing
allows us to marginalize over the first N — 2 variables in equation (2.65) without restrictions.
The first term has no common integration support with ¥11(dx — d¢), and only the second one —
containing the Jacobian (8’ — 4..) — contributes to the expectation value (throughout the text, a
prime will denote the derivative d/do). Adopting for convenience the normalized walk height
v = /o, for which <1/2> = 1, the corresponding density of solutions in o-space obeys

V' = | dp(v —we) = (18| /o) dp(v — v , (2.68)

where v, = d./(0 D) is the rescaled threshold. The probability of upcrossing at o in equation (2.65)
is therefore simply the expectation value of this expression,

Fun(0) = pav = o) /O 48" §'pa (5|ve) (2.69)

where the integral runs over ¢’ > 0 because of the upcrossing condition (2.66). Usually, one sets
D =1 at z = 0 for simplicity so that v. = d. /0. For Gaussian initial conditions®, the conditional
distribution pg(6’|v.) is a Gaussian with mean v, and variance 1/I'2, where

1 ~? 1

2 _ _ _
"= <5/2> -1 1 _72 - o2 <V/2> ’ (2'70)

and 42 = (§'6)?/ (6"*) (6?) is the cross-correlation coefficient between the density and its
slope’. Thanks to this factorization, integrating equation (2.69) over ¢’ yields the fully analytical
expression

fup(0) = pa(ve) EP(X), (271)

where pg is a Gaussian with mean (v) = 0 and variance Var(v) = 1. For a constant barrier, the
parameters ;1 and X are defined as

I

={"v)=v., and X = —~L—
p= 0wl Var(0' | o)

=T, (2.72)

7A careful calculation shows that the step function should be asymmetric, so that 951 (§ — é.) = 1 when 6 = &
instead of 1/2.

No conceptual complications arise in dealing with a non-Gaussian distribution, which is nonetheless beyond the
scope of this dissertation.

*recalling that (§'6) = o so that v* = 1/ (§"*).
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with

F(z)=

oo —(y—x)2/2 —x2/2
/ ye _ 1+erf(z/v/2) L8 (2.73)
0

d )
Y T 27 2 /27

which is a function that tends to 1 very fast as z — oo, with correction decaying like e~ @"/2 Jx3.
It departs from one by ~ 8% for a typical I'v. ~ 1. Equation (2.71) can be written explicitly as

yce_VCQ/Q

Jup(o) = ——=——F((T'v.), (2.74)

oV 2

where the first factor in the r.h.s. of equation (2.74) is the result of Press and Schechter, 1974,
ignoring the factor of 2 they introduced by hand to fix the normalization. For correlated steps,
their non-normalized result reproduces well the large-mass tail of f(o) (which is automatically
normalized to unit and requires to correcting factor), but it is too low for intermediate and small
masses. The upcrossing probability f,, (o) also reduces to this result in the large mass limit, when
I've > 1 and F'(I'v,) ~ 1. However, for correlated steps f,,(0) is a very good approximation
of f(o) on a larger mass range. For a ACDM power spectrum, the agreement is good for halo
masses as small as 1012 Mg h~1, well below the peak of the distribution. The deviation from the
strongly correlated regime is parametrized by ['v,, which involves a combination of mass and
correlation strength: the approximation is accurate for large masses (small ¢ and large v.) or
strong correlations (large I'). Although T mildly depends on o, fixing I'? ~ 1/3 (or v ~ 1/2)
can be theoretically motivated (Musso and R. K. Sheth, 2014a) and mimics well its actual value
for real-space Top-Hat filtering in ACDM on galactic scales. The limit of uncorrelated steps
(I" = 0), whose exact solution is twice the result of Press and Schechter, 1974, is pathological
in this framework, with f,, becoming infinite. More refined approximation methods can be
implemented in order to interpolate smoothly between the two regimes (Musso and R. K. Sheth,
2014b).

From equation (2.71), a characteristic mass M, can be defined by requesting that the argument
of the Gaussian be equal to one, i.e. . = 1 or o(M,) = d./D. This defines M, implicitly via
equation (2.62) for an arbitrary cosmology. This quantity is particularly useful because fy, (o)
does not have well-defined moments (in fact, even its integral over o diverges). This is a common
feature of first passage problems (Redner, 2001), not a problem of the upcrossing approximation:
even when the first-crossing condition can be treated exactly, and f(o) is normalized - it is a
distribution function —, its moments still diverge. Therefore, given that the mean (M) of the
resulting mass distribution cannot be computed, M, provides a useful estimate of a characteristic
halo mass. In chapter 3, I will revisit this subject to imposing larger tides. We will see that since
the process remains Gaussian, it boils down to shifting the mean and the covariances.

The peak patch theory

The peak patch theory as introduced by Bond and Myers, 1996 aims at providing a more com-
prehensive description of the formation of dark matter halos. It is built as a combination of the
excursion set theory (detailed in section 2.1.3), spherical collapse (detailed in section 2.1.2.2) and
the Zel’dovich approximation (detailed in section 2.1.2.3). The theory aims to reproduce the mass
distribution of dark matter halos using smoothing operations in the initial Lagrangian field, but
also to predict the spatial distrbution in Eulerian space, using the Zel’dovich flow as an estimation
of the displacement of the structures from their initial Lagrangian position.

The fundamental quantity in peak theory is the set of local maxima of the density field;
therefore, peaks define a point process. Since the evolved density field is highly nonlinear, the
peak constraint is generally applied to the initial (Lagrangian) Gaussian density field, with the
assumption that the most prominent peaks should be in one-to-one correspondence with luminous
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Figure 2.1.7: Excursion set trajectories constrained to § = 4. (dotted line) at o = 0.5
(blue bundle), 0 = 1 (orange bundle) and ¢ = 1.5 (green bundle), dashed lines show
mean trajectories. 93% (resp. 74%, 64%) of the first-crossing trajectories at o = 0.5
(resp. 0 = 1, 0 = 1.5) are upcrossing.

galaxies or massive halos in the Universe. The theory is based on the study of the peaks of the
initial density fields, which can be derived using the Kac-Rice formula (Kac, 1943; Rice, 1945). For
a Gaussian random field ¢, let {qi, g2, ..., qp, . . . } be the Lagrangian position of point-particles
such as centres of halos in some volume. The comoving Lagrangian density n,(q) of these
point-particles is formally written as a sum of Dirac distributions

n(a) = o5Aa —ap). (2.75)
p

In order to derive the number density in terms of the properties of the field, let us introduce the
following variables

pu y l‘ij = y (276)
1 g2

x

T

0
o_’

where the o; are defined in section 2.1.7.1. Here we are using a different naming convention
compared to the original paper Bardeen et al., 1986. For reference, their result can be obtained
using the following substitutions z = v, z; = n;/01 and x;; = &;;/02. Here we implicitly
assumed the field to be smoothed at some scale R with any filter for which o3 is finite. Filters that
verifies this property are notably the sharp-k filter and the Gaussian filter, while the physically
motivated Top-Hat filter does not. Indeed, at large k, W (kR) ~ —3 cos(kR)/kR so that the
integrand of o9 becomes ~ k%P (k) cos?(kR) which, for any power spectrum decaying more
slowly than k2, has a UV-divergence.

In the case of critical points (maxima, saddle points and minima) the number density n.,(q)
can be entirely expressed in terms of x, z; and x;;. Without loss of generality, let us suppose that
a critical point exists at the origin and let us derive the expression of the number density in its
vicinity. Since the gradient at the critical points is null by definition, the gradient at a position g
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can be expressed using a Taylor expansion

x;(q) = x;(0) +?qixij (0). (2.77)
—— 1
0

This expression can then be plugged back in equation (2.75), provided that z;; is invertible'’,

nep(q) = 5](51)@2(9%3')19%) : (2.78)
1

where d is the number of dimensions. All the terms except for x; can be taken out of the Dirac
distribution so that the number density becomes

01

d
nala) = (2] foulofos). (279)

In order to get the number density of a given kind of critical point, equation (2.79) needs to
be extended to take into account the eigenvalues Aj, Ag, ..., Ag of the hessian of the field. The
number density of maxima is given by

T4
Tmax(q) = ’R;’(sg”(xi) [T ou-\). (2.80)
* j<d

Here R, is the typical distance between extrema, see section 2.1.7.1. In more general terms,
one can define the kind of a critical point by the sign of its (sorted) eigenvalues, also named the
“signature”. In three dimensions, maxima have a signature ——, filament-type saddle points +——,
wall-type saddle points ++— and minima +-++. Noting % the number of negative eigenvalues,
the number density reads

mi(a) = Lal6@a,) TT ou(=Ap) T our) (2.81)

Rd
* i<k i>k

The mean number density can be exactly calculated for a Gaussian field in two and three dimen-
sions. In two dimensions, the mean number densities are

1

Nmax) = \Mmin) = — (= 5> 2.82
() = (i) = (252
1
n = ——. 2.83
(sad) 4v/37 R2 (2.83)
In three dimensions, the mean number densities are

29v/15 — 18+/10

<nmax> = <nmin> = 53 s (2.84)
18007~ Ry

29+4/15 + 18+4/10

<nsadf> = <nsadw> = 18007T2R§2 . (2.85)

The “localized” number density, i.e. the number density at fixed height, can be easily derived from
there
ni (g, v0) = nk(q)dp(z — 1) - (2.86)

"The extension to the case where z;; is not invertible is provided in chapter 4.
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Figure 2.1.8: 3D representation of the mean angular momentum of halos (arrows) in the
vicinity of a flattened filamentary structure (red cylinder) computed from first principle
using conditional tidal torque theory. Close to the filament saddle point, the spins are
aligned with the axis of the filament. Close to the nodes (at both ends of the filament),
the spins become perpendicular to the axis of the filament and “rotate” around its axis.

This quantity is of interest to the study of the formation of halos, as it yields the number density
of peaks of a given height. Using the spherical collapse model with x = 0d./D(z), one can then
relate equation (2.86) to the number density as a function of time (using spherical collapse) and
mass (using the smoothing scale). In peak theory, the number density of halos in Eulerian space
is then obtained by shifting each peak by their individual Zel’dovich displacement, connecting
the properties of the initial field to the later time halo distribution.

Tidal torque theory

The tidal torque theory has been developed to address the problem of the halo and galaxy
angular momentum acquisition. In this model, proto-halo and proto-galaxies acquire their angular
momentum by tidal torquing coming from the surrounding matter distribution (Hoyle, 1949;
Peebles, 1969; Doroshkevich, 1970; S. D. M. White, 1984; Catelan and Theuns, 1996; Crittenden
et al., 2001; Schifer, 2009). Given a proto-halo that will later collapse, TTT provides an estimate of
the growth of the angular momentum about the centre of mass, to the lowest non-vanishing order
in perturbation theory. To do so, TTT links the evolution of the angular momentum (defined
below) to the misalignment of the inertia tensor, which describes the spatial distribution of matter
in the proto-halo, and the tidal tensor, which describes the tides from the larger scale environment.
The upshot of the theory is that gravitational torques act to realign the inertia tensor of matter
with the tidal tensor at larger scales, resulting in a net torque.

In general, the angular momentum L(t) of a rotating volume V, with velocity v(r,t) and
density p(r, t) with respect to its centre of mass is

L(t) = /Vd?’rr X vp(r,t). (2.87)

Here I have implicitly assumed that the centre of mass is at the origin for the sake of simplicity and
that the mean velocity is 0. Let me now assume an initial proto-halo of volume V7, in Lagrangian
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space, with mean density pg. I have shown in section 2.1.2.3 that in the mildly non-linear regime,
the time evolution of the particles can be described as a function of the displacement field using
equation (2.55) and equation (2.60)

& =D, (t)V. (2.88)

One can then rewrite equation (2.87) for the proto-halo in terms of the peculiar velocity of its

particles, i.e.
L) =’ |

g x &~ a5p0D+/ d3qq x Vi(q). (2.89)
Vi

|47
Let me further assume that the displacement field varies slowly in the proto-halo, so that

Vi (q) = Vi(0) + gV Vi (0), (2.90)

so that the displacement field can be expressed as function of the tidal shear gensor VV1)
evaluated at the centre of mass. The expression of the angular momentum of the volume can be
further simplified introducing the inertia tensor I (the quadrupole moment of the mass distribution)
in Lagrangian coordinates

Ij; = poa?’/ d3q qiq;. (2.91)
Ly

For an initally uniform density, one can use the inertia tensor to describe the mass distribution as
an ellipse whose axes are the eigenvectors of I and semi-axes are the square root of the eigenvalues.
In the end, the i-th component of the angular momentum can be expressed as a function of time
and the initial inertia tensor and tidal shear tensor

Li(t) = a®D(t)eijr L. (2.92)

Here I have used the fully anti-symmetric Levi-Civita tensor ¢;;; and the tidal shear tensor v;;.
Equation (2.92) shows that the angular momentum initially grows as a2(t)D(t) which is ~ ¢ for
a EdS Universe (Porciani et al., 2002). In addition, only the traceless parts of the inertia and the
tidal shear enter equation (2.92), as the trace describes the compression (or expansion) of the
proto-halo. Equation (2.92) also shows that L(t) is null if the volume is spherical (so that the
inertia tensor is symmetric) or is bounded by an equipotential surface (so that the tidal shear is
symmetric). In the frame of the eigenvalues (¢1, t2, t3) of the tidal shear, equation (2.92) simply
reads L; o< (tj — ti,)1i, where 7, j, k are cyclic permutations of 1, 2 and 3 (Porciani et al., 2002),
e.g. L1 o (tg — t3)I23. Tidal torquing is effective until the moment of turnaround in the spherical
collapse picture, because the collapse dramatically reduces the lever arms. After the collapse, the
halo conserves the angular momentum it has accumulated until turnaround.

More recently, Codis et al., 2012 suggested an extension of the TTT, coined “constrained TTT”.
The theory relies on the study of the primordial field, constrained to a large-scale filamentary
structure, in which the tidal tensor as well as the inertia tensor become functions of space. Since
the tidal tensor probes larger scales than the inertia tensor, the effect of large-scale structures
act differentially on their typical orientations: the former tends to be aligned towards large
overdensities (typically a node of the cosmic web), while the former is aligned to the local most
massive structure (typically the nearest filament). On average, the upshot of the theory is that the
typical orientation of the angular momentum of the proto-halo, which measures the misalignment
of the two tensors, is modulated by the cosmic web: the angular momentum is aligned with the
filaments for small proto-halos, found close to the filament saddle point, and become perpendicular
for larger ones, found close to the nodes (the spin rotates around the filament), as shown on
figure 2.1.8. This is a typical example of the impact of the cosmic web on a galactic property.

This approach, where the initial conditions are constrained to take into account large-scale
filamentary structures, will be further explored in the following of the dissertation.
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Description of Gaussian random fields

In this section, I provide some useful variables that can be used to describe a Gaussian random
field. In section 2.1.7.1, I define the variance of the field and its derivatives, as well as spectral
parameters that encode the cross-correlation of the field and its derivatives. In section 2.1.7.2,
I show how one can match smoothing scale when smoothing a field with different filters, in
particular going from Gaussian filtering to Top-Hat filtering.

Spectral parameters of the field

When deriving quantities from the initial density field, it is of interest to quantify the variance of
the field as they are natural scales for the rarity of events. This is usually done in terms of the
generalized variance of the field and its derivatives and anti-derivatives

0?(R) = 2—; / dk k2 P(k)k*W?(kR) , (2.93)
so that
of = (6%, of = ((Vid)?), o3 =((Ad)%), o3 = ((AVid)*), (2.94)

where the gradient V;0 can be evaluated in any arbitrary direction. The evolution of y(R) for
different filters is shown on figure 2.1.2, right panel.
Following closely Pogosyan et al., 2009, let us introduce the characteristic scales of the field

a0 01 02

R, = —, R=-2=. (2.95)

0'1, 02 g3

Ry =

These scales are ordered as Ry > Ry > R. The first two have well-known meanings of typical
separation between roots of the field Ry and mean distance between extrema, R, (Bardeen et al.,
1986) and the third one, R is, by analogy, the typical distance between inflection points. This also
gives a motivation for the ordering of the scales: in 1D, there is at least one extrema between
each root of a function and there is at least one inflection point between each root, so that the
distance between consecutive roots is larger than the typical distance between peaks. As shown
in section 2.1.5, the scales enter naturally the expressions of the number density of peaks (R.)
and anticipating the results to come, we can expect R to enter any number density requiring the
knowledge of the field and its third derivative.

Let us define a set of spectral parameters that depend on the shape of the underlying power
spectrum. Out of these three scales two dimensionless ratios may be constructed that are intrinsic
parameters of the theory

== (2.96)

From the geometrical point of view v specifies how frequently one encounters a maximum
between two zero crossings of the field, while 7 describes, on average, how many inflection points
are between two extrema. Using the results of section 2.1.1.3, one can rewrite o3 in terms of
<5V26 > so that v and 7 are the cross-correlation coefficients between the field and its derivatives

at the same point
AN N Vi AV§
oo L0A%) (VO AVY) (297)
0002 0103

These scales and scale ratios fully specify the correlations between the field and its deriva-
tive at the same point. For power-law spectra with Gaussian smoothing at scale R, Ry =

R\/2/(n+3), R. = R\/2/(n +5) and R = R\/2/(n + 7) while y = \/(n + 3)/(n + 5) and

7 = +/(n+5)/(n + 7). Note that the definition of equation (2.96) is not the same as the definition
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used in the excursion set theory (see e.g. equation (2.70)). In the following of the dissertation,
unless stated otherwise, we will use the definition of equation (2.96). For the sake of completeness,
let us remind here the definition of v entering the excursion set theory, which we will distinguish
from the definition above using the subscript “ES”

2 (88')°

YES = <52> <6/2> . (298)

For power-law spectra with an index ng < —1 smoothed with a Top-Hat filter, ygs = (ns +
1)(ns + 3)/ns(ns + 5).

Matching smoothing scales

Figure 2.1.2, right panel shows the variance of the field smoothed with different filters. It shows
that at the same scale, the Gaussian filter has a smaller variance than the Top-Hat filter. In order
to study the same level of non-linearity, one has to establish a mapping between the smoothing
scale. Using the definition of the variance of the field

2 o > kQP(k) 2
o2(R) = /O ak L wkmy (2.99)

we have for a Top-Hat filter with a power-law power spectrum with spectral index n

(n+1)R™ 3sin(%)C(n — 1)

2 n—1
R)y=9x2 2.100
UTH( ) X 2 (TL — 3) ’ ( )
while for a Gaussian filter it is
R—"31D (L“r3)
2 _ 2
c&(R) = a2 (2.101)

The field smoothed by a Top-Hat filter at scale R and a Gaussian filter at scale (R/«) have the
same level of non-linearity if ot (R) = og(R/«), i.e.

sin(%5°)T(n — 1)

n+3 —_ 227n .
S Py =2y

a(n) (2.102)

For example a(—2) = % ~ 2.12. For a ACDM power spectrum « becomes a weak function
of the smoothing scale, for example a(R = 0.5Mpc/h) = 2.14 while (R = 8 Mpc/h) = 2.12.
The evolution of e with the smoothing scale is shown on figure 2.1.9, which shows that at scales
involved in galaxy formation o ~ 2.1.

Galaxy formation

On large scales, the effect of baryonic processes is very small and baryons simply follow the
dark matter dynamics. However, on small-to-intermediate scales, baryonic physics cannot be
neglected and should be taken into account. This is particularly challenging, as the physics
driving the evolution of the baryons is made of non-linear and highly coupled equations. To make
things worse, the gravitational force and turbulence couple different scales together. A pragmatic
approach to the problem of galaxy formation is to write numerical codes that simulate all relevant
physical processes. In the simulated in silico Universe, one can then study the formation of
galaxies to better understand observations and constrain their models.

In practice, the problem of galaxy formation could be rephrased as a Cauchy problem, where
the initial conditions are set to a Gaussian random field according to the ACDM model, while
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Figure 2.1.9: Ratio of the Gaussian smoothing scale to the Top-Hat smoothing scale to
get the same level of non-linearity for a ACDM power spectrum o1 (R) = og(R/w).
Horizontal gray lines show the value of o for some power-law power spectra (which
does not depend on R).

coupled partial differential equations describe the interactions via the four fundamental forces.
However, the different scales at play make a numerical treatment particularly difficult: the
formation of a galaxy depends on its large scale environment on Mpc scales, its dynamical
evolution is on kpc scales, while the evolution of its stars and its central Supermassive Black Hole
(SMBH) act on sub-pc scales and these scales are coupled via the gravitational force.

The challenge for cosmological numerical simulations is then two-fold. First, since the
resolution of numerical simulations is finite, effective models should be build to account for the
unresolved physics. Second, numerical simulations should be able to capture processes at very
different scales. Section 2.2.2 provides a description of the different physical processes involved
in galaxy formation while focusing particularly on their implementation in the code RAMSEs.
Section 2.2.3 presents the set of equations solved and the numerical methods involved in their
resolution.

Classical model of galaxy formation

In the classical model of galaxy formation, galaxies grow by the accretion of gas at the centre
of the potential well of DM halos. The gas is initially distributed uniformly and traces the DM
distribution (on scales larger than the Jeans length). Following the evolution of proto-halos, the
gas first expands with the Hubble flow until turn-around. Let me first describe the physical state
of the gas in the halo, before discussing implication on the mode of accretion.

Let me assume a cloud of monoatomic gas of mass Mg, in the potential of the DM halo, with
mass My, and virial radius Ry;i;. If one assumes that the gas is in equilibrium, the virial theorem
reads

2K +U +% =0, (2.103)

where K is the kinetic (thermal) energy of the gas, U is the gravitational potential energy and
Y is the work of the external pressure forces. For an isothermal monoatomic gas (y = 5/3) and
assuming that the external pressure vanishes, we have
K 3MgaskT 3G Mgas M
2um, 50

(2.104)

where p is the mean molecular weight of the gas and m,, the proton mass. Here, I have assumed
that the cloud has a radius r and spherical symmetry. If one introduces the circular velocity
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V.2 = GM/r, the temperature of the gas then reads

2
HMp oo 5 Ve
7=y o105, () K, 2.105

Bkp  © x “<100kms—1> (2.105)

which defines the virial temperature. At the centre of the halo where the density is higher, gas
slowly cools down from the inside-out and therefore looses its pressure support. This enables
further gravitational collapse, which, in turn, leads to star formation.

Upon its entry in the halo, the accreted gas will encounter the hot halo gas at temperatures of
the order of 2 x 10° K. If the accreted gas is cooler than the virial temperature, as is expected
for primordial gas, a general expectation is that an accretion shock will form (see e.g. Binney,
1977; Bertschinger, 1985; Tozzi and Norman, 2001; Benson, 2010, and references therein), with
a general conclusion that the shock occurs at a radius comparable to or slightly larger than the
virial radius and the accreted gas will be shock-heated to the virial temperature.

On the contrary, if the cooling time is short compared to the dynamical time, the gas is able
to flow into the centre of the halo without heating (S. D. M. White and Frenk, 1991). Based on
3D numerical simulations, it was confirmed that a significant fraction of the gas in low-mass
galaxies has never been shock heated (see e.g. Keres et al., 2005; Ocvirk et al., 2008; Keres et al.,
2009; Nelson et al., 2013) and reaches the galaxy through cold flows. Using an analytic treatment,
Birnboim and Dekel, 2003 showed that if the cooling times are sufficiently short in the post-shock
region, the shock looses its pressure support and becomes unstable, shrinking to smaller radii.
This is expected for small mass halos M < 102 M, but also for more massive ones at z > 2.
These cold flows have since been identified as a robust prediction of the ACDM model, consistently
reproduced in different numerical codes with different subgrid models (Stewart et al., 2017).

Baryonic processes

This section provides an overview of the different phenomenon at play in galaxy formation. It is
particularly focused on their numerical implementation and especially in RAMSEs. Section 2.2.2.1
describes how gas is cooled and heated. Section 2.2.2.2 describes how stars form and release energy
as supernovee. Section 2.2.3 details the different methods used to account for the cosmological
context.

Gas cooling and heating

Following the results of section 2.1.2.2 halos are virialized structures that cannot collapse much
further as their kinetic energy balances out their gravitational energy. In order to form galaxies
at their centre, the gas needs to be able to collapse further. This can only happen if the gas can
get rid of its thermal energy, which happens mainly via cooling. In order to understand galaxy
formation, one needs to compare the different timescales. The first timescale at play here is the

cooling timescale

E
teool = =- (2.106)
E

The timescale associated with the expansion of the Universe is the Hubble timescale
ty ~ H(z)™L. (2.107)

The timescale associated with the monolithic collapse of a pressure-less fluid is the free-fall, or
dynamical, time
tagn ~ (Gp)~Y/2 (2.108)

There are then three scenarios. If ., > tm, the Universe expands faster than the gas cools and
no significant collapse can take place. If {3y, < fco0l < tH, the system evolves quasi-statically
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Table 2.3: Various radiative transitions of importance in forming galaxies.

Type Reaction Name

Free-Free e” + X" —=~+e +X"t  Bremsstahlung
Free-Bound e+ XT 5 X417 Recombination
Bound-Free e” +X — 2 +X* Collisional ionisation
Bound-Bound e +X —e +X* Collisional excitation

but the gas cannot cool efficiently to form galaxies. In practice, a succession of cooling followed
by adiabatic contraction can happen at constant Jeans mass, but this does not lead to an efficient
gravitational collapse. Finally if ¢ < fdyn, the extra energy of the gas is quickly radiated away
and gravitational collapse can happen. In this case, the loss of pressure following a temperature
decrease is rapid so that the Jeans mass drops without giving the system a chance to re-adjust its
density. The drop in Jeans mass can lead to smaller structures being able to collapse gravitationally
and hence to fragmentation. The precise study of the cooling and heating processes is therefore
at the core of our understanding of galaxy formation. The main paths to cool the gas are the
Compton cooling and radiative cooling,.

Cooling processes
Compton cooling happens when a low-energy photon passes through an ionised thermal gas. In
the process, photons and electrons exchange energy due to Compton scattering so that electrons
lose energy to the radiation field, causing the gas to cool. It turns out that the change in the
energy density of the radiation ., can be expressed as

du, 4k

e mchTneu’y(Te -T,), (2.109)

where o7 is the Thomson scattering cross-section, 7, is the electron number density, 7 is the
electron fluid temperature and 7', is the temperature of the radiation. In the case of cosmology,
the photons come from the CMB and we have T, > T’,. Thus, we have a net gain of energy in
the photons, and hence a net loss of energy in the electrons, which in turn will induce a net loss
in the gas. This process is known as inverse Compton scattering. Using the fact that u, = aTé,
where a is the expansion factor, the cooling rate per unit volume becomes

4kgT,
MeC

CComp = ornealy o neTo(1+ 2)*t (2.110)
The cooling is therefore most efficient at high-redshift, but after reionisation since it requires free
electrons to interact with, and the cooling timescale is

teool.Comp & 2.3 x 10'2(1 + 2) "4y, (2.111)

which equals the Hubble time at about z ~ 6. After reionisation and before z ~ 6, the gas can
cool efficiently using inverse Compton scattering,.

Radiative cooling is a two-body radiative process that happens when a pair of atoms loses
energy as a result of their interaction. The main processes of radiative cooling are listed in
Table 2.3. The type of the interaction depends on the physical state of the electrons involved (free
or bound). At high temperatures 7' Z, 107 K'! the dominating process in the fully ionised gas is
bremsstahlung. The process is due to successive interactions between electrons and ions which

"'The temperature depends notably on the metallicity of the gas.
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bends the trajectories of the electrons, resulting in the emission of a radiation. The cooling rate
per unit volume, assuming a charge number of unity and n; ~ n., valid for a completely ionised
hydrogen gas, is

—23 T 1/2 Te 2 -1 . -3
Ceg~14x10 T°K (ﬁ) ergs” cm”°. (2.112)
cm

This process gives us the behaviour of the cooling rate at high temperature Cg o /7.

At lower temperatures, several other processes become important. The first is collisional
ionisation, in which atoms become ionised by collisions with other atoms. In the process, part of
the kinetic energy of the atoms is used to ionise the electron. The second is recombination, in
which an electron recombines with an ion, emitting a photon. The third is collisional excitation,
in which atoms are first excited by collisions with electrons and then emit a photon on their
transition to the ground state. The efficiency of the three processes depends strongly on the
temperature as well as the chemical composition of the gas.

At temperatures below 10* K, most of the electrons have recombined and cooling due to
collisional excitation drops quickly. At this temperature, cooling is still possible, albeit smaller, e.g.
by exciting the rovibrational levels of molecules. For metal enriched gas, CII and OI fine structure
transitions contribute to the cooling (see e.g. Wolfire et al., 2003).

In practice, cooling is numerically treated using the cooling function

C

—,
ng

A

(2.113)

where C is the total cooling rate (including all the mentioned processes) per unit volume and
ny is the number density of hydrogen atoms. The cooling function is usually derived in the
collisional ionisation equilibrium limit, assuming that the relaxation times are fast enough. The
cooling function also depends on the metallicity of the gas. Figure 2.2.1, left panel, shows the
cooling function of a Z = 0.02Z, gas. Most notably, the first peak of the cooling function is due
to collisions involving H atoms, while the second peak is due to He and metals collisions and
depends on the exact composition of the gas ; figure 2.2.1, right panel, shows the contribution of
the different chemical species to the cooling function for a Z = Z plasma. It is worth mentioning
that some codes now compute out-of-equilibrium cooling rates for H and He, such as Grackle or
KroME (Grassi et al., 2014; Smith et al., 2017).

Heating processes

In addition to the different cooling mechanism, an atom can also be ionised by absorbing a
photon, a process called photoionisation. The presence of a radiation field can change the
population of ions, which in turn can have an impact on the cooling rate of the gas. It can also
heat the gas via photoionisation heating: an ionising photon is absorbed by an electron, part of
the energy is used to ionise the electron and the surplus is transferred as kinetic energy. The
photoionisation heating rate per unit volume is expected to be proportional to the intensity
of the radiation field. Since the process is based on the ionisation of a an electron, it is most
efficient at low temperatures where the gas is not fully ionised. In the presence of a UV radiation
background of J(v) = 10722 (vy /v) ergs~t cm~2sr ! Hz ™!, a gas in ionisation equilibrium has
a photoionisation heating that balances the cooling at temperature 7' S 10* — 10° K, depending
on the gas density.

Stellar models
To understand the non-linear problem of galaxy formation and evolution, theorists use cosmo-
logical simulations of DM, describing the flow and collapse of baryonic star-forming gas either
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Figure 2.2.1: (Left:) Cooling function in the collisional ionisation equilibrium limit for a
7 = 0.02Z plasma. From Gnedin et al., 2015. (Right:) Cooling function for a Z = Z
plasma, indicating the contributions the each chemical species to the cooling function.
From Wiersma et al., 2009. The dominant contribution to the cooling function at low
temperature are H and He atoms. At T~ 10° K, different metals dominate the cooling
function, depending on the chemical composition of the gas. At large temperature, the
cooling is dominated by Bremsstahlung.

Figure 2.2.2: Left: HST image of M82 showing “light echoes” around a supernova bubble
(from Yang et al., 2017) Centre: HST image of the crab nebula (remnant of SN1054).
Right: Composite image of Kepler’s supernova remnant (CXO, HST and Spitzer Space
Telescope). Credits: NASA, ESA, JHU.

with directly coupled hydrodynamics or semi-analytic models. Strong feedback in galaxies is
a vital ingredient in any model of galaxy evolution that comes even close to reproducing basic
observables, such as the star formation history of the Universe, the stellar mass function of
galaxies, the Kennicutt—Schmidt relation, rotational velocities and outflows (e.g. Vogelsberger
et al., 2013; Dubois et al.,, 2014; Hopkins et al., 2014; Schaye et al., 2015; Somerville and Davé,
2015).

Indeed, naive arguments would predict that star formation consumes stars over a few free-fall
times, effectively depleting an entire galaxy in a few million years. Observations on the other
side show that the process of star formation should be rather slow and inefficient. In addition,
observations show the ubiquitous presence of large, massive outflows around galaxies (e.g. Cecil
et al., 2001) of hundreds of km/s, that each release about 1051 erg. The origin of these outflows
can be traced back to bubbles expanding around supernova remnants (see for example figure 2.2.2).
Each exploding supernova releases large amounts of energy that are able to drive large-scale
shocks, pushing gas outwards and leaving the shocked region heated and ionised.

Any simulation aimed at reproducing galaxies as we observe them must therefore include
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stars, but also track their evolution and their explosion. As of today, numerical simulations still
struggle to consistently track the formation, evolution and destruction of stars.

A full treatment of the formation of stars would indeed require to resolve the physics at play
in star formation: the collapse of molecular clouds into proto-stars, the ignition of their internal
fusion, the accurate tracking of the winds, and eventually their explosion into supernovee, etc.
Some codes exist that do follow these processes (e.g. MESA, Paxton et al., 2011), yet they require a
simulation of their own for each individual star. While these codes provide useful information to
understand the evolution of small populations of star, they clearly cannot be scaled up to galaxy
or, even worse, cosmological simulations.

Since it is unpractical to follow all stars that make up a galaxy in a large cosmological
simulation, one should relax the goal to track each of them individually and track them as small
populations instead. This is the current approach of most cosmological simulations (e.g. Hopkins
et al., 2014; Dubois et al., 2016). Simulations are populated with “stellar particles” that represent a
star population with a coherent formation time. The rate of star formation is usually given by a
Kennicutt law (Kennicutt, 1998). This law links the local properties of the gas (local density and
local free-fall time) to the star formation rate p,

py = gtﬁ, (2.114)
ff

where ¢ is the star formation efficiency, which is usually set to a few percent in order to agree
with observations, tg is the free-fall time and p the gas density. This law is the three-dimensional
counterpart of the Schmidt law (Schmidt, 1959) that links the surface brightness of a galaxy
to the observed surface density. More refined models have also been built in which the star
formation efficiency becomes a function of additional properties of the gas, for example of their
gravo-turbulent properties (Kimm et al., 2017; Trebitsch et al., 2017) following the results of
Federrath and Klessen, 2012 which showed the role of turbulence in driving up or down the star
formation efficiency. The stellar population is assumed to be sampled by its Initial Mass Function
(IMF). Various models exist (Salpeter, 1955; Kroupa, 2001; Chabrier, 2003) that mostly differ on
the low and high mass ends of the IMF, which will in turn have an impact on the feedback caused
by the supernovee. Indeed, top-heavy IMFs have more stars on the massive end and will produce
more supernove, boosting the efficiency of the stellar feedback.

After a few million years, the most massive stars start exploding into supernove. Doing so,
they yield back metals as well as inject energy in the interstellar medium. Multiple models have
been proposed to track how and where energy and momentum is fed back to the gas, as well
as the total quantity returned (the yield). Let us briefly detail those used in RamsEes as well as
provide some hints of their pros and cons, following the lines of Rosdahl et al., 2017.

In the first supernova feedback models (Katz, 1992), all the energy was released as thermal
energy in the gas surrounding the stars. This however had little effect on the star formation rate,
which leads to the so-called overcooling problem. In this model, the energy is diluted into a large
amount of gas which in turn heats up a little bit. Because the energy has been spread over a
large volume compared to the physical size of the supernova bubble, the gas is able to radiatively
cool quickly. In practice, the cooling is so fast that the energy is usually radiated away in a few
timesteps, and all the injected energy is lost before a significant fraction has been converted to e.g.
kinetic energy. While the cooling of the gas is physically motivated (see section 2.2.2.1), the issue
of this model is that the energy is spread into too large a volume, resulting in an overestimation
of the cooling rates.

In order to solve the overcooling problem, different sub-grid models have been built, each of
which aimed at reducing the amount of energy loss by (over-estimated) radiative cooling, which
can be gathered into four classes.
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Figure 2.2.3: Effect of the different feedback models, from left to right: no feedback,
direct thermal dumping, kinetic feedback, delayed cooling, stochastic feedback and

mechanical feedback. From Rosdahl et al., 2017. Effective feedback leads to smoother,
thick discs with larger outflows.

In kinetic feedback models, a fraction of the supernova energy is directly injected as momentum
in the gas (Navarro and S. D. M. White, 1993; Springel and Hernquist, 2003; Dubois and Teyssier,
2008). In delayed cooling models, radiative cooling is temporarily disabled in the cell containing
the supernova remnant (Gerritsen, 1997; Stinson et al., 2013; Teyssier et al., 2013). In stochastic
feedback models, the supernova energy is spread over time and space into fewer but more energetic
explosions (Dalla Vecchia and Schaye, 2012; Rosdahl et al., 2017). Finally, multiphase models track
the different phases of the gas (hot and cold), resulting in a more efficient feedback. A physically
motivated approach to the problem would be to have different models for different grid resolutions
and different states of the surrounding medium. This is the approach followed by the mechanical
feedback model (Kimm and Cen, 2014; Kimm et al., 2015). The effect of these models is illustrated
on figure 2.2.3, which presents a comparison of the different feedback models on the disc of an
idealized galaxy. The study of the impact of the feedback models on galaxy formation is an active
domain of research (e.g. Rosdahl et al., 2017; Kimm et al., 2017; Nelson et al., 2019).

It is worth noting that, in addition to Supernova (SN) feedback, a key ingredient in galaxy
formation is Active Galactic Nuclei (AGN) feedback (e.g. Silk and Rees, 1998; Magorrian et al.,
1998; Harrison et al., 2018, for a recent review).

Numerical simulations

While the formation of the large-scale structures of dark matter halos can be studied to some
extent from first principles, as detailed in section 2.1, the complex baryonic physics involved in
galaxy formation make the task much more complex on smaller scales. This is usually dealt with
numerical simulations. The intrinsic multi-scale nature of the phenomenon involved in galaxy
formation is however challenging to any numerical treatment, as was already underlined in the
previous section, as very different scales are coupled. For example, sub-kpc scales involved in
galaxy formation are coupled to the large-scale hydrodynamical evolution of the gas by powerful
feedback events, which may disrupt the gas at hundreds of kpc. This in turn will impact the
inflow of gas and couple back to feedback.

Let us illustrate this scale-coupling problem with some back-of-the-envelope calculation to
estimate the number of resolution element required to resolve galaxies and the cosmic web at
the same time. In order to accurately capture the evolution of a galaxy in its environment, the
size of the simulated Universe should be at least an order of magnitude larger than the maximum
distance travelled by the particles ending up in the central galaxy. Assuming that the galaxy is
a Milky-Way like progenitor, its initial Lagrangian patch has a size of the order of a few Mpc
so that the box size should at least be a few tens of Mpc. At the same time, in order to resolve
the scale-height of a disk galaxies h ~ 1kpc accurately, cell sizes should be at least an order of
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magnitude smaller which sets the resolution to about 50 pc. On a regular lattice, the number of

cells would therefore be 5
Neopl & 50 Mpe ™ _ 10"8 cell. (2.115)
50 pc

In a very simple simulation that only stores the physical state of a monoatomic neutral gas
(density, pressure, velocities) in double-precision floats, each cell would require 20 o of storage.
In total, storing the state of the gas on the full grid would therefore require 2 x 10! 0 = 20 Eo.
For the sake of comparison, setting each cell to 0 would require at least 200 yr on a 3 Ghz
single processor'?. On the fastest currently-available super computer'®, using all the 2 000 000
cores at the same time, it would still take more than a day for a single update. If we make a
very conservative assumption that each cell is updated once per timestep and that a timestep
corresponds to 1 Myr in the simulation, running a cosmological simulation on the fastest super
computer for 14 Gyr would take 60 yr to complete. This approach is obviously not practical so
that alternative approaches have been devised.

I first present the set of equations that numerical simulations have to solve in section 2.2.3.1.
Section 2.2.3.2 presents the two approaches used in astrophysics to solve the scale-separation
problem, focusing in particular on finite volume methods. Section 2.2.3.3 details how the hydro-
dynamical equations are solved in finite volume methods. Section 2.2.3.4 details how Poisson’s
equation is solved on a grid. Finally, section 2.2.3.5 presents the modifications required to take
into account cosmological expansion, how the initial conditions are set and also presents the
different state-of-the-art cosmological simulations at the time of the writing of this dissertation.

Hydrodynamical equations
In the context of cosmological astrophysical simulations, the scales considered are much larger
than the mean free path A

-1
A~ 2P 7451070 (p> pe, (2.116)
op 1mp/cm?

where m;, ~ 1.67 x 10727 kg is the proton mass, o = 3.5 x 10~2° m? is the Hydrogen-Hydrogen
collisional cross section and p is the gas density. The mean free-path is below 1 pc as long as
the density is larger than 1 x 10~#m,,/cm?. As of today, no cosmological simulation reaches
sub-parsec resolutions in regions with such low densities so that the equation describing the gas
can be well approximated in the fluid limit.

Assuming that the gas is described by a pressure p, a density p, a velocity v and a specific
internal energy &, the evolution of the gas is described'* by

gf + V- (pv) =0, (2.117)
ov B Vp
8t+(v-V)v—<V<I>+p), (2.118)

2 2
a[p(v+5>}+v-[p(v+P+5>v}pv-V(I):HC, (2.119)
ot 2 2 p

V2® = 477G piog.- (2.120)

‘H, C are the heating and cooling rates per unit volume, as described in section 2.2.2.1, pyy, is the
total density accounting for the fluid, DM, stars and SMBHs. & is the gravitational potential. For

12Assuming that the processor can update memory once per cycle.

DOE/SC/Oak Ridge National Laboratory, United States. Data from top500.0rg.

“Here we assume that the different gas phases are resolved and disjoint, so that a monofluidic approach can be
used.


https://www.top500.org/list/2019/06/
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an ideal gas with adiabatic index ~, the system of equation is closed by the perfect gas Equation
of State (EoS)
P =p(y—1)E. (2.121)

These equations corresponds to the equation of conservation of mass (equation (2.117)), linear
momentum (equation (2.118)) and internal energy (equation (2.119)). The system is closed by
the Poisson equation (equation (2.120)) that connects the density to the Newtonian gravitational
potential. The set of equation equations (2.117)—(2.120) can be extended to take into account the
effect of cosmic rays, magnetic fields, radiative transfer or dust. Here, for the sake of simplicity,
these effects have been ignored.

The heating term is due to photoionisation where an atom of fluid is ionised by a photon.
Ionising photons can originate from the UV background (see e.g. Haardt and Madau, 1996), stars
or AGNSs.

Equations (2.117)-(2.120) do not have an exact solution in the general case, so that a numerical
treatment is required.

Finite-mass and finite-volume methods

Multiple methods have been developed to solve the set of equations (2.117)—(2.120), but in the
context of cosmological simulations two main methods emerged that provide a practical solution
to the scale-separation problem. They can be grouped in two main categories.

SPH simulations

Smooth Particle Hydrodynamics (SPH) simulations are based on a mass discretization of the fluid.
The fluid is described as a set of fixed-mass macro-particle, whose interactions are described by
the Lagrangian version of equations (2.117)—(2.119). In order to solve equation (2.120), the total
density is interpolated on a grid, onto which the equation is solved. Finally, the potential — or its
derivatives — is interpolated at the particles’ location. More details are provided in section 2.2.3.4.
Each fluid particle has a variable “smoothing length” that depends on the density of the fluid via
p ~ m/r3, where m is the mass of the fluid particle. The exact normalisation depends on the
choice of a kernel. The obvious advantage of this approach is to provide an accurate description of
the Lagrangian evolution of the gas, while Eulerian quantities can be approximated by projecting
particles onto an arbitrary mesh. This last step can easily be done in post-processing. This is
the approach used in GADGET (Springel, 2005), Gasoline (Wadsley et al., 2004), Gizmo (Hopkins,
2015). In its simplest form (all particles have the same mass), the scale-separation problem is
addressed by adapting the smoothing-length to match the local density.

AMR simulations
Adaptive Mesh Refinement (AMR) simulations are finite-volume methods. The evolution of
the gas is described in an Eulerian framework. Equations (2.117)—(2.119) are solved on a fixed
arbitrary grid. In order to capture the multi-scale evolution of the gas relevant to astrophysical
phenomenon, the grid is adaptively refined following arbitrary criteria. Commonly used criteria
are the following

« Semi-Lagrangian criterion: a cell is refined if its mass exceeds a fixed mass Mipyeshold- This
is commonly used in cosmological simulations in order to have cells of similar masses (but of
different sizes), so that overdense regions (e.g. galaxies) are more refined than under-dense
regions (e.g. cosmological voids).

« Jeans criterion: a cell is refined if its size exceeds the Jeans length A\; = c51/7/Gp, where
c2 = yP/p is the local sound speed. This is commonly used to resolve the gravitational
collapse (e.g. the collapse of molecular clouds in star forming regions).

« Pressure or density gradients: a cell is refined if the pressure or density gradient exceed
some fraction of the quantity itself. This is commonly used to resolve shock fronts (e.g. SN
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(a) Patch-based AMR (ENzo). (b) Octree AMR (RAMSES).

Figure 2.2.4: Plot of cosmological simulations with cell boundaries annotated in thin
white lines. (a): patch-based codes divide space using a set of nested grids (thick white
rectangles) made of an arbitrary number of cells in each dimension. (b): octree codes
divide space using nested octs made of 8 cells, allowing a finer control of the grid
structure.
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qURgUD
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(a) Domain decomposition of the unit-square (b) Buffer zones

Figure 2.2.5: (a) Domain decomposition of the unit-square for a 322 grid over nine
domains using the Hilbert space-filling curve, shown as the continuous line. (b) Buffer
zones built at the interface between domains. The thick black line marks the boundary
of the spatial decomposition between CPU 1 and CPU 2. CPU 1 owns all the red cells
while CPU 2 owns the blue ones. There is a one-cell-thick buffer zone outside of each
domain that a CPU can access (CPU 1 has access to light blue cells and CPU 2 has access
to light red cells). This ensures that each cell has access to all its 26 = 27 — 1 direct
neighbours (for example to compute spatial gradients).
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blasts).

In addition, AMR codes can further be split into patch-based codes and octree codes. Patch-
based codes (e.g. Enzo (Bryan et al., 2014), see figure 2.2.4a) use a nested hierarchy of rectangular
patches of increasing resolution. The building blocks of the computational grid are therefore
rectangular patches of various sizes, whose positions and aspects ratio are optimised with respect
to flow geometry, speed and memory constraints in order to represent regions of increasing
resolutions. Space is divided in nested rectangular patches (thick white lines) made of cells of
fixed resolution.

Octree codes’ building blocks are octs (e.g. Art (Kravtsov et al., 1997), Ramsks (Teyssier, 2002)).
An oct is an 2x2x2 set of cells, where each of the 8 cells is either a leaf cell or is itself an oct, as
illustrated in figure 2.2.4b. The resulting grid follows complex flow geometry more closely, at
the price of a data management which is more complicated than patch-based AMR. High density
regions are followed by fine cells (as in the centre of the plot), while less dense regions have
coarser cells.

These two strategies enable the code to partition space. In order to compute the time evolution
of the hydrodynamical quantities, the codes then have to solve the so-called Riemann problem at
cell boundaries, as described in section 2.2.3.3.

In order to increase the computation power wielded by numerical simulations, most of the
numerical codes are now parallelized to run on multiple cores at the same time. They now
routinely run on hundreds or even thousands of cores. In this context numerical codes have to
be optimised to best balance the computation weight between each computation domain, while
trying to minimise the number of communications. This is further complicated by the fact that
for AMR codes, the grid is non-uniform so that there is no obvious space decomposition that will
balance the cells evenly between all domains.

In order to solve this issue, AMR codes usually use space-filling curves. Space filling curves
are bijective functions from 1d space to the 3d unitary cube, providing a unique index to each
cell in the simulation. In addition, they should also conserve locality so that two cells that are
close should have a close index. Using such a space-filling curve, the load balancing problem
becomes a simple problem of sharing a set of N cells evenly between M domains. In RAMSEs
the space-filling curve used is the Hilbert curve, as illustrated on figure 2.2.5a. Each computing
unit has access to the list of the indexes on the Hilbert curve that separate the different domains,
represented as black dashed lines on figure 2.2.5a, so that it can easily compute to which domain
each cell belongs. This method is also a very efficient way to encode the volumetric partition
of space into M log,(NN) bits. For example in a simulation with 20 levels of refinement and
4096 processors, the information about the spatial partitioning can be encoded optimally on
log,((229)3) x 4096 ~ 250 kbit = 31 kio.

Once the space has been decomposed between M domains, boundary regions are constructed
at the interface between contiguous domains. The thickness of the boundary region depends on the
order of spatial derivatives involved in the evolution equations. In cases where the hydrodynamical
solver is using first-order finite differences, as is the case with RAMSES, a 1-oct-thick layer is built
at the interface between each domain, as illustrated on figure 2.2.5b.

The Riemann problem and Godunov solvers

Let us consider the Riemann problem with initial left and right values values U = U, for x < 0
and U = U, for x > 0. The state vector U follows a conservation equation

U+ FU), =0, (2.122)
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where F is the flux vector and subscripts indicate partial derivatives relative to the variable (e.g.
U, = 0U /0t). Introducing the Jacobian matrix

OF
A=_——
ouU’
we can rewrite equation (2.122) into its conservative form
U +AU)U, =0. (2.123)

The Riemann problem

The Riemann problem is the initial value problem of equation (2.123) with piece-wise initial
conditions. In general, the equation does not accept an analytical solution, so that one needs to
design a numerical solver. Let us now focus on Euler’s equation in 1D. U can be written using
the conservative formulation of equations (2.117)-(2.119) with an ideal gas EoS

P 0 1 0
U = pu and AU)=| —3(v—3)? B—yu y-1],
2 _ 2
p<%+5) %(’}/72)1137% =2 227u2+ﬁ Yu
(2.124)
where we have used the sound speed a = %. We can also use the flux vector to have
pu
FU)=| pu>+p |, (2.125)
u(E + p)
where we have used the total energy E per unit volume
1
E=p (2u2 + 8) . (2.126)

The different waves propagating at the interface are described by the eigenvalues and eigenvectors
of the Jacobian A. In the 1D case, the eigenvalues are A\ = © — a, A2 = u, A3 = u + a describing
three waves propagating downstream, with the stream and upstream. The wave associated with
A2 is a contact discontinuity characterized with a constant pressure and velocity. The two waves
associated with A1 and A3 are either rarefaction waves (smooth) or shock waves (discontinuities).
Rarefaction waves are characterized by a smooth change of p, u and p across the front. On the
contrary, shock waves are characterized by a jump of p, u and p which are described by the
Rankine-Hugoniot jump condition. Let us introduce the Mach number

_u_ e (2.127)

a P

The Mach number is the ratio of the velocity to the sound speed. It can also be interpreted as the
ratio of ram-pressure pu? to thermal pressure. Denoting the pre- and post-shock regions with
subscript 1 and 2, the Rankine-Hugoniot jump conditions read

p2_wm (y+ DM

4 _ T 2.128
prup (Y= 1)MF+2 (2128
p_2Mi-(-1) (2.129)
D1 v+1
These conditions also imply the temperature jump
T, _ [(y=DMi+2][29M] — (v - 1)] (2.130)

Ty (y+1)2M}
Further details can be found in Toro, 2009, p.87-91.
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Figure 2.2.6: HLLC approximate Riemann solver. Solution in the star region consist of
two constant states (U,r, and U,R) separated from each other by a middle wave (S.).
The left and right state are separated from the star region by two waves (St, and Sg).
Adapted from Toro, 2009.

Riemann solvers

The task of Riemann solvers is to solve the Riemann problem. One such solver is the HLLC solver
(Toro et al., 1994) that is itself an extension of the HLL solver (Harten et al., 1983). The solver
approximates the evolution of the contact discontinuity with the three waves described above
(rarefaction, entropy and shock waves) that separate four states, as illustrated on figure 2.2.6.
The flux is then computed using the conservation equations and the properties of the different
contact discontinuities at the interface between each state, see Toro, 2009, chapter 10 for more
details. The HLLC solver is frequently used in astrophysical setups, as it is very stable albeit quite
diffusive.

Godunov solvers
Godunov solvers is a class of conservative numerical schemes first described by Godunov, 1959.
It is based on a three-step algorithm'®
1. Reconstruction: the value of the state variable is interpolated at cell faces using the values at
the centre of the cells with a slope limiter. The slope limiter prevents spurious oscillations
to appear in the solution.'®
2. Ewvolution: the Riemann problem is solved using the interpolated values at the faces. This
is the physical step. This step can be solved using either an exact Riemann solver or an
approximate one (e.g. the HLLC solver described in the previous paragraph).

3. Averaging: the value of the state variable is updated using the flux of the Riemann solver.
While the original Godunov scheme was first order in space and time, higher order methods have
since been introduced (e.g. MUSCL-Hancock (van Leer, 1984), PLM (Colella, 1985)). In the end the
Godunov scheme outputs a flux that can readily be used to update the state vector. For MUSCL
schemes, the state vector is updated using

At
n+l _ pn n+1/2 n+1/2
Ut = U+ o (B - FY (2.131)

Here 7 is the index of the cell and n is the timestep ; the flux F' is computed at half time steps
(n + 1/2) at cell boundaries.

5The first step is actually due to van Leer, 1984.
'In practice, the slope limiter reduces the order of the scheme to 1 around discontinuities but increases the order of
the method in smooth regions.
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Figure 2.2.7: Illustration of the multigrid method. The multigrid algorithm starts at
level [ = 0 where it solves the Poisson equation exactly. It then proceeds to level 1, does
a V-cycle, proceeds to level 2, does a V-cycle, ...

2.2.3.4 Poisson solvers

In addition to fully solve the equations of hydrodynamics, special care should be taken for the
gravitational force. Indeed, the gravitational force has infinite range so that each cell and particle
in the simulation are gravitationaly coupled to any other. There are multiple methods to compute
the gravitational force, either by solving Poisson equation or using so-called “direct methods”.
The former is based on Poisson equation (2.120) while the latter uses the force equation

Gm;m;
F =— — Iy, 2.132
=T (2132

JNi

Direct methods

Direct methods compute for each particle (or for each gas cell) the force due to all other particles
(or cells). While this method gives exact results, it suffers from performance issue since it scales
as O(N 2), where N is the number of massive elements (particles, cells, ...).

PM methods

In Particle Mesh (PM) methods, one first solves the Poisson equation to compute the potential,
then uses the gradient of the potential to compute the gravitational force. The DM, star, black hole
and gas density are projected onto a common mesh'’. The Poisson equation is then solved on the
grid and the gravitational acceleration is computed using the gradient of the potential F' = —V ®.
There are two notable techniques to solve the Poisson equation: the multi-grid approach and the
conjugate gradient approach.

In the multi-grid approach, the Poisson equation is solved iteratively using a succession of “V
cycles”. This is illustrated in figure 2.2.7. At first, an exact solution is found at the coarsest level
[ = 0. Then the algorithm goes to the next finer level / = 1. An approximate solution is found
using the coarser solution, then corrected using the information at coarser levels. The algorithm
repeats itself until [ = lax.

The conjugate gradient method is a general method to find the solution of a linear problem

A-X=B.

On a discrete grid, one can reformulate the Poisson equation into a simple linear problem,

"The mesh is usually the AMR grid.
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presented here for the one-dimensional case, with

-2 1 0 0
X 1 -2 1
A= _ .. 2.133
Az | 0 1 2 . 0 |- ( )
ST )
0 0 1 -2

X = {¢i} and B = 47G{p; ot }- The exact solution is found in N iterations for an AMR grid
with N cells. In practice the error on the solution decreases with each step so that a simple
convergence criterion is generally used to stop the iteration earlier, typically after a few hundreds
iterations. Any iterative method can be used in place of the conjugate gradient method to solve
the linear set of equations, for example the Gauss-Seidel method (which is the default method in
RAMSES).

Cosmological simulations

In this section, we detail the modifications to numerical code that are usually implemented to
account for the cosmological expansion of the Universe and the initial conditions. Here, we focus
especially on simulations with box sizes large enough to capture the large-scale structures of the
Universe (= 50 Mpc/h), with enough resolution to capture galactic scales (Azp,in < 1kpe) and
that include at least star formation, SN feedback, SMBH formation, AGN feedback heating and
cooling of the gas, gravity and dark matter, the whole simulation being evolved in an expanding
Universe.

Accounting for the cosmological expansion
In RaMmsEs, cosmology is accounted for by the following change of “super-comoving” variables

~ dt . 1z N p s p - v
di = Ho— == =3 =g = q—.
02 T P P QupeHZL2 U T “HL

(2.134)

These variables have been introduced by Martel and Shapiro, 1998. Here Hj is the Hubble
constant, €2, is the matter density, L is the box size and p, is the critical density. In these
variables, equations (2.117)—(2.120) become

a’? + V- (D) =0, (2.135)

8(5;7) +V (5D X D) =— (W?Jr ﬁﬁqB) , (2.136)

08 . . <ﬁf; [é + ZZ} - 5.V, (2.137)
ot p

V2 = %an(ﬁ —1). (2.138)

Note that an extra term has to be added to equation (2.119) if v # 5/3. In order to write
equation (2.138), we have used the transformation from Eulerian potential ® to peculiar potential

¢
_ 271G pr? n 271G pr?
3 3

The peculiar potential is equal to the Eulerian potential in non-cosmological cases.

)

+ ¢. (2.139)
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Figure 2.2.8: Location of particles following the Zel’dovich flow. Arrows indicate the
direction of motion. Time increases linearly going from left ({ = 0) to right (first shell-
crossing). The background shows the initial overdensity field (red is overdense). These
positions provide the initial conditions to numerical simulations.

Initial conditions

In order to provide an ab initio scenario of the evolution of the Universe, cosmological simulations
are usually started at high redshifts. The initial conditions can be computed using a random
Gaussian random field and DM particles are then set on a regular grid and moved according to the
Zel'dovich approximation (see section 2.1.2.3), as illustrated on figure 2.2.8. The approximation is
used to fast-forward time to z ~ 100. At this time, the Zel’dovich approximation still provides
very accurate results, yet the density contrast is high enough for the approximate Poisson solver
to be able to solve the Poisson equation.

State-of-the-art cosmological simulations

Let us briefly introduce the different cosmological simulations. For the sake of comparison only
simulations with sizes comparable to ~ 100 Mpc/h are mentioned here. They are presented in
Table 2.4; they usually have mass resolutions of the order of 1 x 10% M, for SPH and moving
mesh simulations and spatial resolutions of 1 kpc for AMR simulations. In addition to different
resolutions and hydrodynamical solvers, they have also very different feedback recipes. Compre-
hensive comparisons of the different simulation techniques and physical recipes is the topic of
ongoing research (see e.g. the Aquila comparison project Scannapieco et al., 2012, the AGORA
comparison project Kim et al., 2013; Kim et al., 2016).

In section 2.1, Thave presented the cosmological context in which galaxies form. In section 2.1.1,
I have presented the current evidences that the Universe is organised at large-scales in the so-
called “cosmic-web”. In section 2.1.2, I have presented the models that describe the formation of
the large-scale structures of the Universe, and in particular the cosmic web. The remaining of the
dissertation will in particular focus on the link between the cosmic web and the formation of dark
halos and their galaxies. In order to do so, I have presented the different tools I have used in my
work. From a theoretical perspective, one can predict properties of dark matter halos from first
principle using the excursion set theory, as presented in sections 2.1.3 and 2.1.4 and the peak-patch
theory, as presented section 2.1.5. These tools enable us to compute the properties of dark matter
halos, yet they fail at predicting the fate of baryons in galaxies, which is usually understood in
the classical model of galaxy formation presented in section 2.2.1. One way to study the evolution
of baryons is to rely on hydrodynamical numerical simulations, which I presented in section 2.2.
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Table 2.4: Summary of recent state-of-the art cosmological simulations. Only simula-
tions including gas and with box sizes of the order of 100 Mpc have been included. The
resolution is mentioned in mass for SPH simulations and in spatial resolution for AMR
simulations. *: This simulation is a re-zoom simulation of the Horizon-AGN simulation.

Simulation name Box size Resolution Method Reference
FIRE m13 60 Mpc 3x10°M,  SPH Hopkins et al., 2014
MassiveBlack II 100 Mpc/h 2 x 10 Mg, SPH Khandai et al., 2015
Mlustris-1 100 Mpc 1 x 105 Mg, Moving mesh ~ Vogelsberger et al.,
2014
lustris-TNG100 100 Mpc 1 x 106 Mg Moving mesh ~ Springel et al., 2018
Horizon-AGN 100 Mpc/h 1kpe AMR Dubois et al., 2016
New Horizon' 100 Mpc/h 30pc AMR Park et al., 2019

The different models used in the cosmological simulations I have used in my dissertation are
detailed in section 2.2.2, while a more technical description focused on the numerical methods is

provided in section 2.2.3.



2.3 State-of-the-art and synopsis 49

2.3 State-of-the-art and synopsis

star formation
SN feedback
AGNs

hydrc

Solve approximately-
cosmological juof -
simulation

. ) Anisotropic cosmic web)
Numerical exploration ) ‘ A

PP CIIIIIIIIIIIII] :"v’“ ?/ B niuininiuininintuiniuinio Auintniubuintetubuinit

excursion set

1

1

1

1

1

1

- L 1
4 1

f 1

Q A 1

——————cold flows :
1

1

1

1

4

|

|

: theory

: +

| peak-patch
I theory
l

|

|

|

|

|

>

Theoretical exploration
\

Figure 2.3.1: Sketch of the approaches used in this thesis to study the formation of
dark matter halos and galaxies. The different processes relevant to the formation of dark
matter halos and their galaxies are shown in gray. The two axes developed in the thesis
are shown in the green area (theoretical exploration, chapters 3 and 4) and blue area
(numerical exploration, chapters 5 and 6). Along the former, I developed extensions to
the excursion set and peak theory that explicitly include the anisotropic effect of the
cosmic web. This was used to predict environmental-driven effects on the properties
of DM halos. Along the latter, I developed numerical methods to accurately follow
the cosmic accretion of gas in simulations and applied it to understand how angular
momentum is transported by cold flows on high-redshift galaxies.

One of the successes of the ACDM model is its ability to predict a significant number of properties
of DM halos and their galaxies. In the classical model of galaxy formation, galaxy form out of the
condensation of the gas in the potential well of their host halo. As such, galaxy properties are
usually understood as a result of the halo mass — which sets the amount of gas available and the
internal kinematics — and the local density — which regulates gas accretion and pair interactions.
The classical analytical and semi-analytical models intrinsically suppose that halo properties,
and as a consequence, galaxy properties are only influenced by their local environment via the
local density, with some extensions probing also the local tidal environment. These models have
proven successful at predicting many galactic properties, such as their spatial clustering or their
mass function.

In the context of assembly bias, many extensions of the halo model have been suggested to
understand the modulation effects of the cosmic web in terms of local properties. In particular,
it has been suggested that the local tidal field may explain part of the assembly bias signal (e.g.

Hahn et al., 2009; Ludlow et al., 2014) when formulated in terms of the formation time. Tidal
forces induce a shear flow in the vicinity of small halos that flow along filaments of the cosmic



50 Chapter 2. Context

web. One of the outcomes is that the accretion rate of small halos is decreased by neighbouring
structures, so that small halos growing in dense environments are not able to accrete mass. As a
consequence, these halos appear older resulting in a differential biasing as a function of formation
time. Similarly, Paranjape et al., 2018 suggested that the effect of halo concentration on the bias is
well explained by a local quantification of the local tidal anisotropy. All these models are typically
extensions of the halo model with new halo-centred probes of the larger-scale environment.

Another possible approach, which is the one followed in this dissertation, is to relax the
halo-centric assumption and work in the frame that sets the large scale environment: the cosmic
web. Indeed, due to the statistical properties of the initial conditions of the Universe, the different
scales involved in galaxy formation and the formation of the cosmic web are coupled statistically.
In particular, large-scale structures such as large filaments have an impact on the statistical
properties of the field out of which halos grow, which has the effect of biasing halo assembly. One
can argue that the assembly signal can be explained simply via this biasing effect of the cosmic
web: the cosmic web is responsible for driving the typical assembly history at fixed halo mass
and local density.

This approach has already proven successful at providing a theoretical explanation to the
spin-alignment problem (Codis et al., 2015). This framework has since been used to show that, in
hydrodynamical simulations, the cosmic web has also an effect on the assembly of galaxies. In
Kraljic et al., 2018; Kraljic et al., 2019 (appendices B.1 and B.2), we reported that the specific star
formation rate and the velocity-to-velocity-dispersion ratio both present significant modulations
along the filaments, highlighting that, indeed, filamentary structures can be used as a metric to
parametrise the assembly of dark matter halos and galaxies therein. Using an extension to the
excursion set theory (Bond et al.,, 1991; Lacey and Cole, 1993; Mo and S. D. M. White, 1996), I
show in chapter 3 (Musso, Cadiou et al., 2018) that the cosmic web, and in particular large scale
filaments, biases the formation of dark matter halos. In this dissertation, I also argue that the
assembly bias problem stated in these terms can also provide a valuable understanding of how
halos grow, but also how their galaxy forms.

Although a number of evidences are pointing towards an effect of the cosmic web on galaxy
formation, the detailed physics that couples them is still poorly understood. One of the issues
lays in the description of the cosmic web itself, so that different methods may lead to different
effects on galaxy formation. One key parameter to further study the effect of the cosmic web
is then the question of its description, the challenge residing in its continuous and multi-scale
nature. Many methods have been developed to tackle this issue and provide a local frame in
which galaxy properties can be studied (Bond et al., 1996; Sousbie et al., 2008 and Libeskind et al.,
2018 for a review). In chapter 4, I highlight a process entering galaxy and dark halo formation,
namely the coalescence of critical points of the cosmic web as a function of cosmic time. I present
theoretical predictions that account for it in a compact way and provide theoretical predictions of
the evolution of the cosmic web in the Lagrangian space of the initial conditions (based on the
idea of Hanami, 2001) and link them to the connectivity of the cosmic web (Codis et al., 2018). In
a broad sense, the cosmic web within the initial Lagrangian patch of dark halos now belongs to
their internal structure, and as such impacts directly the details of their assembly history.

The complex coupling of the different processes involved in galaxy formation (star formation,
feedback, gas cooling, hydrodynamics) render theoretical predictions particularly complex. One
way around is to rely on numerical simulations that model these processes experimentally
to study galaxy formation. This has been shown to reproduce well the spatial clustering of
galaxies (Springel et al., 2006), but also their properties such as morphology, colour or sizes (e.g.
Vogelsberger et al., 2014; Dubois et al., 2016; Schaye et al., 2015 and Scannapieco et al., 2012; Kim
et al., 2016 for a comparison of the predictions). One of the strong predictions of the numerical
codes and their physical models is the presence of cold gas, that flows along dark matter filaments
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that form the cosmic web (Stewart et al., 2017), so that one can now rely on hydrodynamical
numerical simulations to simulate galaxy formation in their cosmological context. These flows
have been shown to be a main channel driving angular-momentum rich material down to the
inner regions of the galaxies (Kimm et al., 2011; Stewart et al., 2013; Danovich et al., 2015; Tillson
et al,, 2015; Bullock et al., 2016), which are key to understand the emergence of the disk structure
of galaxies. One of the key to understand the dynamics of cold flows is to understand how their
history differs from that of the hot-accreted gas, and how it impacts the angular momentum
acquisition of the central galaxy, by studying the Lagrangian history of the gas. Studies based
on Godunov solvers, albeit very accurate at capturing hydrodynamical shocks, only provide the
Eulerian history of the gas. In order to get the Lagrangian history of the gas, codes have been
equipped with tracer particles. In chapter 5, I present a new tracer particle implementation for
the code Ramsks based on a Monte Carlo approach. This implementation significantly improves
over previous implementations and enables us to study accurately the Lagrangian history of the
baryons through their hydrodynamical evolution and their recycling in stars and AGNs. Using
the new tracer particles, I present in chapter 6 an analysis of the Lagrangian evolution of the
angular momentum of the gas as it flows into galaxies at high redshift, so as to better understand
how galaxies get their spin. The evolution of the magnitude and orientation of the angular
momentum is computed for the cold- and the hot-accreted gas. I decompose the forces between
stellar gravitational forces, dark matter gravitational forces and pressure forces to assess which
component dominates where at different locations.
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Introduction

Galaxies form and evolve within a complex network, the so-called cosmic web (Bond et al., 1996,
see section 2.1.2), made of filaments embedded in sheet-like walls, surrounded by large voids and
intersecting at clusters of galaxies (Joeveer et al., 1978). Halo masses are highly dependent on
their large-scale surrounding, as elegantly explained by the theory of biased clustering (Kaiser,
1984a; Efstathiou et al., 1988), such that high mass objects are preferentially found in over-dense
regions near nodes (Bond and Myers, 1996; Pogosyan et al., 1996). The importance of interactions
with the larger scale environment in driving their evolution has indeed recently emerged as a
central tenet of halo formation theory.

It has been established that the clustering of dark matter halos, as measured by halo bias, not
only depends on halo mass but also on other halo properties such as formation time, concentration,
spin and ellipticity (Gao et al., 2005; Wechsler et al., 2006; Gao and S. D. M. White, 2007; Hahn
et al., 2007). This effect, commonly referred to as “assembly bias” can be rephrased as follows:
the clustering of dark matter halos and their properties are correlated, beyond a mere mass and
density relation. Using a different approach, a growing number of evidence from simulations
(Welker et al., 2014; Kraljic et al., 2018; Kraljic et al., 2019; Martizzi et al., 2019) and observations
(e.g. Porter et al., 2008; Kleiner et al., 2017; Malavasi et al., 2017) have since showed that some



3.2

54 Chapter 3. The impact of the large scale cosmic web on assembly bias

halo and galaxy properties present distinct features at different locations in the cosmic web. One
striking example is spin-alignments which have been measured for DM halos (e.g. Codis et al,,
2012; Dubois et al., 2014) and galaxies (e.g. Tempel et al., 2013; Welker et al., 2014; Chisari et al.,
2017), but also the colour segregation of galaxies (Rojas et al., 2004; Martinez et al., 2016; Beygu
et al., 2016; Laigle et al., 2018; Kraljic et al., 2018; Kraljic et al., 2019, e.g. ).

As a filament is formally the field line that joins two maxima of the density field through a
filament-type saddle point (Pogosyan et al., 2009), studying the expected properties of galaxies
and halos in the vicinity of filament-type saddle points is a sensible choice. Indeed, TTT (Peebles,
1969; Schifer, 2009) was recently revisited (Codis et al., 2015, see section 2.1.6) in the context of
such anisotropic environments, biased by the presence of a filament within a wall, which is most
efficiently represented by this point process of filament-type saddles. It predicts the alignment
of the angular momentum distribution of the forming galaxies with the filament’s direction,
and perpendicular orientation for massive population. Since spin plays an important role in the
physical and morphological properties of galaxies, a signature is also expected in the properties
of galaxies as a function of the longitudinal and transverse distance to this saddle.

Most of the previous theoretical work on the impact of the anisotropy of the environment
on galactic assembly history focused on dark matter halos. At a given mass, halos that are
sufficiently far away from the potential wells grow by accreting their surrounding matter, leading
to a correlation between the instantaneous accretion rate and the density of their environment
(e.g. Zentner, 2007). On the other hand, halos close to the potential wells are expected to stall and
stop to grow earlier, as their mass inflow is dynamically quenched by anisotropic tides generated
in their vicinity (e.g. Dalal et al., 2008; Hahn et al., 2009; Ludlow et al., 2014; Borzyszkowski
et al., 2017). Individual properties of dark matter halos, such as their mass, formation time or
accretion rate, are thus expected to be affected by the exact position of halos within the large-scale
anisotropic cosmic web.

These works underlined the role of the shear strength (a scalar quantity constructed out of the
traceless shear tensor which does not correlate with the local density), measured on the same scale
as the halo (Castorina et al., 2016; Paranjape et al., 2018). As tidal forces act against gravitational
collapse, the shear strength encodes the delay induced by the dynamical quenching due to the
environment. This has been justified as a phenomenological explanation of the scale-dependent
scatter in the initial overdensity of proto-halos measured in simulations (Ludlow et al., 2014;
R. K. Sheth et al., 2013) or as a theoretical consequence of the coupling between the shear and the
inertia tensor which tends to slow down collapse (Bond and Myers, 1996; R. K. Sheth et al., 2001;
Del Popolo et al., 2001).

The purpose of this paper is to address the question of the environmental quenching of halos.
In particular, is the cosmic web responsible for the environmental quenching of halos? What effect
does it have on different variables entering the assembly of dark matter halos? In collaboration
with M. Musso, we extended the excursion set theory to account for the large-scale modulations
induced by a filament-type saddle point. From this, we computed the mass function and the
accretion rate and formation times at fixed final mass.

The results presented here were published in Musso, Cadiou et al., 2018.

“How does the cosmic web impact assembly bias?”
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ABSTRACT

The mass, accretion rate, and formation time of dark matter haloes near protofilaments
(identified as saddle points of the potential) are analytically predicted using a conditional
version of the excursion set approach in its so-called upcrossing approximation. The model
predicts that at fixed mass, mass accretion rate and formation time vary with orientation and
distance from the saddle, demonstrating that assembly bias is indeed influenced by the tides
imposed by the cosmic web. Starved, early-forming haloes of smaller mass lie preferentially
along the main axis of filaments, while more massive and younger haloes are found closer to
the nodes. Distinct gradients for distinct tracers such as typical mass and accretion rate occur
because the saddle condition is anisotropic, and because the statistics of these observables
depend on both the conditional means and their covariances. The theory is extended to other
critical points of the potential field. The response of the mass function to variations of the
matter density field (the so-called large-scale bias) is computed, and its trend with accretion
rate is shown to invert along the filament. The signature of this model should correspond at low
redshift to an excess of reddened galactic hosts at fixed mass along preferred directions, as re-
cently reported in spectroscopic and photometric surveys and in hydrodynamical simulations.
The anisotropy of the cosmic web emerges therefore as a significant ingredient to describe
jointly the dynamics and physics of galaxies, e.g. in the context of intrinsic alignments or
morphological diversity.

Key words: galaxies: evolution — galaxies: formation — galaxies: kinematics and dynamics —
large-scale structure of Universe —cosmology: theory.

haloes, which have stopped accreting and whose relationship with

1 INTRODUCTION . .. .
the environment is in many ways the opposite of that of large-mass

The standard paradigm of galaxy formation primarily assigns galac-
tic properties to their host halo mass. While this assumption has
proven to be very successful, more precise theoretical and observa-
tional considerations suggest other hidden variables must be taken
into account.

The mass—density relation (Oemler 1974), established observa-
tionally 40 yr ago, was explained (Kaiser 1984; Efstathiou et al.
1988) via the impact of the long-wavelength density modes of the
dark matter (DM) field, allowing the proto-halo to pass earlier the
critical threshold of collapse (Bond et al. 1991). This biases the mass
function in the vicinity of the large-scale structure: the abundance
of massive haloes is enhanced in overdense regions.

Numerical simulations have shown that denser environments dis-
play a population of smaller, older, highly concentrated ‘stalled’

* E-mail: mmusso@sas.upenn.edu (MM); cadiou@iap.fr. (CC)

© 2018 The Author(s)

actively accreting haloes that dominate their surroundings. This
is the so-called assembly bias (e.g. Sheth & Tormen 2004; Gao,
Springel & White 2005; Wechsler et al. 2006; Dalal et al. 2008;
Paranjape & Padmanabhan 2017; Lazeyras, Musso & Schmidt
2017). More recently, Alonso, Eardley & Peacock (2015), Tramonte
et al. (2017) and von Braun-Bates et al. (2017) have investigated
the differential properties of haloes with respect to loci in the cos-
mic web. As they focused their attention to variations of the mass
function, they also found them to vary mostly with the underlying
density. Paranjape, Hahn & Sheth (2017) have shown that haloes
in nodes and filaments behave as two distinct populations when a
suitable variable based on the shear strength on a scale of the order
of the halo’s turnaround radius is considered.

In observations, galactic conformity (Weinmann et al. 2006) re-
lates quenching of centrals to the quenching of their satellite galax-
ies. It has been detected for low- and high-mass satellite galaxies
up to high redshift (z ~ 2.5, Kawinwanichakij et al. 2016) and
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fairly large separation (4 Mpc, Kauffmann et al. 2013). Recently,
colour and type gradients driven specifically by the anisotropic
geometry of the filamentary network have also been found in sim-
ulations (Laigle et al. 2017; Kraljic et al. 2018) using the Horizon-
AGN simulation (Dubois et al. 2014), and observations using SDSS
(Yan, Fan & White 2013; Martinez, Muriel & Coenda 2016; Poudel
et al. 2017; Chen et al. 2017), GAMA (Alpaslan et al. 2016;
Kraljic et al. 2018) and, at higher redshift, VIPERS (Malavasi et al.
2017) and COSMOS (Laigle et al. 2017). This suggests that some
galactic properties do not only depend on halo mass and density
alone: the co-evolution of conformal galaxies is likely to be con-
nected to their evolution within the same large-scale anisotropic
tidal field.

An improved model for galaxy evolution should explicitly inte-
grate the diversity of the geometry of the environment on multiple
scales and the position of galaxies within this landscape to quantify
the impact of its anisotropy on galactic mass assembly history. From
a theoretical perspective, at a given mass, if the halo is sufficiently
far from competing potential wells, it can grow by accretion from
its neighbourhood. It is therefore natural to expect, at fixed mass, a
strong correlation between the accretion rate of haloes and the den-
sity of their environment (Zentner 2007; Musso & Sheth 2014b).
Conversely, if this halo lies in the vicinity of a more massive struc-
ture, it may stop growing earlier and stall because its expected
feeding will in fact recede towards the source of anisotropic tide
(e.g. Dalal et al. 2008; Hahn et al. 2009; Ludlow, Borzyszkowski &
Porciani 2014; Wang et al. 2011).

Most of the work carried out so far has focused on the role of
the shear strength (a scalar quantity constructed out of the trace-
less shear tensor which does not correlate with the local density)
measured on the same scale of the halo: as tidal forces act against
collapse, the strength of the tide will modify the relationship of
the halo with its large-scale density environments, and induce dis-
tinct mass assembly histories by dynamically quenching mass in-
flow (Hahn et al. 2009; Castorina et al. 2016; Borzyszkowski et al.
2016). Such local shear strength should be added, possibly in the
form of a modified collapse model that accounts for tidal deforma-
tions, so as to capture e.g. the effect of a central on its satellites’
accretion rate. This modified collapse model has been motivated in
the literature on various grounds, e.g. as a phenomenological ex-
planation of the scale-dependent scatter in the initial overdensity of
proto-haloes measured in simulations (Ludlow et al. 2014; Sheth,
Chan & Scoccimarro 2013) or as a theoretical consequence of the
coupling between the shear and the inertia tensor which tends to
slow down collapse (Bond & Myers 1996; Sheth, Mo & Tormen
2001; Del Popolo, Ercan & Gambera 2001). Notwithstanding, the
position within the large-scale anisotropic cosmic web also directly
conditions the local statistics, even without a modification of the
collapse model, and affects different observables (mass, accretion
rate, etc.) differently.

The purpose of this paper is to provide a mathematical under-
standing of how assembly bias is indeed partially driven by the
anisotropy of large-scale tides imprinted in the so-called cosmic
web. To do so, the formalism of excursion sets will be adapted to
study the formation of structures in the vicinity of saddle points
as a proxy for filaments of the cosmic web. Specifically, various
tracers of galactic assembly will be computed conditional to the
presence of such anisotropic large-scale structure. This will allow
us to understand why haloes of a given mass and local density
stall near saddles or nodes, an effect which is not captured by the
density—mass relation, as it is driven solely from the traceless part
of the tide tensor. This should have a clear signature in terms of the
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distinctions between contours of constant typical halo mass ver-
sus those of constant accretion rate, which may in turn explain the
distinct mass and colour gradients recently detected in the above-
mentioned surveys.

The structure of this paper is the following. Section 2 presents
a motivation for extended excursion set theory as a mean to com-
pute tracers of assembly bias. Section 3 presents the unconstrained
expectations for the mass accretion rate and half-mass. Section 4
investigates the same statistics subject to a saddle point of the po-
tential and computes the induced map of shifted mass, accretion
rate, and half-mass time. It relies on the strong symmetry between
the unconditional and conditional statistics. Section 5 provides a
compact alternative to the previous two sections for the less theo-
retically inclined reader and presents directly the joint conditional
and marginal probabilities of upcrossings explicitly as a function of
mass and accretion rate. Section 6 reframes our results in the context
of the theory of bias as the response of the mass function to varia-
tions of the matter density field. Section 7 wraps up and discusses
perspectives. Appendix A sums up the definitions and conventions
used in the text. Appendix B tests these predictions on realizations
of Gaussian random fields (GRFs). Appendix C investigates the
conditional statistics subject to the other critical points of the field.
Appendix D presents the probability distribution function (PDF) of
the eigenvalues at the saddle. Appendix E presents the covariance
matrix of the relevant variables to the PDFs. Appendix F presents
the relevant joint statistics of the field and its derivatives (spatial and
with respect to filtering) and the corresponding conditional statistics
of interest. Appendix G presents the generalization of the results
for a generic barrier. Appendix H speculates about galactic colours.

2 BASICS OF THE EXCURSION SET
APPROACH

The excursion set approach, originally formulated by Press &
Schechter (1974), assumes that virialized haloes form from spher-
ical regions whose initial mean density equals some critical value.
The distribution of late-time haloes can thus be inferred from the
simpler Gaussian statistics of their Lagrangian progenitors. The ap-
proach implicitly assumes approximate spherical symmetry (but not
homogeneity), and uses spherical collapse to establish a mapping
between the initial mean density of a patch and the time at which it
recollapses under its own gravity.

According to this model, a sphere of initial radius R shrinks to
zero volume at redshift z if its initial mean overdensity § equals
8:D(zin)/D(z), where D(z) is the growth rate of linear matter pertur-
bations, z;, the initial redshift, and §. = 1.686 for an Einstein—de
Sitter universe, or equivalently, if its mean overdensity linearly
evolved to z = 0 equals §./D(z), regardless of the initial size. If so,
thanks to mass conservation, this spherical patch will form a halo
of mass M = (41t/3)R3p (where p is the comoving background
density) . The redshift z is assumed to be a proxy for its virialization
time.

Bond et al. (1991) added to this framework the requirement that
the mean overdensity in all larger spheres must be lower than 4., for
outer shells to collapse at a later time. This condition ensures that the
infall of shells is hierarchical, and the selected patch is not crushed
in a bigger volume that collapses faster (the so-called cloud-in-cloud
problem). The number density of haloes of a given mass at a given
redshift is thus related to the volume contained in the largest spheres
whose mean overdensity § = 3(R) crosses §.. The dependence of
the critical value §. on departures from spherical collapse induced
by initial tides was studied by Bond & Myers (1996), and later
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by Sheth et al. (2001), who approximated it as a scale-dependent
barrier. This will be further discussed in Section 7.2.
As the variation of §(R) with scale resembles random diffusion,
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it is convenient to parametrize it with the variance

kP (k)
272
of the stochastic process, smoothed with a real-space Top-Hat filter
W,! rather than with R or M. In equation (1), P(k) is the underlying
power spectrum. The three quantities o, R, and M are in practice

interchangeable. The mass fraction in haloes of mass M at z is
M dn |do
pdM ~ |dM

W2(kR) (1

o2(R) = Var(§(R)) = / dk

f(o), 2)

where dn/dM is the number density of haloes per unit mass (i.e.
the mass function) and f(o') — often called the halo multiplicity — is
the probability distribution of the first-crossing scale of the random
walks, that is of the smallest o (largest R) for which

5
D(z)’

where §,, is the (unsmoothed) matter density. The first-crossing
requirement avoids double counting and guarantees that f{o) is a
well-behaved probability distribution, and the resulting mass frac-
tion is correctly normalized. In equation (3), the linear growth factor,
D(z), is defined as a function of redshift via

H(a) 1

@ da .
/ , witha = —— .
Hy Jo /Qun/a+ Qpa? I1+z
At early time, D(z) scales like 1/(1 + z). Here, H(a) =
Hy+/Qm/a + Qaa? is the Hubble constant.

The first-crossing probability, flo)Ao, is the fraction of walks
that cross the threshold between 0 — Ao and o for the first time.
Considering discretized trajectories with a large number of steps
01,...,0y0f width Ac =o0; — o; _ (corresponding to concentric
spheres of radii Ry, ..., Ry), the first-crossing probability is the
joint probability that 6y > 8. and §; < 8. for i < N, with §; =
8(o;) and oy = 0 = NAo. Hence, the distribution f{o) is formally
defined as the limit

— d3k ikr __
8(R,r)= oy Sm(R)W (kR)e™" = 3

D(z) =

4

N-1

1
floy= Jlim —— @@y —8) [[ 06 =8, 3)

where ¢ (x) is Heaviside’s step function, and the expectation value
is evaluated with the multivariate distribution p(é,, ..., dy). This
definition discards crossings for which §; > §. for any i < N,
since ¥(8. — §;) = 0, assigning at most one crossing (the first)
to each trajectory. For instance, in Fig. 1, trajectory B would not
be assigned the crossing marked with (3), since the trajectory lies
above threshold between (1) and (2). Since taking the mean implies
integrating over all trajectories weighed by their probability, flo)
can be interpreted as a path integral over all allowed trajectories
with fixed boundary conditions §(0) = 0 and 6(0’) = §. (Maggiore
& Riotto 2010).

In practice, computing f{c') becomes difficult if the steps of the
random walks are correlated, as is the case for real-space Top-Hat
filtering with a A cold dark matter (ACDM) power spectrum, and
for most realistic filters and cosmologies. For this reason, more eas-
ily tractable but less physically motivated sharp cut-offs in Fourier

! The window function in Fourier space is W(x) = 3j;(x)/x, j; being the
spherical Bessel function of order 1.

smaller mass

5. (1) (2)
‘ ~—— 0
i J/G'A OB >a
R7 EIS MA MB

Figure 1. Pictorial description of the first-crossing and upcrossing con-
ditions to infer the halo mass from the excursion set trajectory. The first-
crossing condition on o assigns at most one halo to each trajectory, with mass
M(o). Upcrossing may instead assign several masses to the same trajectory
(that is, to the same spatial location), thus overcounting haloes. Trajectory
B in the figure has a first crossing (upwards) at scale og (1), a downcrossing
(2), and second upcrossing (3), but the correct mass is only given by op.
However, the correlation of each step with the previous ones makes turns
in small intervals of o exponentially unlikely: at small o most trajectories
will thus look like trajectory A. Thanks to the correlation between steps at
different scales, for small o (large M) simply discarding downcrossings is a
very good approximation.

space have been often preferred, for which the correlation matrix
of the steps becomes diagonal, treating the correlations as pertur-
bations (Maggiore & Riotto 2010; Corasaniti & Achitouv 2011).
The upcrossing approximation described below can instead be con-
sidered as the opposite limit, in which the steps are assumed to be
strongly correlated (as is the case for a realistic power spectrum and
filter). This approximation is equivalent to constraining only the last
two steps of equation (5), marginalizing over the first N — 2.

2.1 The upcrossing approximation to f(o).

Indeed, Musso & Sheth (2012) noticed that for small enough o
(i.e. for large enough masses), the first-crossing constraint may be
relaxed into the milder condition

, ds )
§=1->0; Q)
that is, trajectories simply need to reach the threshold with posi-
tive slope (or with slope larger than the threshold’s if §. depends
on scale). This upcrossing condition may assign several haloes of
different masses to the same spatial location. For this reason, while
first crossing provides a well-defined probability distribution for
o (e.g. with unit normalization), upcrossing does not. However,
since the first crossing is necessarily upwards, and downcrossings
are discarded, the error introduced in f{o) by this approximation
comes from trajectories with two or more turns. Musso & Sheth
(2012) showed that these trajectories are exponentially unlikely if
o is small enough when the steps are correlated. The first-crossing
and upcrossing conditions to infer the halo mass from excursion sets
are sketched in Fig. 1: while the trajectory A would be (correctly)
assigned to a single halo, the second upcrossing of trajectory B in
the figure would be counted as a valid event by the approximation,
and the trajectory would (wrongly) be assigned to two haloes. The
probability of this event is non-negligible only if ¢ is large.
Returning to equation (5), expanding §y — ; around §y gives

F(Bc = 8y—1) = F(8c — 8n) + Sp(dc — 8)§' Ao, (M
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where the crossing scale o, giving the halo’s final mass M, is de-
fined implicitly in equation (3), as the solution of the equation
8(c) = 8./D.* The assumption that this upcrossing is first crossing
allows us to marginalize over the first N — 2 variables in equation
(5) without restrictions. The first term has no common integration
support with (8 — §.), and only the second one — containing the
Jacobian (8’ — §.) — contributes to the expectation value (through-
out the text, a prime will denote the derivative d/do). Adopting
for convenience the normalized walk height v = §/0, for which
(v?) = 1, the corresponding density of solutions in o -space obeys

[V = vi| p(v = ve) = (I8']/0) Sp(v — ve) ®)

where v, = §./(o D) is the rescaled threshold. The probability of
upcrossing at o in equation (5) is therefore simply the expectation
value of this expression,

Jup(o) = pa(v = VC)/ 8’8 pa(8'lve) . C)]
0

where the integral runs over §' > 0 because of the upcrossing
condition (6). Usually, one sets D = 1 at z = 0 for simplicity
so that v, = 8. /0. For Gaussian initial conditions,* the conditional
distribution pg(8’|v.) is a Gaussian with mean v, and variance 1/T°2,
where

2 1 y? 1

<3/2) —1 = 1— ),2 = 02<v/2> ? (10)

and y? = (8'8)?/(8'>)(6%) is the cross-correlation coefficient be-
tween the density and its slope.* Thanks to this factorization, inte-
grating equation (9) over &’ yields the fully analytical expression

fupl0) = pc,(vc)gF(xm an

where pg is a Gaussian with mean (v) = 0 and variance Var(v) = 1.
For a constant barrier (see Appendix G for the generalization to a
non-constant case), the parameters p and X are defined as

"

+/ Var (§'|v.)

w= () =v., and X = =T, (12)

with

oo /°° 02 e U2 ] ferf(x/v/2) N e/
X) = = = ,

0 i 27 2 x+/2m
which is a function that tends to 1 very fast as x — oo, with
correction decaying like exp ( — x?/2)/x. It departs from one by
~8percent for a typical 'v. ~ 1. Equation (11) can be written
explicitly as

13)

vce_"?/2

o/2m

where the first factor in the right-hand side (RHS) of equation (14)
is the result of Press & Schechter (1974), ignoring the factor of
2, they introduced by hand to fix the normalization. For correlated
steps, their non-normalized result reproduces well the large-mass
tail of f(o') (which is automatically normalized to unit and requires
to correcting factor), but it is too low for intermediate and small
masses. The upcrossing probability f,,(0) also reduces to this result

Juw(o) = F(Tve), (14)

2 A careful calculation shows that the step function should be asymmetric,
so that ¥(8 — §¢) = 1 when § = §. instead of 1/2.

3 No conceptual complications arise in dealing with a non-Gaussian distri-
bution, which is none the less beyond the scope of this paper.

4 Recalling that (§'8) = o so that y2 = 1/(8"%).
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in the large-mass limit, when I'v, > 1 and F(I'v.) ~ 1. However,
for correlated steps fu,(0) is a very good approximation of (o) on
a larger mass range. For a ACDM power spectrum, the agreement
is good for halo masses as small as 10'> M A~", well below the
peak of the distribution. The deviation from the strongly correlated
regime is parametrized by I"v., which involves a combination of
mass and correlation strength: the approximation is accurate for
large masses (small o and large v.) or strong correlations (large I').
Although T" mildly depends on o, fixing I'> ~ 1/3 (or y ~ 1/2)
can be theoretically motivated (Musso & Sheth 2014c¢) and mimics
well its actual value for real-space Top-Hat filtering in ACDM on
galactic scales. The limit of uncorrelated steps (I' = 0), whose
exact solution is twice the result of Press & Schechter (1974), is
pathological in this framework, with f,, becoming infinite. More
refined approximation methods can be implemented in order to
interpolate smoothly between the two regimes (Musso & Sheth
2014a).

From equation (11), a characteristic mass M, can be defined by
requesting that the argument of the Gaussian be equal to one, i.e.
ve = 1 or 0(M,) = 8./D. This defines M, implicitly via equation
(1) for an arbitrary cosmology. This quantity is particularly useful
because fu,(0) does not have well-defined moments (in fact, even
its integral over o diverges). This is a common feature of first
passage problems (Redner 2001), not a problem of the upcrossing
approximation: even when the first-crossing condition can be treated
exactly, and f(o) is normalized — it is a distribution function —,
its moments still diverge. Therefore, given that the mean (M) of
the resulting mass distribution cannot be computed, M, provides a
useful estimate of a characteristic halo mass.

2.2 Joint and conditional upcrossing probability

The purpose of this paper is to recompute excursion set predictions
such as equation (11) in the presence of additional conditions im-
posed on the excursions. Adding conditions (like the presence of a
saddle at some finite distance) will have an impact not only on the
mass function of DM haloes, but also on other quantities such as
their assembly time and accretion rate.

Let us present in full generality how the upcrossing probabil-
ity is modified by such supplementary conditions. When, besides
8(0) = 8. and the upcrossing condition, a set of N linear® functional
constraints {F[8], ..., Fy[6]} = {v1, ..., vn} on the density field
is enforced, the additional constraints modify the joint distribution
of v and v'. The conditional upcrossing probability may be obtained
by replacing p(v, v') with p(v, v'|{v}) in equation (9). For a Gaus-
sian process, when the functional constraints do not involve §’, this
replacement yields after integration over the slope

Fulor, V) = palve, {v})%F(XU), (15)

where pg(v.|{v}) is a Gaussian with mean (v|{v}) and variance
Var (v|{v}), while nv and Xv are defined as

Moy

VVar (§[ve, o})

and (8'|v., {v}) and Var (6/|vc, {v}) are the mean and variance of
the conditional distribution, pg(8'|v., {v}) given by equations (F10)
and (F11) and evaluated at § = §., while F is given by equation (13).
Equation (15) is formally the conditional counterpart to equation

po = (ve, {v}), X, = 16)

5 Indeed the saddle condition below imposes linear constraints on the con-
trast and the potential, since the saddle’s height and curvature are fixed.
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Table 1. List of variables for the three different probabilities studied in the
text (upcrossing, accretion rate given upcrossing, and formation time given
upcrossing), conditioned or not to the presence of the saddle point, split by
whether they relate to the height of the excursion set trajectory or its slope.
Variables like ;¢ and X always appear as ©F(X) and describe the mean slope
of the upcrossing trajectories given the different conditions (presence of the
saddle and/or height v of the trajectory at formation). The unconditional
case has = v and X = I'v.. The remaining variables appear as arguments
of a Gaussian, and are used to define the typical values o, «., and D, of the
excursion set variables o, «, and D¢. The height-related variables describe
the probability of reaching the collapse threshold v, (unconditional or given
the saddle), or the formation threshold v¢ given v (with or without saddle).
The slope-related ones describe the probability of having at upcrossing the
slope corresponding to a given accretion rate. See also Table Al.

Without saddle With saddle
Height Slope Height Slope
Upcrossing (o) Ve w, X Ve.S us. Xs
Accretion (&) Yo Yo
Formation (Dr) Vi ¢ s Xe Vi, 8 ui,s, Xi,s

(11), while incorporating extra constraints corresponding to e.g. the
large-scale Fourier modes of the cosmic web.

The brute force calculation of the conditional means and vari-
ances entering equation (15) can rapidly become tedious. To speed
up the process, and gain further insight, one can write the condi-
tional statistics of §’ in terms of those of § and their derivatives.
This is done explicitly in Appendix F1, which allows us to write
explicitly the conditional probability of upcrossing at o given {v},
obtained by dividing equation (15) by p({v}), as

efl’g.v/z v/
fw@l{v}) = -, Fl- = ) a7
v2m Var (v))
given
8 — (8 dvey
. T 11 ) N . U (18)

JVar (8[{v)) “v do

where these conditionals and variances can be expressed explic-
itly in terms of the constraint via equations (F8)—(F11). Equation
(17) is therefore also formally equivalent to equation (14), upon
replacing v, — v, , and (1) — (v/?) to account for the constraint.
Remarkably, the conditional probability fi,(o|[{v}) is thus simply
expressed as an unconditional upcrossing probability for the effec-
tive unit variance process obtained from the conditional density.

The above-sketched formal procedure will be applied to practical
constraints in the next section. For convenience and consistency,
Table 1 lists all the variables that are introduced in the following
sections, for the combinations of the various constraints (on the
slope at crossing, on the height of the trajectory at o (#/2), and on
the presence of a saddle) that will be imposed.

3 ACCRETION RATE AND FORMATION TIME

Let us first present the tracers of galactic assembly when there is
no large-scale saddle. Specifically, this section will consider the
DM mass accretion rate and formation redshift. It will compute
the joint PDFs, the corresponding marginals, typical scales, and
expectations. Its main results are the derivation of the conditional
probability of the accretion rate — equation (25) — and formation
time — equation (36) — for haloes of a given mass. The emphasis
will be on derivation in the language of excursion set. The reader

8(a)A EE) s
8c/D(z2)
bc/D(z1)
- o(z1) o(z2) ’
R,M‘ M(Zl) M(ZQ)

Figure 2. Pictorial representation of the procedure to infer accretion rates
from excursion sets. As the redshift z grows, the barrier §./D(z) becomes
higher and the first-crossing scale o (z) moves to the right, towards smaller
masses. This procedure reconstructs the entire mass accretion history M(z)
from the first-crossing history o (D). As the two redshifts z; and z; in figure
get close to each other, the difference between o (z1) and o (z2) is completely
fixed by the slope of the trajectory. This deterministic relation connects the
excursion set slope to the halo’s instantaneous mass accretion rate. Finite
jumps of the first-crossing o after a downturn [where the inverse function
o (§) becomes multivalued, as in (1)] cannot describe smooth accretion and
are traditionally associated with large mergers.

only concerned with statistical predictions in terms of quantities of
direct astrophysical interest may skip to Section 5.

Following Lacey & Cole (1993), the entire mass accretion history
of the halo is encoded in the portion of the excursion set trajectory
after the first crossing: solving the implicit equation (3) at all z
enables to reconstruct M(z). As the barrier §./D(z) decreases with
time (since D(z) grows as z decreases), the first-crossing scale moves
towards smaller values (larger masses), thereby describing the ac-
cretion of mass on to the halo. Clearly, since §(o) is not monotonic,
M(z) is not a continuous function. Finite jumps of the first-crossing
scale, corresponding to portions for which o is not a global max-
imum of the interval [0, o], can be interpreted as mergers (see
trajectory B in Fig. 1, or the portion marked with (1) in Fig. 2). In
the upcrossing approximation, the constraint §'(o’) > 0 discards the
downward part of each jump.

3.1 Accretion rate

In the language of excursion sets, finding the mass accretion history
is equivalent to reconstructing the function o (D) [where D was
defined in equation (4)]: because the barrier grows as D decreases
with z, the crossing scale o moves towards larger values (smaller
masses). Differentiating both sides of equation (3) with respect to z
gives
D do 8¢ Ve
a=-2820 _ % _ % (19)
odD o0& o(V—V)
where o measures the fractional change of the first-crossing scale
o (M) with D(z), and is related to the instantaneous relative mass
accretion rate by

1dM M dlogD [ dlogM
—— =" =q - . (20)
M dz M dz dlogo

The upcrossing condition implies that o > 0: excursion set haloes
can only increase their mass, since dlog M/dlogo < 0.

A pictorial representation of this procedure is given in Fig. 2.
Equation (19) gives a relation between the accretion rate of the final
haloes and the Lagrangian slope of the excursion set trajectories,
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which is statistically meaningful in the framework of excursion sets
with correlated steps (because the slope then has finite variance).
Note that o scales both like the inverse of the slope 8’ and the
logarithmic rate of change of o with D. It also essentially scales like
the relative accretion rate, M /M since in equation (20) dlog D/dz is
simply a time-dependent scaling, while on galactic scales, (n ~ 2),
dlogM/dlogo ~ —6 (see also Section 5 and Appendix E for the
generic formula).

Fixing the accretion rate establishes a local bidimensional map-
ping between {v, v'},or {8,8'}, and {0, a }, defined as the solutions
of the bidimensional constraint

C={v(o)—v, V(o) =V, —v/oa}=0. 21
The density of points in the (o, «) space satisfying the constraint is
|det (0C/d{o, a}) | 85(C) . (22)
Since 0(v — v.)/0a = 0, the determinant in equation (22) is sim-
ply [(v' —v))(v./oa?)| = v}/o?a?, and is no longer a stochastic
variable. Taking the expectation value of equation (22) gives

2

Y !
fup(o'y Ol) = 02;3 pG(Vc» Ve + VC/O'(X),

[V 22 o

= — — (23)
oo® \2m 2n
with [using the conditional mean u = v, from equation (12)]
Vo= 2Ly o), 24)

+/ Var (§'|v.)
which is the joint probability of upcrossing at ¢ with accretion rate
«.% This can be formally recovered setting (8'|v., &) = v/ and
Var (8’|vc, a) — 0 in equation (16) (because the constraint fixes §’
completely), which gives F(X,) = 1 as needed.

The conditional probability of having accretion rate « given up-
crossing at o can be obtained taking the ratio of equations (23) and
(14), which gives

Ty, el

o 2 F(Tv.)
and represents the main result of this subsection. The exact form of

Jup(a]o) from equation (25), as o changes is shown in Fig. 3. This
conditional probability has a well-defined mean value, which reads

1 +erf(Tve/v/2) 26
2F(Tvy)

Supletlo) = (25)

(alo) = / dOlleup(Cl|O’) =
0

however, the second moment (?|o) and all higher order statistics
are ill defined. The nth moment is in fact proportional to the ex-
pectation value of (1/8')"~! (over positive slopes and given v.),
which is divergent. Equation (25) shows that very small values of
o (corresponding to very steep slopes) are exponentially unlikely,
and very large ones (shallow slopes) are suppressed as a power law.
Unlike f,, (o), the conditional distribution f,,(a|o’) is a well-defined
normalized PDF. However, it is still an approximation to the exact
PDF, as it assumes that the distribution of the slopes at first cross-
ing is a (conditional) Gaussian. This assumption is accurate for
steep slopes, but overestimates the shallow-slope tail, for which the
exact first-crossing condition would impose a boundary condition
pc(8" = 0]8.) = 0. The higher moments of the exact conditional

6 As expected, marginalizing equation (23) over > 0 gives back equation
(11), upon setting I'v. /o = x.
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Figure 3. Plot of the conditional PDF fy,(a|o) of the accretion rate for
values of o corresponding to I've = 10, 5, and1. As the mass gets smaller,
so does I'v. and the conditional PDF moves towards smaller accretion rates
«. Therefore, haloes of smaller mass tend to accrete less.

distribution of accretion rates should be convergent. However, even
if this was not the case, let us stress that these divergences would
not represent a pathology of excursion sets, but are instead a rather
common feature of first-passage statistics in a cosmological context.

Regardless of convergence issues, it remains true that the estimate
(26) of the mean («|o) gets a significant contribution from the less
accurate side of the distribution. One may therefore look for other
more informative quantities. In analogy with M,, defined as the
value of M for which v. = 1, one can define the characteristic
accretion rate «, as the value for which Y,, the argument of the
Gaussian in equation (25), equals one

v,

—_ 27
14Ty, @7

a.(o) =

For the above-mentioned typical value, it follows that o, (M,) =
(fa - 1) /2~ 1/3. Another useful quantity is the most likely

value of the accretion rate, corresponding to the maximum o ,,x of

Jup(a]o). Requesting the derivative of the PDF to vanish, one gets

(Twe)’
6

Qmax (0) =

1+ 12 1 (28
Ty | )

All three quantities («|0), ., and @, tend to 1 in the large-mass
limit, and decrease for smaller masses. They thus contain some
equivalent information on the position of the bulk of the conditional

PDF of « at given mass. Hence, haloes of smaller mass accrete less
on average.

3.2 Halo formation time

The formation time is conventionally defined as the redshift z; at
which a halo has assembled half of its mass. It is thus related to the
height of the excursion set trajectory at the scale 01, = o(M/2)
corresponding to the radius Ry, = R/2'73. As the barrier 8./D(z)
grows with z, and the first-crossing scale moves to the right towards
higher values of o, z; is the redshift at which o1 > becomes the first-
crossing scale for that trajectory, if it exists. That is, neglecting for
the time being the presence of finite jumps in the first-crossing scale
(interpreted as mergers), one simply needs to solve for z; the implicit
relation 8(o'12) = 8./D(z5), which makes z; a stochastic variable.
As described in Fig. 4, trajectories with the same upcrossing scale
o but different heights at o, describe different formation times: a
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o) A which give
MA = MB Halo A s oy s
§./DA ... i 1 - (D = 20 o—ww (. ok 34
£ M > MP higher z¢ ui(Dr) 12D + o2 — o2 \ % oD ) (34
1/2
Halo B /N2
B / n (0 —ow)
6c/Dg lower z¢ X¢(Dy) = Mf(Df)/ (8% —” — 02—502] , (35)
dc/D(22) where w = (§v),,) and o’ = (§'v, ;) are given by equations (E14)
6c/D(z1) and (E15), r?spectively. B . .
The conditional probability of Dy given upcrossing at ¢ — the
main result of this subsection — is obtained dividing equation (32)
by equation (11)
>0 F(Xy)
B < o of of o fu(Drlo) = 5= po(il vt RO

M Mg ME M/2

Figure 4. Pictorial representation of the interplay between accretion rate
and formation time as inferred from excursion sets. Two haloes A and B
upcross the threshold §./D(z;) at the same scale o. At redshift z;, they have
therefore the same mass. Halo A has a steeper slope than halo B, and has
thus a lower accretion rate. At a slightly larger redshift z,, halo A crosses the
higher threshold é./D(z2) at a lower o, and its mass is thus larger than halo
B’s: halo A assembles its mass earlier, consistent with its lower accretion
at z1. At the half-mass scale o1/ = o(M/2), the trajectory of halo A is
higher: its threshold 8. /Dy has a value of Dr lower than halo B’s at the same
o12. Halo A has thus assembled half of its mass at a redshift z¢ higher than
halo B.

higher 8/, corresponds to a smaller D(zy) and thus to a halo with
larger z¢, which assembled half of its mass earlier.

In the language of excursion sets, it is convenient to work with
D¢ = D(zy) rather than with z¢. In terms of unit variance variables,
haloes with formation time Dy correspond to trajectories satisfying

8(01/2) dc

Vip = = —— =y, (29)
Y o1 o012 D¢

where v, is the Gaussian variable at o> and vy is the threshold
at Dy. This constraint at o/, imposes a second condition on the
trajectory after v = v., which selected the crossing scale o. One
then needs to transform the bidimensional constraint

= {v — Ve, U1/2 — Uf} =0 (30)
on {v, vy, } into one for {o, Dr}, which gives
|det (3C/0{o, Dy})| 85(C) = |v' — ug\ (2)(0) 31

thanks to the fact that 9(v. — v)/0 D = 0.

The joint probability of upcrossing at o having formation time Dy,
denoted fip(0, Dy), is defined as the expectation value of equation
(31) with the condition v" > v/. That is,

Vg rool ’ /
fuplo, D) = 3‘ dv' (V' = ) p6(ve, v/, p)
f
Vg
= HPG(VU Vf) F(Xf) (32)

where the second equality follows from setting {v} = vy in the
general expression (15), while u¢ and X; are given by

we(Dr)
/ Var (§'|ve, vr) ’

as specified by equation (16). The conditional mean (§'|v., v¢) and
variance Var (8'|vc, v) are computed in equations (F21) and (F22),

ui(Dy) = (8've, vr),  Xe(Dy) = (33)

_ (5c/01/2Df2) o2 ueF(Xy)
V21— (v 0)?) veF(X) ]

where (v¢/Dp)pc(ve|ve) = p(Dy|v.), not surprisingly, is the condi-
tional probability of the (non-Gaussian) variable Dy given v, and

Vr — (UU1/2>Uc N 8. 1/Dg — (551/2>/(72

1 — (v p)? "o 1 — (vvip)?

(36)

Ve = 37
Recall also that X = I'v.. The conditional probability f,,(Ds|o)
depends on Dy directly, through vy . and through p¢ (which appears
also in X¢). As both v, . and p; are proportional to 1/Dy in the small-
Dy limit, equation (36) scales like e o2 /Di. Hence, fop(Dslo) is
exponentially suppressed for small Dy, that is for large formation
redshift zs: it is exponentially unlikely for a halo to assemble half
of its mass at very high redshift.

Like in the previous section, the Gaussian cut-off in equation (36)
enables to define a characteristic value D, (o) of the formation time,
below which f,(D¢|o) is exponentially suppressed, by requesting
that v¢ . = 1. This definition corresponds to

5c/U1/2
(wvidve + /1 — (Vv p)? '

D.(0) = (33)
which can then be solved for the typical formation redshift z,.
Similarly, one may define the most likely formation time D, by
finding the value of Dy that maximizes equation (36). Because its
expression is rather involved and not much more informative than
D,, it is not reported here.

Expanding D, in powers of Aoy, = 01 — o (even though
Ao /o >~ —(1/2)dlog o /dlog M may not be small, in which case
this expansion may just give a qualitative indication), one gets

A 37y — 1 1A
D, ~1— a‘/2(1+ %) ):1—61/2, (39)
o Ve o, O

confirming the intuitive relation between accretion rate and for-
mation time. Haloes with smaller accretion rates today must have
formed earlier, in order for their final mass to be the same. To derive
this expression, (88;,,) was expanded up to second order in Ao, us-
ing (88') = o and (88”) = 1 — (8'>) =TI"~2. Let us stress that, strictly
speaking, the conditional probability f,,(Dr|o) is not a well-defined
probability distribution. For instance, just like f,,(0), equation (36)
is not normalized to unity when integrated over 0 < Dy < D. This
is an artefact introduced by the upcrossing approximation to the
first-crossing problem, because equation (29) does not require tra-
jectories to reach §./Dy for the first time. As Dy gets close to D,
most trajectories reaching é./Dy do so with negative slope, or after
one or more crossings, which leads to overcounting. For Dy = D,
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trajectories that first crossed &./Dy at o cannot first cross again at
012, since 01/, — o remains finite: the true distribution should then
have f(iD;|o) = 0. This is clearly not the case for f,,(Dt|o). In spite
of these shortcomings, equation (36) approximates well the true
conditional PDF for Dy <« D,, and the characteristic time D, still
provides a useful parametrization of the height of the tail.

A better approximation than equation (36) may be obtained by
imposing an upcrossing condition at o/, as well

7/ ds’ 8’/ d8 12 pG((SC,B’ 8¢/ Dy, 8/1/2) (40)

Notice the absence in this expression of the Jacobian factor & ,: this
is because the constraint at o, is not differentiated with respect
to o1, but only with respect to Dy. This reformulation, which
unfortunately does not admit a simple analytical expression, would
improve the approximation for values of Dy closer to D,, but it
would still not yield a formally well-defined PDF. Furthermore, the
mean (D¢|o) and all higher moments would still be infinite: these
divergences are in fact a common feature of first passage statistics,
which typically involve the inverse of Gaussian variables. For all
these reasons, this calculation is not pursued further.

This section has formalized analytical predictions for accretion
rates and formation times from the excursion set approach with
correlated steps. It confirmed the tight correlation between the
two quantities, according to which at fixed mass, early-forming
haloes must have small accretion rates today. Because the focus is
here on accounting for the presence of a saddle of the potential at
finite distance, for simplicity and in order to isolate this effect we
have restricted our analysis to the case of a constant threshold §..
More sophisticated models (e.g. scale-dependent barriers involving
other stochastic variables that account for deviations from spherical
collapse) could however be accommodated without extra concep-
tual effort (see Appendix G).

4 HALO STATISTICS NEAR SADDLES

Let us now quantify how the presence of a saddle of the large-scale
gravitational potential affects the formation of haloes in its prox-
imity. To do so, let us study the tracers introduced in the previous
section (the distributions of upcrossing scale, accretion rate, and
formation time) using conditional probabilities. The condition we
enforce is that the upcrossing point (the centre of the excursion set
trajectories) lies at a finite distance r from the saddle point. The fo-
cus will be on (filament-type) saddles of the potential that describe
local configurations of the peculiar acceleration with two spatial
directions of inflow (increasing potential) and one of outflow (de-
creasing potential). See Appendix C for other critical points. These
initial regions will evolve into filaments (at least in the Zel’dovich
approximation), where particles accumulate out of the neighbouring
voids from two directions, and the saddle points filament centres,
where the gravitational attraction of the two nodes balances out. A
schematic representation of this configuration is given in Fig. 5.

The saddles are identified as points with null gradient of the
gravitational potential, smoothed on a sphere of radius Rs (which
is assumed to be larger than the halo’s scale R). This condition
guarantees that the mean peculiar acceleration of the sphere, which
at first order is also the acceleration of its centre of mass, vanishes.
That is, the null condition (fori =1, ..., 3)

W(kRs)
— / G k2 n) = == =0, @1
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Figure 5. Illustration of the conditional excursion set smoothing on a few
infinitesimally close scales around R (in green) at finite distance r from
a saddle point of the gravitational potential smoothed on scale Rs > R
(in red). The eigenvectors ex and e, of the tidal tensor at the saddle give the
directions of steepest increase and decrease of the potential, corresponding
to maximum inflow and outflow, respectively. The region is compressed
along ey and ey and stretched along e, thus creating a filament. The solid
lines are isocontours of the mean density, the thickest the densest. The dotted
line indicates a ridge of mean density (the filament), parallel to e, near the
saddle.

where os = 0(Rs),is imposed on the mean gradient of the potential
smoothed with a Top-Hat filter on scale Rs. This mean acceleration
is normalized in such a way that (g;g;) = 6;;/3 by introducing the
characteristic length-scale’

2
e [albWaR

2

42
2 o3 “2)

Having null peculiar acceleration, the patch sits at the equilibrium
point of the attractions of what will become the two nodes at the
end of the filament.’

The configuration of the large-scale potential is locally described
by the rank 2 tensor

1 &k kik;

2m)?* k2
which represents the Hessian of the perturbed potential smoothed
on scale Rs, normalized so that (tr’(¢)) = 1. This tensor is the
opposite of the so-called strain or deformation tensor. The pecu-
liar gravitational acceleration at the surface of the sphere is pro-
portional to —g;;r;. Thus, the trace tr(g) = vs of g;; describes the

L)W (kRs). 43)

qij =

7 This scale is similar, but not equivalent, to the scale often defined in peak
theory. Calling aiz the variance of the density field filtered with &> W(kR),
the R, defined here is o0 /o, while the peak theory scale is «/go’] /o2.

8 The mean gravitational acceleration g; includes an unobservable infinite
wavelength mode, which should in principle be removed. A way to circum-
vent the problem would be to multiply W (k Rs) by a high-pass filter on some
large-scale Ry to remove modes with k < 1/Ry. Because g; is set to 0, it does
not introduce any anisotropy, but simply affects the radial dependence of
the conditional statistics through its covariance (g;g;), which however is not
very sensitive to long wavelengths. For this reason, this minor complication
is ignored.
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average infall (or expansion, if negative) acceleration of the three
axes with respect to the background, while the anisotropic shear is
given by the traceless part g;; = g;; — 8;;Vs/3, which deforms the
region by slowing down or accelerating each axis. By construction,
(vsgqij) = 0.

For the initial spherical patch to evolve into a filament, the eigen-
values g; of g;; mustobey g; < 0 < g» < g3 (see also Fig. D1). In this
configuration, the Zel’dovich flow of the patch has one expanding
direction and two infalling ones. The non-linear evolution is un-
likely to revert this behaviour, and the spherical region will end up
in a filament (Zel’dovich 1970; Bond, Kofman & Pogosyan 1996).
There is no clear consensus on what the initial density of a protofila-
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Halo C
3(o) higher z
Halo A smaller M
larger M .
lower 2z
higher M
——————————————————————— (3a1)
- a
o 9B =0C —~ (Jvoid)

ment should be for the structure to form at z = 0 (see however Shen
et al. 2006). The value vs = 1.2 was chosen here, corresponding to
a mean density of 0.8 within a sphere of Rs = 10 Mpch~!, which
is about one standard deviation higher than the mean value for
saddle points of this type (see Appendix D for details), and thus
corresponds to a filament slightly more massive than the average
(or to an average filament that has not completely collapsed yet).
The qualitative results presented in this paper do not depend on the
exact value of vs (even though they obviously do at the quantitative
level).

4.1 Expected impact of saddle tides

The mean and covariance of § and § at r are modified by the
presence of the saddle at the origin. The zero mean density field is
replaced by § — (8|S), where (using Einstein’s convention as usual)

15
(81S) = (31S)(dvs)vs + 3(3gi)8i + - (04i)qi; » (44)

where the correlation functions are evaluated at finite separation.
Here, S stands for a filament-type saddle condition of zero gradient
and two positive eigenvalues of the tidal tensor, see Fig. 5. The
slope &’ is replaced by the derivative of this whole expression with
respect to o, which gives §" — (§'|S), since the correlation functions
of &’ with the saddle quantities correspond to the derivatives of the
§ correlations. These modified height and slope no longer correlate
with any saddle quantity. Thus, the abundance of the various tracers
at r can be inferred from standard excursion sets of this effective
density field. The building blocks of this effective excursion set
problem — the variance of the field and of its slope, height, and
slope of the effective barrier — are derived in full in Appendix F.
The main text of this section discusses how the saddle condition
affects the upcrossing statistics, and the excursion set proxies for
accretion rate and formation time.

For geometrical reasons, since statistical isotropy is broken only
by the separation vector, any angular dependence of the correlation
functions may arise only as r; or r;r;. Let us thus write equation (44)
as
(81S) = &oovs + 3& Lf’igi - 5520M ,

R, 2
where 7; = r; /r and the correlation functions &.,4(r, R, Rs)—whose
exact form is given in equation (E11) — depend only on the radial
separation » = |r| and the two smoothing scales, and have positive
sign. Notice the presence of a minus sign in the shear term. In the
frame of the saddle, oriented with the Z-axis in the direction of
outflow,

(45)

Q =7g;ijf; = q3 sin? 0 cos® ¢ + G, sin® 0 sin® ¢ + G, cos> 6, (46)

where 0 and ¢ are the usual cylindrical coordinates in the frame of
the eigenvectors (es, e, e1) of g;; with eigenvalues g3 > > > §i.

Figure 6. Pictorial representation of the effect of the presence of saddle
point on the excursion set trajectories at a finite distance from it. Haloes
A and B lie in the direction of the filament (Q = #;g;;7; < 0), where the
mean density is higher than the average density. Halo C lies in the direction
orthogonal to it (Q > 0), where the mean density is lower. Haloes in the
filament are likely to cross the collapsing threshold earlier, like halo A, than
haloes in the voids. They thus tend to have larger mass. At fixed crossing scale
op = o¢, haloes in the filament are likely to cross with shallower slopes,
like halo B, than halo in the voids. At their half-mass scale 01/ > o A, their
trajectories tend to be lower. Hence, at fixed mass, haloes in the filaments
tend to have larger accretion rates and to assemble half of their mass later.
Conversely, haloes in the voids assemble their mass earlier, and then stop
accreting.

When setting g; = 0, an angular dependence can only appear as
a functional dependence on Q(#) = #;g;;7;. That is, a dependence
on the direction # with respect to the eigenvectors of the shear g;;.
As shown by equation (45), a negative value of Q corresponds to
a higher mean density, which makes it easier for § to reach §. and
for haloes to form. At fixed distance from the saddle point, halo
formation is thus enhanced in the outflow direction with respect
to the inflow direction: haloes are naturally more clustered in the
filament than in the voids. Moreover, excursion set trajectories with
a lower mean will tend to cross the barrier with steeper slopes than
those crossing at the same scale but with a higher mean, and will
reach higher densities at smaller scales. Hence, haloes of the same
mass that form in the voids will form earlier and have a lower
accretion rates. These trends are shown in Fig. 6.

To understand the radial dependence, one may expand equation
(45) for small r away from the saddle, obtaining

2

.
(81S) = (8vs),—ovs + <5v2vs>r105f,-q,-,»f,- ; (47

whether the mean density increases or decreases with r depends
on the sign of the eigenvalues, i.e. the curvatures of the saddle, of
the full ¢ defined in equation (43). Since (§V?vs) < 0, the mean
density grows quadratically with r if 7;g;;7; <0, and decreases
otherwise. One thus expects the saddle point to be a maximum
of halo number density, accretion rate, and formation time in the
two directions perpendicular to the filament, and a minimum in the
direction parallel to it (corresponding to the negative eigenvalue g, ).

4.2 Conditional halo counts

The conditional distribution of the upcrossing scale o at finite dis-
tance r from a saddle point of the potential can be evaluated fol-
lowing the generic procedure described in Section 2.2, fixing

{v1} = (vs, 0, —/5(3Q/2)} = S(r) (48)
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as the constraint. With this replacement, equation (15) divided by
pa(S) gives

2
(37110,5/2
w03 1) = ————=usF(Xs), 49
Juplos1) SV 1) usF(Xs) (49)
which is the sought conditional distribution, with
, us(r)

= (8., S), X =, 50

ns(r) = (8ve, S) s(r) Var G 3) (50)

as in equation (16). The effective threshold v. s given the saddle
condition is obtained replacing the generic constraint v with S in
equation (18).

The explicit calculation of the conditional quantities needed to
compute V. s, iLs, and X s is carried out in Appendix F. The results
of Appendix F2 [namely, equation (F13)] give

8 = (81S) 8 —oovs + FE0Q(F)

wO= Nawes  Jeoe v
consistently with equation (45), where
E2(r) = Ego(r) + 387, (n)r? /R + 555,(r). (52)

The effective slope parameters, obtained by replacing equations
(F10) and (F11) into equation (50), are

o — &

us(r) =§.8; + pr— ve,s(r), (53)
_ g 2 172

Xs(r) = ps(r) / {«sa) N % : (54)

in terms of the vectors

£(r) = {Eo(r), V3811 (r)r /R, V3E0(r)), (55)

E'(r) = (£ (r). V3E[,(")r /Ru. V385, (1)} . (56)

The correlation functions &,4(r, R, Rs) and their derivatives g(;ﬂ =
dé,s/do are given in equations (E11) and (E12), respectively. Note
that throughout the text, &£, or £,4(r) will be used as a shorthand
for £,4(r, R, Rs).

Equation (49), the main result of this subsection, is the conditional
counterpart of equation (11), and is formally identical to it upon re-
placing v, v}, and X with v, s(r), v, s(r) = —us(r)//o? — &2
and X s(r). The position-dependent threshold v, s(r) and the slope
parameter us(r), given by equations (51) and (53), respectively,
contain anisotropic terms proportional to Q These terms account for
all the angular dependence of f,(o;r). In the large-mass regime,
as {£;} >0, Xs v, s/(1 — £2)> 1 and F(Xs) ~ 1. The most
relevant anisotropic contribution is thus the angular modulation of
V¢, s, which raises or lowers the exponential tail of f,,(o;r) along
or perpendicular to the filament. Upcrossing, and hence halo for-
mation, will be most likely in the direction that makes the threshold
v..s smallest, as this makes it easier for the stochastic process to
reach it.

In analogy to the unconditional case, when a characteristic mass
scale could be defined for which o = 4., equation (49) suggests
to define the characteristic mass scale o, = o (M,) for haloes near
the saddle as the one for which v, s = 1 in equation (51). In the
language of excursion sets, this request naturally sets the scale

15 2
ol(r)= <5c —&oovs + 7520Q> +&(r). (57)

This is now an implicit equation for o,, because the RHS has a
residual dependence on o, through &.,4(r, R(0.), Rs), as shown in
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Figure 7. Isocontours in the x—z plane of the typical upcrossing scale o,
around a saddle point [at (0, 0)]. The saddle point is defined using the values
of Table D1. The profiles in the direction of the filament (z-direction) and
of the void (x-direction) are plotted on the sides. The smoothing scale is
R = 1Mpch~!. They are obtained by solving equation (57) for o, at each
point, with a ACDM power spectrum, and normalized to the value at the
saddle point. In the filament, haloes form at a smaller o (higher mass) and
conversely in the void.

Appendix E. This equation can be solved numerically for o, and
then for M,.

The angular dependence of o,(r) is entirely due to &,(Q. Since
the pre-factor of Q = 7;¢;;#; is positive, o, (r) will be smallest when
r aligns with the eigenvector with the smallest eigenvalue, and Q
is most negative. This happens when 6 = 0 in equation (46): that
is, in the direction of positive outflow, along which a filament will
form. Thus, in filaments haloes tend to be more massive than field
haloes. The full radial and angular dependence of the characteristic
mass scale o, is shown in Fig. 7.

4.3 Conditional accretion rate

The abundance of haloes of given mass and accretion rate at distance
r from a saddle is obtained by replacing the probability distribution
pc(ve, v, + v /o) in equation (23) with its conditional counter-
part given the saddle constraint. As shown by equation (F12), this
conditional distribution is equal to the distribution of the effective in-
dependent variables ¥ and 8" — (&|v., S) introduced in Section 2.2,
times a Jacobian factor of o /(1 — £2/0%). Furthermore, the relation
(19) giving the excursion set slope in terms of the accretion rate
reads in these new variables

/ / Ve
& —(8 |Vc,3)=g—ll«s~ (58)

Putting these two ingredients together, equation (23) becomes
2

C

ol

fup(ay ar) = pc(ve, Vé—I—VC/O'Ol|8),

e—(u§,5+y§v5)/2
= , (59)
? 21 /(02 — E2)Var (8| v, S)

‘ o QN

S
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where Var (8|, S) is given by equation (F17) and

ve/ot — ps(r)
SVar(§'v., S)

with pus(r) given by equation (53). Again, like equation (23), this
result could be obtained by taking (8'|v., o, S) = v,/ and the
limit Var (8'|ve, @, §) — 0 in equation (16), which would give
F(X,s)=1.

To investigate the anisotropy of the accretion rate for haloes of
the same mass, one needs the conditional probability of « given
upcrossing at o, that is the ratio of equations (59) and (49). This
conditional probability reads

Yoz,S(r) = (60)

—Y2 /2
V€ s/ Ve

@/ 2rtVar (§'ve, S) s F(Xs)

with us(r) and Xs(r) given by equations (53) and (54), respec-
tively. The second fraction in this expression is thus a normalization
factor that does not depend on «, and which tends to 1 when v, >
1 in the large-mass limit. Equation (61) is the main result of this
subsection. It depends on the angular position 7 through the terms
&,Q and &, Q contained in us(r), and thus also in Y, s and Xs.
The angular dependence is now weighted by two different functions
&20(r) and &} (r), whose relative amplitude matters to determine the
overall effect.

To understand the angular variation of the exponential tail of
this distribution, let us focus on how Y, (r) depends on #. That is,
on the anisotropic part of —us(r). In the large-mass limit, when
aéb’yﬂ(r) <K &,p(r), equation (53) tells us that the anisotropic part
of Y, (r) is proportional to —&0Q, with a proportionality factor
that is always positive and O(1). Thus, the modulation has the
opposite sign of the anisotropic part of v. s, given in equation
(51): for trajectories with the same upcrossing scale, the probability
of having a given accretion rate is lowest in the direction of the
eigenvector of g;; with the lowest (most negative) eigenvalue, for
which Y, is largest. That is, for haloes with the same mass, the
probability of having a given accretion rate is lowest along the ridge
of the potential saddle, which will become the filament.

The typical accretion rate «, of the excursion set haloes described
by the distribution (61) corresponds to the condition Y,,, s = 1. This
definition transforms equation (27) into

Juplalo;r) = 61)

Ve
Var (8[ve, S) + ps(r)

where Var (8'|v, S) and us(r) are given by equations (F17) and
(53). In the limit of small anisotropy, the angular variation of the
typical accretion rate is

a.(o,r) = (62)

. —&1&;

0-2_%-2

allg=0 151,
Aa,(o,r) = v" > &

Ezo] 7iqij?y (63)
where a,|;—0 — the value of «, (o, r) when g;; = 0 — is function of
r but not of the angles. Therefore, at a fixed distance r from the
saddle, haloes that form in the direction of the filament tend to have
higher accretion rates than haloes with the same mass that form in
the orthogonal direction. The full dependence of the characteristic
accretion rate o, for haloes of the same mass on the position with
respect to the saddle point of the potential is shown in Fig. 8. The
figure shows that the saddle point is a local minimum of the accretion
rate along the direction connecting two regions with high density of
final objects, which is two peaks of the final halo density field. This
is consistent with the result that the accretion of haloes in filaments
is suppressed by the effect of the tidal forces (as shown by, e.g.

4887

Hahn et al. 2009; Borzyszkowski et al. 2016). The threshold § <
8. is reached at smaller o in filaments than in void, hence the slope
is smaller at upcrossing. It is shown schematically in the top panel
of Fig. B3. A verification with a constrained random field is shown
in the bottom panel of Fig. B3. The details of the method used are
given in Appendix B.

One can also evaluate the mean of the conditional distribution (61)
following equation (26), integrating « f,,(«|o, S) over the range of
positive . This conditional mean value is

ve 1+erf(Xs(r)/v2)
us(r)  2F(Xs(r))

in the large-mass regime, where X s >> 1 and the whole second frac-
tion tends to 1, the position-dependent conditional mean («|o)(r)
is essentially the same as o, (r) defined in equation (62). As for
Jup(a|o), all higher order moments are ill defined. One can also find
useful information in the most likely accretion rate

1 12 1 65
e (©

which generalizes equation (28) to the presence of a saddle point
at distance r. The same conclusion holds here namely the most
likely accretion rate increases from voids to saddles and saddles
to nodes. The following only considers maps of «,(o, r), since
the information encoded in oy, (o, r) and {(«|o)(r) is somewhat
redundant.

(alo)(r) =

(64)

2

C

6Var (8'|ve, S)

amax(ov r) =

4.4 Conditional formation time

The formation time in the vicinity of a saddle is obtained by fixing
the saddle parameters S = {vs, 7 g;, 7;G;;7;}, with g; = 0, besides
v =v.and vy, = v;. A five-dimensional constraint on the Gaussian
variables must now be dealt with, and mapped into {o, Dy, S}. Since
the mapping of the saddle parameters is the identity, the Jacobian
of the transformation still gives [V — v|v¢/ Dy, like in Section 3.2
(where there was no saddle constraint). The formalism outlined in
Section 2.2 still applies: the joint probability of upcrossing at o
with formation time Dy given the saddle is obtained replacing {v}
with {vf, S} in equation (16), multiplying by the Jacobian v¢/ D¢ and
dividing by the probability p(S) of the saddle. The result is

V;
Fu(@. DriP) = = po(ve, v11S) 25 F(X; ) (66)
Df o

which extends equation (32) by including the presence of a saddle
point of the potential at distance r, with

Mt,s

VVar (&g, ve, S)

The conditional mean and variance of 8" given {v¢, v., S} are ex-
plicitly computed in Appendix F4, equations (F30) and (F31).

The conditional probability of the formation time Dy given o
at a distance r from the saddle follows dividing equation (66) by
Sfup(o|r), given by equation (49). This ratio — which is the main
result of this section — gives

ues = (8'lve, ve, S), Xes = (67)

Ve urs F(Xrs)
Diloir) = — po(vlve, §) == — =,
Jup(Drlosr) DfPG(Vt|Vc ) s F(Xs)

5./ D2ye e/ F(X
_ (8./Dy)e urs F(Xts) 68)

27[Var(61/2|vc,8) Hs F(XS)
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Figure 8. Isocontours in the x—z plane of the typical accretion rate o, (upper left) and formation time D, (upper right) around a saddle point [at (0, 0)] and
in the x—y plane of the characteristic upcrossing scale o, (lower left) and typical accretion rate ( lower right). The saddle point is defined using the values of
Table D1. The profiles going through the saddle point in the x—z (upper panels) and x—y (lower panels) planes are plotted on the sides. The smoothing scale
is R =1 Mpch~!. They were obtained with a ACDM power spectrum, and normalized to the value at the saddle point. Since the filament has higher mean
density, excursion set trajectories upcrossing at a given o have shallower slopes. Hence, typical haloes are more massive in filaments and at fixed mass, haloes
forming in the filament have larger accretion rates at z = 0 and form later. The same hierarchy exists between the two perpendicular directions.

Equation (68) provides the counterpart of equation (36) near a saddle
point, in terms of the effective threshold

8./Dg — (81 2lve, S)

Vie.s(Dg, 1) = (69)
Var (51/2|UC,8)
with
88 —&.
i, 8 =S+ =BG g5 o)

_;;:2
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((8812) — & - &)
o2 — gz .
It also depends on the effective upcrossing parameters ps(r) and
X s(r), given in equations (50)—(53). The explicit forms of the func-
tions ¢, s(Dy, r) and X¢ s(Dy, r) are reported in Appendix F4 for
convenience [equations (F33) and (F34)].
Note that in equation (68), fu,(Dflo;r) depends on Dy also
through vf . s and pir s. For early formation times (Df < 1), the

Var (82| ve, S) 2‘712/2_512/2_ a1
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conditional mean (8'|v¢, v, S) becomes large, since the trajectory
must reach a very high value at o ,,. Hence, us s(Dy, r) oc 1/Dy.
In this limit, the last ratio in equation (68) above tends to 1, and
Jup(Dglosr) o (I/DE) exp(—vl-z_cvs/2), with a proportionality con-
stant that does not depend on the angle. Then, the probability decays
exponentially for small Dy as v s grows. The typical formation
time D, = D(z,) can be defined as that value for which v;. s =1
and this exponential cut-off stops being effective, that is
3
D,(r,o)= , (72)
Var (812|ve, ) + (81/2[ve, S)

which provides the anisotropic generalization of the expression
given in equation (38). The explicit expression for the conditional
mean (8;/2|ve, S) and variance Var (81/2|vc, S) are given by equa-
tions (70) and (71), respectively.

As the angular variation of (8;,2|v., S) is approximately

15
?AUI/2EZO(r)Q(i) , (73)

where Q(%) = 7,G;;7j, Aoy, = 012 — o > 0, the formation time
D, is larger when r is aligned with the eigenvector with the most
negative eigenvalue, corresponding to the direction of the filament.
One has in fact
2
ADL(r, ) = = P00 6, ()0, 74)
C

where D, depends only on the radial distance r, which shows that
at a fixed distance from the saddle point, haloes in the direction
of the filament tend to form later (larger D,). The saddle point is
thus a minimum of the half-mass time D, along the direction of the
filament, that is a maximum of z,: haloes that form at the saddle
point assemble most of their mass the earliest. Fig. 8 displays a
cross-section of a map of D, in the frame of the saddle.

5 ASTROPHYSICAL REFORMULATION

The joint and conditional PDFs derived in Sections 2—4 were ex-
pressed in terms of variables (o, «, and Dy) that are best suited for
the excursion set theory. Now, for the sake of connecting to obser-
vations and gathering a wider audience, let us write explicitly what
the main results of those sections — equations (14), (25), and (36),
and their constrained counterparts (49), (61), and (68) — imply in
terms of astrophysically relevant quantities like the distribution of
mass, accretion rate, and formation time of DM haloes.

5.1 Unconditional halo statistics

The upcrossing approximation provides an accurate analytical so-
lution of the random walk problem formulated in the Extended
Press—Schechter model, for a Top-Hat filter in real space and a real-
istic power spectrum. In this framework, the mass fraction in haloes
of mass M is
M dn
pdM
with f,(o) given by equation (14) and is a function of mass via
equation (1). For instance, for a power-law power spectrum P(k)
o k™" with index n = 2 one has M/M, = (¢ /o,)~°. The general
power-law result M oc 0@ =3 follows from equation (E17).

The excursion set approach also establishes a natural relation
between the accretion rate of the halo and the slope of the trajectory
at barrier crossing. One can thus predict the joint statistics of o and

Jup(o (M), (75)

do
dm

4889

of the excursion set proxy o = v./[d(§ — é.)/do] for the accretion
rate. In order to get the joint mass fraction in haloes of mass M
and accretion rate M , one needs to introduce the Jacobian of the
mapping from (o, «) to (M, M). Since o (M) does not depend on
o, this Jacobian has the simple factorized form |do/dM ||da/ dMm|.
Since da /dM =u/ M from equation (20), one can write the joint
analogue of equation (75) as

MM  d*n dlogo

p dMdm | dM

where fip(0, a) is now given by equation (23), whereas o (M) and
a(M, M) are functions of M and M via equations (1) and (20),
respectively. From the ratio of equations (76) and (75), the expected
mean density of haloes of given mass and accretion rate can be

reformulated as
2

od fuplo,a), (76)

dn
— =af, _, 77
dMdi Olfp(ala)dM an

where f,(a|o) is given by equation (25). This expression relates
analytically the number density of haloes binned by mass and ac-
cretion rate to the usual mass function.

Similarly, the joint mass fraction of haloes of mass M and forma-
tion time z; (defined as the redshift at which the halo has assembled
half of its mass) can be inferred from the joint statistics of o and Dy
=6./8(01)2), where 0/, = 0(M/2) is the scale containing half of
the initial volume. The redshift dependence of the growth function
D(z) is defined by equation (4). Hence, the mass fraction in haloes
of given mass M and formation time z; is

M d*n do dD;
p dMdz;  dM dz
and its conditional is

dzn le
dMdz; — dzg
where the joint and conditional distributions of Dy and o are given
by equations (32) and (36), respectively.

Interestingly, while the excursion set mass function is subject
to the limitation of upcrossing theory, the conditional statistics of
accretion rate, or formation redshift, at given mass should be con-
siderably more accurate. This is because the main shortcoming of
excursion sets is the lack of a prescription for where to centre
in space each set of concentric spheres giving a trajectory. These
spheres are placed at random locations, whereas they should insist
on the centre of the protohalo. However, choosing a better theoret-
ical model (e.g. the theory of peaks) to set correctly the location
of the excursion set trajectories would not dramatically modify the
conditional statistics. Changing the model would modify the func-
tion F(x), defined in equation (13), that modulates each PDF. In
conditional statistics, only ratios of this function appear, which are
rather model independent, whereas the probability of the constraint
does not appear. The relevant part for our analysis — the exponential
cut-off of each conditional distribution given the constraint — would
not change. Hence, even though equation (75) does not provide a
good mass function dn/dM, one may argue that the relations (77)
and (79) are still accurate in providing the joint abundance statistics
of mass and accretion rate, or mass and formation redshift, once a
better model — or even a numerical fit — is used to infer dn/dM.

Jup(o, D), (73)

dn
fup(DrIU)dW ; (79)

5.2 Halo statistics in filamentary environments

In the tide of a saddle of given height and curvature, equations
(75), (76), and (78) remain formally unchanged, except for the
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Figure 9. PDF of o at upcrossing given the saddle point in the x (void, in
red) and z (filament, in blue) directions at distance r = 10 Mpc A~ (solid
lines) and r = 5 Mpc h~! (dashed lines). The saddle point is defined using
the values of Table D1. The PDF without the saddle point is shown in black
and at the saddle point in dashed black. The value of o, at the saddle point
is shown by the vertical dashed line. In the filament, the PDF is boosted
for small values of o: there are more massive haloes in the filament. The
opposite trend is seen in the void.

replacement of fu,(0), fup(o, ), and fip(o, Dr) by their position-
dependent counterparts fu,(0;7), fu(o,a;r), and fu,(o, Dg;r)
conditioned to the presence of a saddle, given by equations
(49), (59), and (66), respectively. Similarly, in equations (77) and
(79), one should substitute the distribution fyp(a|o) and fi,(Dr|o)
by their conditional counterparts fyp(a|o;r) and fu,(Dylo;r)
of accretion rate and formation time at fixed halo mass, given
by equations (61) and (68).

These functions depend on the mass M, accretion rate M , and
formation time z; of the halo through o (M), a(M, M ), and D¢(zy), as
before. However, conditioning on S introduces a further dependence
on the geometry of the environment (the height vs of the saddle
and its anisotropic shear g;;) and on the position r of the halo
with respect to the saddle point. This dependence arises because
the saddle-point condition modifies the mean and variance of the
stochastic process (8, §') — the height and slope of the excursion set
trajectories — in a position-dependent way, making it more or less
likely to form haloes of given mass and assembly history within
the environment set by S. The mean becomes anisotropic through
Q = #,g;;7;, and both mean and variance acquire radial dependence
through the correlation functions £,4 and &, defined in equation
(E12), whichdepend onr, Rs, and R [the variance remains isotropic
because the variance of g;; is still isotropic, see e.g. equation (71)
and Appendix E].

The relevant conditional distributions are displayed in Figs 9-11.
The plots show that haloes in the outflowing direction (in which
the filament will form) tend to be more massive, with larger ac-
cretion rates and forming later than haloes at the same distance
from the saddle point, but located in the infalling direction (which
will become a void). This trend strengthens as the distance from
the centre increases. The saddle point is thus a minimum of the
expected mass and accretion rate of haloes, and a maximum of for-
mation redshift, as one moves along the filament. The opposite is
true as one moves perpendicularly to it. This behaviour is consis-
tent with the expectation that filamentary haloes have on average
lower mass and accretion rate, and tend to form earlier, than haloes
in peaks.
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Figure 10. PDF of « at upcrossing given the smoothing scale and the
saddle point in the x (void, in red) and z (filament, in blue) directions at
distance r = 10 Mpch~! (solid lines) and r = 5 Mpch~! (dashed lines)
(upper panel) compared to the PDF without the saddle point (lower panel).
The saddle point is defined using the values of Table D1. The PDF with
no saddle point is shown in solid black and the PDF at the saddle point in
dashed black. In the filament, the PDF is boosted at its high end: haloes
accrete more. The opposite trend is seen in the void.
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Figure 11. PDF of Dy at upcrossing given the smoothing scale and the
saddle point in the x (void, in red) and z (filament, in blue) directions at
distance r = 10 Mpc =" (solid lines) and r = 5 Mpc h~! (dashed lines) and
without saddle point (black) compared to the PDF at the saddle point. The
saddle point is defined using the values of Table DI1. In the filament, the
PDF is boosted at the late formation end: haloes form later. The opposite
trend is seen in the void.
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Figure 12. Top: plot of the typical mass M,, middle: the typical specific accretion rates M /M, and bottom: the formation redshifts z, for different masses as
a function of the distance to the saddle point, left: in the direction of the void and right: in the direction of the filament. The colour of each line encodes the
smoothing scale (hence the mass), from dark to light M = 10'! Mo ' (R=08Mpch ) toM=10" Mg h~" (R = 3.7 Mpc h~ ") logarithmically spaced;
the dashed line is evaluated at M = M, Labels are given in unit of 10! Mo 1. The saddle point has been defined using the values given in Table D1. More
massive haloes accrete more and form later than less massive ones. At the typical mass, the space variation of the specific accretion rate and the formation

redshift is smaller in the direction of the filament than in the direction of the void.

To better quantify these trends let us define the tidally modified
characteristic quantities

M,(r) = M(o,(r), (80)

i by =~ 08P IV )
A= dz dlogoa* ro)

z(r, M) =z2(D,(r)) ~1/D,(r,o0)— 1, (82)

giving the typical mass and the accretion rate and formation time at
given mass as a function of the position with respect to the centre
of the saddle.

The last approximation holds for haloes that assemble half of their
mass before z ~ 2, since at early times D ~ (1 + z)~'. These typical
quantities are known functions of the position-dependent typical
values of the excursion set parameters o, (r), «.(r, o), and D,(r, o)
given by equations (57), (62), and (72), respectively. They gener-
alize the corresponding characteristic quantities obtained without
conditioning on the saddle, given by o, = ., and by the functions
a,(0) and D, (o) defined in equations (27) and (38).

Taylor expanding equation (57) in the anisotropy gives the first-
order angular variation of M, at fixed distance r from the saddle

15 8c £x0(r)
2 |(do/dM)y, |

where &,((r) is the radial part of the shear-height correlation function
at finite separation. Since &, is positive, this variation is largest
when r is parallel to the eigenvector with the smallest eigenvalue.
That is, in the direction of positive outflow (with negative O =
7:Gi;7;), along which a filament will form. Thus, in filaments haloes
tend to be more massive, and haloes of large mass are more likely.

AM,(r) = — o), (83)

The full dependence of the characteristic mass M, as a function
of the position with respect to the saddle point of the potential is
shown in Fig. 12.

Similarly, like equations (63) and (74) for «, and D,, the first-
order angular variations of M, and z, are

dlogD dM 2|0

AM,(r, M) =
dz dlogo v
15, —&/& X
x> 520_(;2_%21520} Q). (84)
| dz |D}|g0 15| do | M .
Az(r, M) = | 5 2lam 7520(")9(")- (85)

These results confirm that in the direction of the filament, haloes
have on average larger mass accretion rates and smaller formation
redshifts than haloes of the same mass that form at the same distance
from the saddle point, but in the direction perpendicular to it. The
space variation becomes larger with growing halo mass and fixed
Rs, as shown in Fig. 12, because the correlations become stronger
as the difference between the two scales gets smaller. Conversely,
for smaller masses haloes have on average smaller accretion rates
(like in the unconditional case, see Fig. 3) and later formation times,
but also less prominent space variations.

Note that two estimators of delayed mass assembly, AM* and Az,
do not rely on the same property of the excursion set trajectory and
do not lead to the same physical interpretation. In particular, when
extending the implication of delayed mass assembly to galaxies
and their induced feedback, one should distinguish between the
instantaneous accretion rate, and the integrated half-mass time as
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they trace different components of the excursion hence different
epochs.

5.3 Expected differences between the isocontours

In order to investigate whether the assembly bias generated by the
cosmic web and described in this work is purely an effect due to
the local density (itself driven by the presence of the filament),
this section studies the difference between the isocontours of the
local density field and any other statistics (mass accretion rate for
instance). The latter will be shown not to follow exactly the isoden-
sity surfaces, but to intersect each other. This misalignment may
only appear if spherical symmetry is broken (all isocontours would
otherwise be spherical). However, it also shows that halo properties
do not depend only on the local density, indicating that the role of
the anisotropy of the nearby filament in the formation of structures
goes beyond the simple creation of an anisotropic density field.

The normals to the level surfaces of M,(r, M), M (r), z.(r, M),
and (p)(r) = p(1 + (§|S)) scale like the gradients of these func-
tions. First note that any mixed product (or determinant) such as
VM, - (VM, x V{p)) will be null by symmetry; i.e. all gradients
are coplanar. This happens because the present theory focuses on
scalar quantities (mediated, in our case, by the excursion set density
and slope). In this context, all fields vary as a function of only two
variables, r and Q = 7;g;;#;, hence the gradients of the fields will
all lie in the plane of the gradients of  and Q.° Ultimately, if one
focuses on a given spherically symmetric peak, then Q vanishes, so
all gradients are proportional to each other and radial. Let us now
quantify the misalignments between two normals within that plane.
In spherical coordinates, the Nabla operator reads

V_ili ! i—ilﬁ (86)
T \0r’ro6 rsinf g/ \or'r ’

so that for instance
oM, 1M, .
. vQ |,
or r 0Q

where equation (46) implies that

VM*O((

B sin26 (g3 cos®> ¢ + g» sin> ¢ — G
vo=(" (613 . q2 ql) ' 87)
sin0(g, — g3) sin2¢
Hence, for instance the cross product VM, x VM, reads
OM, M, OM, oM, v0 s5)
or 90 00 or ’

It follows that the two normals are not aligned, since the pre-factor
in equation (88) does not vanish: the fields are explicit distinct
and independent functions of both r and Q. The origin of the mis-
alignment lies in the relative amplitude of the radial and ‘polar’
derivatives (with respect to Q) of the field. For instance, even at
linear order in the anisotropy, since AM* in equation (84) has a
radial dependence in &), as a pre-factor to Q, whereas M, has only
&, as a pre-factor in equation (83), the bracket in equation (88) will
involve the Wronskian &},0£,/0r — £,00£,,/0r which is non-zero

9 In order to break this degeneracy, one would need to look at the statistics
of higher spin quantities. For instance, the angular momentum of the halo
would depend on the spin-one coupling ;i 7 ; Gxi 71, with g the totally anti-
symmetric tensor (see e.g. Codis, Pichon & Pogosyan 2015), or to consider a
barrier that depends on the local shear at r filtered on scale R (e.g. Castorina
etal. 2016), like e.g. 8¢ + Bog;;j(r, R)q;;j(r, R) with some constant 8.
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because £ and its derivative with respect to filtering are linearly
independent. This misalignment does not hold for M, and (p) at
linear order, since AM, (equation 83) and (p) (equation 45) are
proportional in this limit. Yet it does arises when accounting for
the fact that the contribution to the conditional variance in M, also
depends additively on &2(r) in equation (57) [with £2(r) given by
equation (52) as a function of the finite separation correlation func-
tions &,4 computed in equation (E12) for a given underlying power
spectrum]. Indeed, one should keep in mind that the saddle condi-
tion not only shifts the mean of the observables but also changes
their variances. Since the critical ‘star’ observables (M,, z., etc.)
involve rarity, hence ratio of the shifted means to their variances
(e.g. entering equation 60), both impact the corresponding normals.
It is therefore a clear specific prediction of conditional excursion
set theory relying on upcrossing that the level sets of density, mass
density, and accretion rates are distinct.

Physically, the distinct contours could correspond to an excess
of bluer or reddened galactic hosts at fixed mass along preferred
directions depending on how feedback translate inflow into colour
as a function of redshift. Indeed feedback from active galactic nu-
clei (AGNS), triggered during merger events, regulates gas inflows
(Dubois et al. 2016), which in turn impacts star formation: when
it is active, at intermediate and low redshift, it may reverse the
naive expectation (see Appendix H). This would be in agreement
with the recent excess transverse gradients (at fixed mass and den-
sity) measured both in cosmological hydrodynamical simulation
Horizon-AGN (Dubois et al. 2014) and those observed in spectro-
scopic (e.g. VIPERS or GAMA, Malavasi et al. 2017; Kraljic et al.
2018) and photometric (e.g. COSMOS, Laigle et al. 2017) surveys:
bluer central galaxies at high redshifts when AGN feedback is not
efficient and redder central galaxies at lower redshift.

Our predictions are formulated in the initial conditions. How-
ever, one should take into account a Zel’dovich boost to get the
observable contours of the quantities derived in the paper. Regions
that will collapse into a filament are expected to have a convergent
Zel’dovich flow in the plane perpendicular to the filament and a
diverging flow in the filament’s direction. As such, the contours of
the different quantities will be advected along with the flow and will
become more and more parallel along the filament. This effect is
clearly seen in Fig. 13 which shows the contours of both the typical
density and the accretion rate!® (bottom panel) after the Zel’dovich
boost (having chosen the amplitude of the boost corresponding to
the formation of the filamentary structure). The contours are com-
pressed towards the filament and become more and more parallel.
Hence, the stronger the non-linearity, the more parallel the con-
tours. This is consistent with the findings of Kraljic et al. (2018),
whose colour and (stellar) mass gradients follow the underlying
mean density, when the density is averaged on sufficiently small
scales.

6 ASSEMBLY BIAS

The bias of DM haloes (see Desjacques, Jeong & Schmidt 2016,
for a recent review) encodes the response of the mass function to
variations of the matter density field. In particular, the Lagrangian
bias function b; describes the linear response to variations of the
initial matter density field. For Gaussian initial conditions, the

10 Interactive versions can be found online https://cphyc.github.io/
research/assembly/with_boost.html and https://cphyc.github.io/research/
assembly/no_boost.html.
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Figure 13. Level surfaces of the typical density p, (light to dark blue) and
of the accretion rate «, (light to dark red) with no Zel’dovich boost (upper
panel and with a Zel’dovich boost (lower panel). The saddle is represented
by a ball. Once boosted, the structure of the filament in the z-direction is
clearly seen and the isocontours align one with each other.

correlation of the halo overdensity with an infinite wavelength mat-
ter overdensity 8 is then (Fry & Gaztanaga 1993),

(806n(r, M)) = /drl((So(Sm(l‘l))bl(", ri, M), (89)

where formally b(r, r;, M) = (0[n(r, M)]/0[8m(r)]) is the ex-
pectation value of the functional derivative of the local halo over-
density with respect to the (unsmoothed) matter density field 8,,(r)
(Bernardeau, Crocce & Scoccimarro 2008). In the standard setup,
because of translational invariance (which does not hold here), it is
only a function of the separation |r — ry|.

The dependence of the halo field on the matter density field
can be parametrized with a potentially infinite number of variables

constructed in terms of the matter density field, evaluated at the same
point. With a simple chain rule applied to the functional derivative,
equation (89) can be written as the sum of the cross-correlation of
8o with each variable, times the expectation value of the ordinary
partial derivative of the halo point process with respect to the same
variable. The latter are the so-called bias coefficients, and are math-
ematically equivalent to ordinary partial derivatives of the mass
function with respect to the expectation value of each variable.

The most important of these variables is usually assumed to be
the density §(r, R) filtered on the mass scale of the haloes, which
mediates the response to the variation of an infinite wavelength
mode of the density field, the so-called large-scale bias. Because
the smoothed density correlates with the £ = 0 mode of the density
field, this returns the peak-background split bias. Its bias coefficient
is also equal to (minus) the derivative with respect to d..

Excursion sets make the ansatz that the next variable that mat-
ters is the slope &'(r, R) (Musso, Paranjape & Sheth 2012). In the
simplest excursion set models with correlated steps and a constant
density threshold, trajectories crossing §. with steeper slopes have
alower mean density on larger scales (Zentner 2007). They are thus
unavoidably associated with less strongly clustered haloes. This
prediction is in agreement with N-body simulations for large-mass
haloes, but the trend is known to invert for smaller masses (Sheth
& Tormen 2004; Gao et al. 2005; Wechsler et al. 2006; Dalal et al.
2008). Although more sophisticated models are certainly needed in
order to account for the dynamics of gravitational collapse, we will
see that the presence of a saddle point contributes to explaining this
inversion.

None of the concepts outlined above changes in the presence of
a saddle point: the bias coefficients are derivatives of dn/dM, that
is of the upcrossing probability through equation (75). Because we
are interested in the bias of the joint saddle-halo system, we must
differentiate the joint probability fi,(o;7)p(S), rather than just
fup(o;r), and divide by the same afterwards. Of course, the result
picks up a dependence on the position within the frame of the saddle.
The relevant uncorrelated variables are § — (8|S), 8’ — (8'|v, S),
vs, Figi =0, and Q = #,g;;7;. Differentiating equation (49), the
bias coefficients of the halo are

0log [fup(o';r)] _ 8. — &1S;

bio(M;r) = 30I3) ol (90)
. 0log[fuplosm)] 1+ erf(Xs(r)/v2)
) e e 8) T 2us(nNF(Xs(r) oD

which without saddle reduce to (a linear combination of) those
defined by Musso et al. (2012). The coefficients of the saddle are

0 v
bigg = — 55 log pa(S) = i : 92)
d
bl = — 3G 2P =0, 93)
8i=0
d 1530
b = ) log pa(S) = 55 (94)

A constant §, does not correlate with g;;, since there is no zero
mode of the anisotropy. One can see this explicitly by noting that
&0(Ry, Rs,r) — 0 as Ry — oo. The only coefficients that survive
in the cross-correlation with 8, are thus by, by and bg‘gg, so that
equation (89) becomes

(8081 (r, M)) = bi5)(808,) + b1oCov (80, 8|S)
+ bo1Cov (8, 8'|ve, S) . (95)
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Similarly, in this limit 8, does not correlate with g; either, while
(608) becomes independent of R. Thus, (§¢8) =~ (80ds) and (§¢8") ~
0. Hence,

808 8. — &S
(0/)Nv+ £S5

Govs) — ° C,27_52(‘7s = &o0)
—bor | &gy + (;2_7_5’;21(05 —&0)|. 96)

’

Setting vs = & = &4 = 0 recovers Musso et al.’s (2012) results.

The anisotropic effect of the saddle is easier to understand looking
at the sign of the terms in the round and square brackets, correspond-
ing to Cov (3¢, |S) and —Cov (80, §'|ve, S) respectively. One can
check that for R = 1 Mpch™' and Rs = 10"Mpc A~ both terms
are negative near r = 0, but become positive at r >~ 0.75Rs. This
separation marks an inversion of the trend of the bias with v, s,
the parameter measuring how rare haloes are given the saddle en-
vironment. Far from the saddle, haloes with higher v. s are more
biased, which recovers the standard behaviour since v, s — V. asr
— o0. However, as r/Rs < 0.75, the trend inverts and haloes with
higher v, s become less biased. Therefore, one expects that at fixed
mass and distance from the saddle-point haloes in the direction of
the filament are less biased far from the saddle, but become more
biased near the saddle point. The upper panel of Fig. 14, displaying
the exact result of equation (96), confirms these trends and their
inversion at r ~ 0.75Rs. The height of the curves at » = 0 depends
on the chosen value for vs, but the inversion at r >~ 0.75Rs and the
behaviour at large » do not. Fig. 14 also shows that a saddle point
of the potential need not be a saddle point of the bias (in the present
case, it is in fact a maximum).

The inversion can be interpreted in terms of excursion sets. Near
the saddle, fixing vs at r = 0O puts a constraint on the trajectories
at r that becomes more and more stringent as the separation gets
small. At r = 0, the value of the trajectory at Rs is completely
fixed. Therefore, trajectories constrained to have the same height
at both Rs and R, but lower (§|S) at R, will tend to drift towards
lower values between Rs and R, and thus towards higher values for
Ry > Rs. This effect vanishes far enough from the saddle point,
since the constraint on the density at Rs becomes looser as the
conditional variance grows. Hence, trajectories with lower (§|S)
at R will remain lower all the way to Ry. Note however that inter-
preting these trends in terms of clustering is not straightforward,
because the variations happen on a scale Rs < Ry (they are thus
an explicit source of scale-dependent bias). The most appropriate
way to understand the variations of clustering strength is looking
at the position dependence of dn/dM, which is predicted explicitly
through f,(o;r) in equation (49).

‘When one bins haloes also by mass and accretion rate, the bias is
given by the response of the mass function at fixed accretion rate.
That is, to get the bias coefficients one should now differentiate the
joint probability fu,(o, a;r)ps(S) with respect to mean values of
the different variables, with f,,(o, o; r) given by equation (59). The
only bias coefficient that changes is by, the derivative with respect
to (8'|v., S), which becomes

0 ]Og [fUp(Us o] r)}
0(d'|ve, S)

_ve/a—ps(r)
 Var (8., S)

boy(M, M, r) = 7)
with o defined by equation (20). Inserting this expression in equa-
tion (96), returns the predicted large-scale bias at fixed accretion
rate. Notice that in this simple model, the coefficient multiplying
the 1/« term is purely radial. The asymptotic behaviour of the bias
at small accretion rates will then always be divergent and isotropic,
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Figure 14. Upper panel: large-scale Lagrangian bias as a function of the
distance from the saddle point, along the filament and perpendicularly to it,
for haloes of mass M = 2.0 x 10'! Mo h~' (R = 1 Mpch~!). Haloes in
the perpendicular direction are less biased at small separation, but the trend
inverts at r/Rs =~ 0.75. Lower panel: bias as a function of accretion rate,
for different values of the separation r/Rs in the direction of the filament.
For haloes closer to the centre, bias decreases with accretion rate, but the
trend inverts at r/Rs =~ 0.75. In the perpendicular direction, the effect is
30 per cent smaller, but the relative amplitudes and the inversion point do not
change appreciably. As discussed in the main text, both inversions depend
on the fact that § — (§|S) and dy correlate at large distance from the saddle,
but they anticorrelate at small separation.

with a sign depending on that of the square bracket in equation (96).
If this term is positive, the bias decreases as « gets smaller, and vice
versa. Clearly, the value of « for which the divergent behaviour
becomes dominant depends on the size of all the other terms, and
is therefore anisotropic.

As one can see from Fig. 14, the sign of the small-« divergence
depends on the distance from the saddle point. It is negative for
r 2 0.75Rs, but it reverses closer to the centre. This effect is again
a consequence of the constraint on the excursion set trajectories at
Rs. Trajectories with steeper slopes at R will sink to lower values
between Rs and R, then turn upwards to pass through §(Rs), and
reach higher values for Ry > Rs. The haloes they are associated
with are thus more biased. This trend is represented in Fig. 15. This
inversion effect is lost as the separation increases, and the constraint
on the density at Rs becomes loose, and trajectories that reach R
with steeper slopes are likely to have low (or even negative) values
at very large scales. These haloes are thus less biased, or even
antibiased.
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Figure 15. Plot of the mean of density given the saddle point, the upcrossing
condition and the slope at R for different slopes. The saddle point was defined
using the values of Table D1. The details of the calculation are provided in
Appendix B. For steep slopes (small accretion rate), the mean of the density
overshoots at small o, resulting in a larger bias.

It follows that the bias of haloes far from structures grows with
accretion rate (the usual behaviour expected from excursion sets),
while the trend inverts for haloes near the centre of the filament.
Because typical mass of haloes also depends on the position along
the filament, with haloes towards the nodes being more massive, the
different curves of Fig. 14 correlate with haloes of different mass.
This effect explains why low-mass haloes with small accretion rate
(or early formation time, or high concentration) are more biased,
when measuring halo bias as a function of mass and accretion rate
(or formation time or concentration, which strictly correlate with
accretion rate), without knowledge of the position in the cosmic web.
Conversely, the high-mass ones are less biased (Sheth & Tormen
2004; Gao et al. 2005; Wechsler et al. 2006; Dalal et al. 2008;
Faltenbacher & White 2010; Paranjape & Padmanabhan 2017). It
is also intriguing to compare this result with the measurements by
Lazeyras et al. (2017, , namely their fig. 7) which show the same
trends (although their masses are not small enough to clearly see
the inversion).

Note in closing that the conditional bias theory presented here
does not capture changes in accretion rate and formation time pre-
sented in Sections 4.3 and 4.4.

7 CONCLUSION AND DISCUSSION

7.1 Conclusion

With the advent of modern surveys, assembly bias has become the
focus of renewed interest as a process which could explain some of
the diversity of galactic morphology and clustering at fixed mass.
It is also investigated as a mean to mitigate intrinsic alignments in
weak-lensing survey such as Euclid or LSST. Both observations and
simulations have hinted that the large-scale anisotropy of the cosmic
web could be responsible for stalling and quenching. This paper
investigated this aspect in Lagrangian space within the framework of
excursion set theory. As a measure of infall, we computed quantities
related to the slope of the contrast conditioned to the relative position
of the collapsing halo with respect to a critical point of the large-
scale field. We focused here on mass accretion rate and half-mass
redshift and found that their expectation vary with the orientation
and distance from saddle points, demonstrating that assembly bias
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is indeed influenced by the geometry of the tides imposed by the
cosmic web.

More specifically, we derived the Press—Schechter typical mass,
typical accretion rate, and formation time of dark haloes in the
vicinity of cosmic saddles by means of an extension of excursion
set theory accounting for the effect of their large-scale tides. Our
principal findings are the following: we have computed the (i) up-
crossing PDF for halo mass, accretion rate, and formation time; they
are given by equations (14), (23), and (32), and their constrained-
by-saddles counterparts equations (49), (61), and (68). These PDFs
allowed us to identify the (ii) typical halo mass, and typical ac-
cretion rate and formation time at given mass as functions of the
position within the frame of the saddle via equations (83)—(85).
All quantities are expressed as a function of the geometry of the
saddle for an arbitrary cosmology encoded in the underlying power
spectrum via the correlations &, and £, given by equations (E11)
and (E12). In turn, this has allowed us to compute and explain the
corresponding (iii) distinct gradients for the three typical quanti-
ties and for the local mean density (Section 5.3). The misalignment
of the gradients, defined as the normals to the their isosurfaces,
arises because the saddle condition is anisotropic and because it
does not only shift the local mean density and the mean density
profile (the excursion set slope) but also their variances, affecting
different observables in different way. Finally, we have presented
(iv) an extension of classical large-scale bias theory to account for
the saddle (Section 6).

Our simple conditional excursion set model subject to filamentary
tides makes intuitive predictions in agreement with the trends found
in N-body simulations: haloes in filaments are less massive than
haloes in nodes, and at equal mass they have earlier formation
times and smaller accretion rates today. The same hierarchy exists
for haloes in walls with respect to filaments. For the configuration
we examined, the effect is stronger as one moves perpendicularly
to the filament. The typical mass changes by a factor of 5 along
the filament, and by two orders of magnitude perpendicularly. The
relative variation of accretion rates and formation times is of about
5-10 per cent along the filament, and of about 20-30 per cent in the
perpendicular direction, for haloes of 10'"' M ™", Furthermore,
our model predicts that at fixed halo mass, the trend of the large-scale
bias with accretion rate depends on the distance from the centre of
the filament. Far from the centre, the large-scale bias grows with
accretion rate (which is the naive expectation from excursion sets),
while near the centre the trend inverts and haloes with smaller
accretion rates become more biased. Since haloes near the centre
are also on average less massive, this effect should contribute to
explaining why the trend of bias with accretion rate (or formation
time) inverts at masses much smaller than the typical mass.

These findings conflict with the simplistic assumption that the
properties of galaxies of a given mass are uniquely determined by
the density of the environment. The presence of distinct space gradi-
ents for the different typical quantities is also part and parcel of the
conditional excursion set theory, simply because the statistics of the
excursion set proxies for halo mass, accretion rate, and formation
time (the first-crossing scale and slope, and the height at the scale
corresponding to M/2) are different functions of the position with
respect to the saddle point. They have thus different level surfaces.
At the technical level, the contours depend on the presence of the
conditional variance of 3(r), besides its conditional mean, and of
the correlation functions of §'(r). At finite separation, the traceless
shear of the large-scale environment modifies in an anisotropic way
the statistics of the local mean density §(r) (and of its derivative §'(r)
with respect to scale). The variations are modulated by O = 7#;g;;7;,
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Figure 16. Scheme of the intensity of the accretion rate at different locations
near a filament-type saddle for different final halo masses. The darkness
of the colour encodes the intensity of the accretion rate (darker is more
accretion). At fixed mass, the accretion rate increases from voids to saddle
points and from saddle points to nodes (along dotted line which marks the
filament’s direction). At a given location, the accretion rate increases with
mass.

i.e. the relative orientation of the separation vector in the frame set
by the tidal tensor of the saddle. This angular modulation enters
different quantities with different radial weights, which results in
different angular variations of the local statistics of density, mass,
and accretion rate/formation time. It provides a supplementary vec-
tor space, VQ, beyond the radial direction over which to project
the gradients, whose statistical weight depend on each specific ob-
servable. These quantities have thus different isosurfaces from each
other and from the local mean density, a genuine signature of the
traceless part of the tidal tensor. The qualitative differences in terms
of mass accretion rate and galactic colour is sketched in Fig. 16.

7.2 Discussion and perspectives

In contrast to the findings of Alonso et al. (2015), Tramonte et al.
(2017), and von Braun-Bates et al. (2017), we focused our attention
on variations of mass accretion rates with respect to the cosmic web
rather than mass functions. We have found that, even in a very simple
model like excursion sets, halo properties are indeed affected by the
anisotropic tides of the environment (involving the traceless part of
the tidal tensor), and not just by its density (involving the trace of the
tidal tensor). This effect cannot be explained by a simple rescaling
of the local mean density (the average density in a sphere of radius
of the order of the Lagrangian radius, centred around the halo).
Our predictions are in qualitative agreement with the observational
results of Kraljic et al. (2018), who detect a misalignment between
the isocontours of mass, secondary halo property (type/colour in
their case), and local mean density averaged on sufficiently large
scales. This misalignment tends to disappear as the scale of the
smoothing becomes small, and the signal is increasingly driven by
the density alone: this can be interpreted as a consequence of the
dynamical stretching of all contours as the filament forms.
Although the excursion set approach is rather crude, and addi-
tional constraints (e.g. peaks) would be needed to pinpoint the exact
location of halo formation in the initial conditions, we argued that
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the effect we are investigating does not strongly depend on the
presence of these additional constraints. The underlying reason is
that the extra constraints usually involve vector or tensor quantities
evaluated at the same location r as the excursion set sphere, which
do not directly correlate with the scalars considered here (they only
do so through their correlation with the saddle point). They may
add polynomial corrections to the conditional distributions, but will
not strongly affect the exponential cut-offs on which we built our
analysis. Our formalism may thus not predict exactly whether a
halo will form (hence, the mass function), but it can soundly de-
scribe the secondary properties and the assembly bias of haloes that
actually form. A more careful treatment would change our results
only at the quantitative level. For this reason, we chose to prefer
the simplicity of the simple excursion set approach. Furthermore,
in order to describe the cosmic web, we focused on saddle points of
the initial gravitational potential, rather than of the density field, as
these are more suitable to trace the dynamical impact of filamentary
structures in connection to the spherical collapse model.

The present Lagrangian formalism only aims at describing the be-
haviour of the central galaxy: it cannot claim to capture the strongly
non-linear process of dynamical friction of subclumps within dark
haloes, nor strong deviations from spherical collapse. We refer to
Hahn et al. (2009) which captures the effect on satellite galaxies, and
to Ludlow et al. (2014), Castorina et al. (2016), and Borzyszkowski
et al. (2016) which study the effect of the local shear on haloes
forming in filamentary structures. Incorporating these effects would
require adopting a threshold for collapse that depends on the local
shear, as discussed in the Introduction. Such a barrier would not
pose a conceptual problem to our treatment;'! technically, however
it requires two extra integrations (over the amplitude of the local
shear and its derivative with respect to scale), and cannot be done
analytically. The shear-dependent part of the critical density (and
its derivative) would correlate with the shear of the saddle at r = 0,
and introduce an additional anisotropic effect on top of the change
of mean values and variances of density and slope we accounted
for. Evaluating this effect will be the topic of future investigation.

Our analysis demonstrated that the large-scale tidal field alone
can induce specific accretion gradients, distinct from mass and den-
sity ones. One would now like to translate those distinct DM gradi-
ents into colour and specific star formation rate (SFR) gradients. At
high redshift, the stronger the accretion, the bluer the central galaxy.
Conversely at low redshift, one can expect that the stronger the ac-
cretion, the stronger the AGN feedback, the stronger the quenching
of the central. Should this scaling hold true, the net effect in terms
of gradients would be that colour gradients differ from mass and
density ones. The transition between these two regimes (and in gen-
eral, the inclusion of baryonic effects) is beyond the scope of this
paper, but see Appendix H for a brief discussion.

Beyond the DM-driven processes described in this paper, differ-
ent explanations have been recently put forward to explain filamen-
tary colour gradients. On the one hand, it has been argued (Aragon-
Calvo, Neyrinck & Silk 2016) that the large-scale turbulent flow
within filaments may explain the environment dependence in ob-
served physical properties. Conversely, the vorticity of gas inflow
within filaments (Laigle et al. 2015) may be prevalent in feeding
galactic discs coherently (Pichon et al. 2011; Stewart et al. 2011).
Both processes will have distinct signatures in terms of the effi-
ciency and stochasticity of star formation. A mixture of both may

"I'The details of the impact on the present derivation are given in
Appendix G.
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in fact be taking place, given that the kinematic of the large-scale
flow is neither strictly coherent nor fully turbulent. Yet, even if
ram-pressure stripping in filaments operate as efficiently as in clus-
ters, it will remain that the anisotropy of the tides will also impact
the consistency of angular momentum advection, which is deemed
important at least for early-type galaxies. The amplitude of thermo-
dynamical processes depends on the equation of state of the gas and
on the amplitude of feedback which are not fully calibrated today.
Recall that shock heating, AGN and stellar feedback are driven by
cold gas infall, which in turn is set by gravity (as the dominant
dynamical force). Since gravity has a direct effect through its tides,
unless one can convincingly argue that its direct impact is negligible
on galactic scales, it should be taken into account.

Codis et al. (2015), following a formally related route, investi-
gated the orientation of the spin of dark haloes in relation to their
position with respect to the saddle points of the (density) cosmic web
(see also Wang & Kang 2018, for a slightly different approach). To-
gether with their predictions on spin orientation, this work could be
extended to model galaxy colours based on both spin and mass ac-
cretion. It could also guide models aiming at mitigating the effect of
intrinsic alignments (Joachimi et al. 2011) impacting weak-lensing
studies, while relying on colour gradients. More generally, galactic
evolution as captured by semi-analytical models will undoubtedly
gain from a joint description of involving both mass and spin acqui-
sition as relevant dynamical ingredients. Indeed, it has been recently
shown in hydrodynamical simulation (e.g. Zavala et al. 2016) that
the assembly of the inner DM halo and its history of specific angular
momentum loss is correlated to the morphology of galaxies today.
One should attempt to explain the observed diversity at a given
mass driven by anisotropic large-scale tides, which will impact gas
inflow towards galaxies, hence their properties. An improved model
for galaxy properties should eventually explicitly integrate the ge-
ometry of the large environment (following, e.g. Hanami 2001) and
quantify the impact of its anisotropy on galactic mass assembly
history.

Thanks to significant observational, numerical, and theoretical
advances, the subtle connection between the cosmic web and galac-
tic evolution is on the verge of being understood.
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APPENDIX A: DEFINITIONS AND NOTATIONS

Table Al presents all the definitions introduced in the paper.
Table 1 gives also the motivation behind the choice of variables.
The following conventions is used throughout:

(1) unless stated otherwise, all the quantities evaluated at (halo)
scale R have their dependence on R omitted (e.g. ¢ = o(R));

(i1) the quantities that have a radial dependence are evaluated at
a distance r when the radius is omitted. Sometimes, the full form is
used to emphasize the dependence on this variable;

(iii) unless stated otherwise, the quantities are evaluated at z =0
and D(z) =1 (e.g. 6. = 1.686);

(iv) aprime denotes a derivative with respect to o of the excursion
set (e.g. 8’ =dd/do);

(v) variables carrying a hat have unitnorm (e.g. || = 1), matrices
carrying an overbar are traceless (e.g. tr(g;;) = 0);

(vi) the Einstein’s convention on repeated indexes is used
throughout, except in Appendix F2.

Table A1. Summary of the variables used throughout the paper.

APPENDIX B: VALIDATION WITH GRFS

Let us first compare the prediction of Section 4 to statistics derived
from realization of GRF, while imposing a saddle-point condition.
The values used at the saddle point are reported in Table D1. We
further imposed the saddle point’s eigenframe to coincide with the
x, y, z frame, which in practice has been done by imposing g;; to
be diagonal. We have used two different methods to validate our
results, by generating random density cubes (Appendix B1) and by
computing the statistics of a constrained field (Appendix B2).

B1 Validation for o,

The procedure is the following: (i) 4000 cubes of size (128)* and
width Lyo, = 200 Mpch~! centred on a saddle point were gen-
erated following a ACDM power spectrum; (ii) each cube has
been smoothed using a Top-Hat filter at 25 different scales rang-
ing from 0.5 to 20 Mpc h~"; (iii) for each point of each cube, the
first-crossing point o g4, Was computed; and (iv) the 4000 realiza-
tions were stacked to get a distribution of o and to compute
the median value. It is worth noting that the value of I'(c(R)) in
the GRF is not the same as in theory. This is a well-known effect
(see e.g. Sousbie et al. 2008) that arise on small scales due to the
finite resolution of the grid and on large scale because of the finite
size of the box. The I' measured in a GRF is correct at scales ver-
ifying AL < R < Lo, where AL is the grid spacing. In our case,
the largest smoothing scale is 20 Mpc h™' = Lyoy/10. However,
the smallest scale is comparable to the grid spacing. To attenuate
the effect of finite resolution, we have measured I'(o(R)) in the
GREF and used its value to compute the theoretical cumulative dis-
tribution function (CDF). The results of the measured CDF Fj, and

Variable Definition Comment
Pm (2.8 x 10! h2M®/Mpc3) x QM Uniform matter background density
R, M, M, M = 4/37‘[R3[)m Smoothing scale, mass, and typical mass
Sm (Pm — Pm)/ Pm Linear matter overdensity
W(x) 3j1(x)/x Real-space Top-Hat filter (Fourier representation)

- Bk
) / an )z (Sm(k)W(kR)e’k r Linear matter overdensity smoothed at scale R, position r
o? Var(3) Variance of the overdensity at scale R
v 8/o Rescaled overdensity
8¢, Ve 1.68, 8. /o Critical overdensity
8, d§/do, dv/do Slope of the E.S. trajectories
r—2 Var(8') — 1 = ((ov')?) = Var (6’|v) Conditional variance of 8" at fixed v
Rs,os os = O’(RS) Smoothing scale used at the saddle point

P(k) W2 kR

Rf 42) / dkL ( 5) Characteristic length-scale of the saddle (squared)
8isqij, VS (41) and (43) Mean acceleration, tidal tensor, and overdensity at saddle (see Table D1 for their value)
gij, Q dij = qij — vs0ij/3.7iqijF; Traceless tidal tensor and anisotropy ellipsoidal-hyperbolic coordinate
&ap, 5‘;/3 (E11) and (E12); 5‘;/3 = déyp/do Two-point correlation functions at separation r and scales R, Rs
o, o, ve/[o(v' — v))]; (27) and (62) Accretion rate and typical accretion rate
Rip, 012 R/2'/3, o(Ry)2) Half-mass radius and variance
812, V12 8(012),812/01)2 Overdensity at half-mass
Dy, D, 8¢/81/2; (38) and (72) Formation time and typical formation time
Ve 8¢/(012Dx) Density threshold at formation time
w, (E14) and (E15); o' = dw/do Zero-distance correlation functions between scales R and R; />
Q, (F27) and (F32); Q' = dQ2/do Zero-distance conditional covariance between scales R and Ry > given the saddle point
8o 8(Rp > R) Large-scale overdensity
O Local halo number density contrast
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Figure B1. Theoretical CDF of o at upcrossing (bold lines) and numerical
CDF (steps) at first-crossing at four locations around the saddle point (the
distances are in Mpc h~Vinthe x (void) and z (filament) directions). The CDF
have been normalized to share the same 50~ per cent quantile (the horizontal
line). See the text for the details of the normalization.
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Figure B2. Mean value of « using a numerical method (purple to yellow)
versus its theoretical value (grey contours). Both are normalized by the
theoretical value at the saddle point.

theoretical CDF F, (with the measured I') at four different positions
are shown on Fig. B1. The measured CDFs have been normalized
so that F;,(0.5) = Fu;,l (0.5): we impose that the CDF match at the
‘median’ (defined as the o such that F(o) = 0.5'?). As shown on
Fig. B2, the abscissa of the peak of the PDF in the direction of
the void is around o ~ 2.7. As 0 (Rnin) ~ 3, it means that in the
direction of the void, the PDF is only sampled up to its peak. The
experimental CDF at such location is hence only probing less than
507 per cent of the distribution and the median is not reached. In this
case, we are normalizing the experimental CDF to have the same

12 This definition matches the classical one for distributions that have a
normalized CDF, which is not true for Fp.

4899

value at the largest o as the theoretical CDF. As shown on Fig. B1,
the experimental and theoretical CDFs start diverging at F 2> 0.5.
Atlarger o, the upcrossing approximation used in the theory breaks
as more and more trajectories cross multiple time the barrier (they
are counted once for the first crossing and multiple times for up-
crossing). The orange and blue lines, in the direction of the filament
show this clearly as they diverge one from each other at large . As
o, is a measure of the location of the peak of the PDF (which is
where the CDF is the steepest), it is sufficient that the experimental
and theoretical CDF match up to their flat end to have the same o,
values.

B2 Validation for «, using constrained fields

A second check was implemented on the accretion rate as follows:
(i) for each location, the covariance matrix of v, §', vs, g;;, g was
computed at finite distance. These quantities all have a null mean;
(ii) the covariance matrix and the mean of v, §’ conditioned to the
value at the saddle point was computed using the values of Table D1;
(iii) the variance and mean of v, §' were computed given v = v,
and the saddle point; and (iv) a sample of 10° points were then
drawn from the distribution of §" > 0 (upcrossing). (v) The values
of o o« 1/8 were computed to obtain a sample of «. Each draw
was weighted by 1/« (the Jacobian of the transform from §’ to «).
Finally, the numerical value of («|o, S) was estimated from the
samples and compared with the theoretical value. The results are
shown on Fig. B2 and are found to be in very good agreement.

We computed Fig. B3 by following steps (i)—(iii) at 10 Mpc A~!
in the direction of the filament (blue) and of the void (orange) and
plotting the mean and standard deviation of § given the saddle and
the threshold. Fig. 15 was computed by following steps (i)—(iii) at
the saddle point (r = 0). An extra constrain on the value of §’ was
then added to compute the different curves.

APPENDIX C: OTHER CRITICAL POINTS

For the sake of generality, let us discuss here the conditional excur-
sion set expectations in the vicinity of other critical points of the
potential. At the technical level, all the formulae we derived in Sec-
tion 4 depend on the eigenvalues of ¢;; with no a priori assumption on
their sign. The expressions will thus remain formally the same, with
all information about the environment being channelled through the
values of vs and 7;g;;7;. For instance, the typical quantities M,, M.,
and z, parametrizing the PDFs of interest will be defined in exactly
the same way as in equations (80)—(82). However, their level curves
will have different profiles in different environments.

As physical intuition suggests, and equation (47) explicitly
shows, the dependence of the various halo statistics on the dis-
tance from the stationary point (whether the probability of a given
halo property increases or decreases with separation) is encoded
in the signs of the eigenvalues g; of g;;. Besides filaments (hav-
ing two positive eigenvalues), one may thus be interested in wall-
type saddles (one positive eigenvalue), maxima (all negative), and
minima (all positive), corresponding to voids and nodes, respec-
tively. In general, ¢, + ¢» + g3 = vs parametrizes the mean varia-
tion with distance (averaged over the angles), whereas the trace-
less shear g;; is responsible for the angular variation at fixed
distance.

In all cases, however, for a given direction M,, M,, and —z, will
either all increase (if ryg;r; < 0) or all decrease (if rig;r; > 0).
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Figure B3. Top: scheme of the mean value of the density in the direction
of a filament (red) and void (blue) close to a saddle point smoothed at
o = os with the constrain that §(c(R)) = §c. (1) The value of the density
imposed at the saddle point forces both mean densities to increase. (2) In
the direction of the filament, a large-scale overdensity, the mean density at
a given point increases quickly, but (3) the constrain §(o') = §. prevents any
further increase at 0 < o(R), hence the slope §’ is small at upcrossing. (4)
In the direction of the void, a large-scale underdensity, the mean density
at a given point cannot increase with o. (5) At 0 < o(R), the upcrossing
constrain forces a sharp increase of the density to reach 6(R) = &, hence
the slope is high at upcrossing. Bottom: a validation using constrained GRF
at a distance of 10 Mpc 4~! in the direction of the filament (blue) and of the
void (orange). See the text for the details.

Their increase will be fastest (or their decrease slowest) in the di-
rection of gs, the least negative eigenvalue, and slowest in that of
g1. The rationale of this behaviour will always be that an increase
of the conditional mean density will make it easier for excursion set
trajectories to reach the threshold. Upcrossing will happen prefer-
entially at smaller o, corresponding to the formation of haloes of
bigger mass. At fixed mass (fixed crossing scale o), the crossing
will happen preferentially with shallower slopes, corresponding to
higher accretion rates and more recent formation (i.e. assembly of
half-mass).

C1 Walls

A wall will form in correspondence of a saddle point of the potential
filtered on scale Rs, for which ¢; < g2 < 0 < ¢3. This combina-
tion of eigenvalue signs generates collapse in one spatial direction
and expansion in the other two. As argued, a saddle point of the
potential induces a saddle point of the opposite type in M,, M.,
and —z,, which will increase along two space directions following
the increase of the mean density, and decrease along one. Since for
walls (like for filaments), the value of vg is likely to be smaller
than +/tr(g?), they will tend to have an angular modulation larger

MNRAS 476, 4877-4906 (2018)
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Figure C1. Isocontours in the x—z plane of the typical accretion rate o,
around a wall-type saddle point [at (0, 0)]. The saddle point is defined
using the values of Table D1. The profiles in the main direction of the
wall (z-direction) and of the void (x-direction) are plotted on the sides. The
smoothing scale is R = 1 Mpch~'. The typical accretion rate is computed
using a ACDM power spectrum. Similarly to what happens in filaments,
haloes accrete more in the direction of the wall than in the direction of the
void.

than the radial angle-averaged variation. Walls are thus likely to be
highly anisotropic configurations also of the accretion rate and of
the formation time. This is illustrated for example in Fig. C1 for the
accretion rate. On average, vs will be smaller for a wall-type saddle
(which has two negative eigenvalues) than for a filament-type one.
Thus, haloes in walls tend to be less massive, and at fixed mass, they
tend to have smaller accretion rates and earlier assembly times.

C2 Voids

A void will eventually form (although not necessarily by z = 0)
when r = 0 is a local maximum of the potential filtered on scale
Rs (from which matter flows away), for which ¢, < ¢» < g3 <O.
The centre of the void is a minimum of M,, M,, and —z,. All
these quantities will gradually increase with the separation. As |vg|
may be large (in particular for a large, early-forming void), halo
statistics in voids may not show a large anisotropy relative to their
radial variation. However, because voids have the most negative vgs,
they are the environment with the least massive haloes, the smallest
accretion rates and the earliest formation times (at fixed mass).

C3 Nodes

Nodes form out of local minima of the gravitational potential, for
which 0 < ¢, < g2 < g3 (corresponding to three directions of infall).
The centre of the node is thus a maximum of M,, M*, and —z,, all
of which decrease with radial separation. Like voids, large early-
forming nodes (whose density vs must reach v, when os is very
small) are relatively less anisotropic, since the relative amplitude of
the angular variation induced by g;; is likely to be small compared
to the radial variation. Since vgs is the largest for nodes, they host
the most massive haloes, and at fixed mass, those with the largest
accretion rates and the latest formation times.
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APPENDIX D: PDF OF SADDLES

This section presents the distribution of the eigenvalues of the
anisotropic (i.e traceless) part of the tidal tensor at critical points of
the potential field. By definition, a critical point is such that g; = 0
and its kind is given by the signature (the signs of the eigenvalues
of the hessian of the potential, ¢;;): + + + for a peak, — + + for
a filament-type saddle point, — — + for a wall-type saddle point,
and — — — for a void. Because the anisotropic tidal tensor reads
Gi; = qij — 8ijvs/3, the type of the critical point is then given by
the number of eigenvalues of g;; above —vs/3.

The distribution of the eigenvalues of the (normalized) tidal tensor
denoted ¢; < ¢» < g3 is described by the Doroshkevich formula
(Doroshkevich 1970; Pogosyan et al. 1998)

675 15
87{ exp {*12 —31 } (g3 — q(g3 — ¢2)(g2 — q1),

2
D)

p(qi) =

where {I,} denotes the rotational invariants which define the char-
acteristic polynomial of g;;, namely its trace I, = g + g2 + g3,
trace of the comatrix I, = q19> + ¢293 + ¢193, and determinant
I = q142q5. Subject to a filament-type saddle-point constraint, this
PDF becomes

Gl—++H= 340+/5m %(q2)9(—q1)p( (D2)
P\gi 29[+12f41fhlh q2 q1)p(q:),

after imposing the condition of a saddle |detg;;|6p(gi)¥(q2)
U( — q) for which as the acceleration is decoupled from the tidal
tensor, only the condition on the sign of the eigenvalues and the
determinant contribute. From this PDF, it is straightforward to com-
pute the distribution of saddles of heights vs = ¢; + ¢q2 + g3

psl =+ +) = pH(vs)d(vs) + p~(vs)d(—vs), (D3)
with
pr(vs)
_ 5Vi0me- S (3us —v?) Erfe (L) + e % (324 1552)
(29f2+ 12«5) N ’
p (vs)
_ SV S (3us — v?) Erfe (=0ps) 4o (321013

(29V2 +124/3)7

In particular, the height of filament-type saddles has mean and
standard deviation given by

(vs|—++) = 250 (3(29«6 + 12ﬁ)ﬁ> . 0.76,

\/696«54— 751(10 — 34/6) — 2114
157 ~

For other types of critical points, a similar calculation can be
done. As expected, the heights of wall-type saddle points fol-
low the same distribution as —vs. Peak and void heights have

mean =4+/2114 4+ 696+/6/15,/m ~ +2.3 and standard deviation

\/757((10 +3v6) — (2114 + 696+/6)/15/7 ~ 0.62.

This work picks a typical value for the filament-type saddle at
roughly 1o from the mean vs = 1.2. For wall-type saddles, vs = 0
is chosen. The distribution of eigenvalues of the anisotropic tidal

Std (vs|—++) =

tensor §; for a filament-type saddle point with a given positive'®
height can then be easily obtained from equation (D2)

2 52

1552 v’ 45,
55 1] S ki
3q1vs——5t _S

3 791Vs —are 2 3

15(3(?] + Vs) ae
16(29v2 + 12/3)/TP*(vs)

where §; < —vs/3 and a; and a; are two polynomials of g; and vs
given by

ai(qi, vs) = 32[S|vs — 641|341 + vs) +12],

p(Gilvs) =

and
a = 6075g; — 8100g; vs + 9007 (3v
—160v% + 384.

— 4) 44807, vs

Similarly, the PDF of the intermediate and major eigenvalues are,
respectively, given by
15(3G> + vs)aje” Vs TiRrs 1583~ 05 +30)lvs —60|

16(29v/2 + 124/3)/7TP*(vs)

where g, > —vs/3 and a; = a,(4,, vs), and

p(Galvs) =

2
v 451,} wy

1533 +vs) |aie” 2 =72 +ae” 3 Fidsvs -

16(29+/2 + 124/3){/TP* (vs)

where g3 > vs/6, having defined a; = a,(g3, vs) and @,(gs, vs)
= —ay(—q3, —vs). Similar expressions can be obtained for wall-
type saddles (together with peaks and voids). The top panel of
Fig. D1 shows the distribution of eigenvalues for a filament-type
saddle point of height vs = 1.2 and the bottom panel shows the
distribution for a wall-type saddle point of height vs = 0. Typical
values of g;; were selected to correspond roughly to the maximum
of the above-mentioned distributions of gy, g», g3 and are reported
in Table D1. Note that all the results obtained in this section are
independent of the power spectrum. The only assumption is that the
density is a GRF.

m,3

p(g3lvs) =

APPENDIX E: COVARIANCE MATRICES

Let us present here the covariance matrix of all variables introduced
in the main text. The density § and slope §’ are evaluated at position r
and smoothed on the halo scale R, the half-mass density §,, is also
evaluated at the halo position r but smoothed on R/, = 2-1/3R,
while the saddle rareness vgs, acceleration g;, and detraced tidal
tensor g;; are evaluated at the origin and smoothed on a scale Rs >
R. The correlation matrix of X = {6, 8, Vi, vs, &is Gij }, a vector
with 12 Gaussian components, is

o o w Ciu Ci5s Ci
o (8% o Cyu Cp Cyx

/ 2
w w G|/2 C34 C35 C3(J

C=lcu cu ¢ 1 0 o | ED
C;S 02;5 0315 0 Css 0
C Cy Cy 0 0 Ceg

with w = (5\)1/2), o = (5/111/2), and

i

Ciy = (dvs) = &, C15=(58i>=F§11, (E2)
_ 8ij ..

C16=(3‘Iij)= ?_rirj 2, (E3)

13 A similar expression can be obtained for negative heights.
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Figure D1. Top panel: distribution of heights of critical points of various
signatures (peaks, filament-type saddles, wall-type saddles, and voids) for
GRF with any power spectrum. Middle panel: PDF of the eigenvalues, g;
(blue), > (yellow), and g3 (green), of the anisotropic tidal tensor given a
filament-type constraint at vs = 1.2. Bottom panel: same as middle panel
for a wall-type constraint at vg = 0.

Table D1. Eigenvalues g; = g; — vs/3 of the traceless tidal tensor g;;,
height vs, and smoothing scale used to define the saddle points. See Ap-
pendix D for details.

Traceless tide Height Scale Saddle type
Quantity g3 @ 3 Vs Rs
Value -0.7 0.1 0.6 1.2 10 Mpch~!  Filament-type
Value -06 —02 08 0 10 Mpc h™! Wall-type

MNRAS 476, 4877-4906 (2018)

’ ’ ’ i oy
Co = (8'vs) = 500, Crs =(8g) = Rff]p (E4)
/= Sfj ~ A ’
Cry = (0 CIij) = ? —rirj fgos (ES)
(1/2) . g1/
_ __ 500 _ _ 11
Ciy = (vipvs)=——, C35s ={81p8i) = 5 ——, (E6)
o112 R* a1/2
8ij T
Cs = (812Gij) = (? - fifj) . (E7)
dij _ 2P;ju
Css = (gigj) = Cos = (GijGu) = —— (E8)

3’ 15
Hence, Cy4, C4, and C34 are scalars, Cys5, C»s, and C;35 are three
vectors, C16, Cys, and C3¢ are 3 x 3 traceless matrices (or five
vectors in the space of symmetric traceless matrices), Cssisa3 x 3
matrix, and Cgg is a 5 X 5 matrix. The matrix Cgg involves
8ikdj1 + 8id jk _ 8ijdu

2 37
a projector that removes the trace and the antisymmetric part from a
matrix. Since Pjj, o Pap, mn = Pjj, yn and so Pl-]_-,},m = P,j un, it acts as
the identity in the space of symmetric traceless matrices. Py, j; can
be written in its matrix form by numbering the pairs {(1, 1), (2, 2),
(1, 2), (1, 3), (2, 3)} from 1 to 5, the dimensionality of the space,
resulting in a 5 x 5 matrix. The element (3, 3) has been dropped
because it is linearly linked to (1, 1) and (2, 2). The explicit value
of Cgg is therefore

(E9)

Piju=

4 =200 0
=2 4 000
Co=—| 0 0 300 (E10)
Bl o o0 030
0O 0 00 3

The finite separation correlation functions £,4(r, R, Rs) and
£,4(r, R, Rs) are defined as

_ k* P (k) W(kRs) jo(kr)
Eup = / dk > W(kR) ey (E11)
. KPk) ., W(kRs) jo(kr)
&, =/dk PP W'(kR) os )P s (E12)

where W (kR) = [dW(kR)/dR]/(do /dR). Similarly, the correlation
functions at the two different mass scales M and M/2 are

E4Y = E4p(r. Rijp. Rs), (E13)
where Ry, = R/2'/. At null separation (r = 0), it yields
86 kK2 P(k W(kR
=202 :/dk Ower) LR (E14)
o1 27 o1)2
8’8 k> P(k W (kR
w =00 [t Dwery LR E15)
12 27 01,2
Recall that for a Top-Hat filter, one has
3j1(kR) / 3j2(kR)
W(kR) = d W(k*R)= —F——, El6
T kR = Rido/dR] (EL6)

and notice that W (kR) is suppressed by a factor of kR’ with
respect to W(kR)/o when k <« 1/R. In fact, in this limit
Jn(kR) ~ (kR)" /(2n + 1)!!. Hence, the action of d/do is proportional
tothat of R*V?, and 0§, oc R*V2£,5 ~ (R/Rs)*Exp. It follows that
for R < Rs one has 0'§,; < &ys. In presence of a strong hierarchy
of scales, the terms containing &, are negligible (see Fig. E1).
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Figure E1. Plot as a function of r of the correlation functions defined in equation (E12). From left to right on the top row &g, &1, and £59. The bottom row
shows the same quantities derived with respect to . The correlation functions are evaluated at Rs = 10"Mpc 2 ~! for different values of R logarithmically
spaced between 10~! Mpc =" (light colour) and 10 Mpc 2~! (dark colours) with a ACDM power spectrum and plotted as a function of the distance .

For a scale invariant power spectrum P(k) = A(k/ky)™", £.p and
&, have an analytical expression that depends on the relation be-
tween r, Rgs, and R. For example, when Rs > r + R:

£, R, Rs)
os
—B—n 3 —B—n5 3 R? r?
=BF4(a pon dta—p n;f,a+f;—,r—2)
2 2 2 2" Rs R:s
and
T1—n
, 20a—p—n+3)n—a+p) [ R\ 2
,R,Rs) = — B
S R, Rs) 50— 3) Rs
2+a—B—n S+a—-—B—n 7 3 R? r?
xF, , is ot o, — |,
2 2 2 2" Ry R

where F; is the Appell Hypergeometric function of the fourth kind
(Gradshteyn & Ryzhik 2007, p. 677),'* while

r\**
B=—[_—"—
(Rs)
mi(n + 3) csc (1 F(%)

)
2= DF () T - D ()

and

R\" dlogo?
O'Z(R) = 082 — s :hd =n
Rg dlog R

where Rg = 8 Mpch~! and oy = o(Rg) are normalization factors.
For the same power-law power spectrum, setting « = 1 + n and
B=Ri2/R=2""3 wand o' defined in equations (E14) and (E15)
have the analytical expressions

o (A+p (B -ap+1) -0 P (B +ap+]1)

-3, (E17)

) . (E18)
p 222 -a)p 2
and
. (3% +Bn’ + 3B +n) (1 - Py
28" (n —3)n— 1)
LG+ pr* —3pn — n) (148" (E19)

2"z (n = 3)n—1)

14 http://mathworld.wolfram.com/AppellHypergeometricFunction.html

APPENDIX F: CONDITIONAL STATISTICS

The goal of this section is to derive explicitly the conditional statis-
tics needed in the paper. Assuming that the underlying density
field obeys Gaussian statistics, the PDF of the 12-dimensional
vector X = {8(r), 8'(r), vipp(r), vs, i, q,'j} already defined in
Appendix E involves inverting the 12 x 12 covariance matrix
C=(X-XN, given by equation (E1). Since however the focus
here is on conditioning heights and slopes, which are scalar quan-
tities, their correlation with the saddle is the correlation with the
three unit-variance Gaussian components

S(#) = {vs, V3#gir/R., —/5(3%:Gi;7;/2)} - (F1)

Hence, the six-dimensional vector X = {6(r), 8'(r), vi2(r), S} is
sufficient, and has a 6x6 covariance matrix given by

o? o w E(r)
oo o (87) o' &'(r)
¢ = w o' 012/2 51/2(”) (F2)
gh(r) &7(r) &) T
where
E&r) = {foo, V3&r/R,, \/5520} ,
£'0) = { &0 VB8P R V5D |
1200 = {e/ V3r/R&G V5e7 | o (F3)
The PDF of X is the six-variate Gaussian
~ 1 1. ~-1 -
pG(X) = ——————=exp <—7X-C X) , (F4)
¢ @n)*V/ det€ 2

so that in each case, the task is to invert the appropriate section of the

. e o T L .
covariance matrix C = (X - X ), marginalizing over the variables
that are not involved.

F1 The general conditional case

To speed up the computation of conditional statistics, rather than
doing a brute force block inversion of C, it is best to use the decor-
related variables

5 — (8|{v}) ,_ dyy
Vy = ———=—=, and v, = ,

+/ Var (§|{v}) do
where the possible {v} considered in this work are vy, S or
{vi/2, S}. By construction, v, and v, are uncorrelated, because v,
has unit variance. Furthermore, if each v; is independent of o (as

(F5)

MNRAS 476, 4877-4906 (2018)
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it will be the case in the following), v, does not correlate with the
constraint either, since (v,v;) = (v,v;)" = 0. Then, being a linear
combination of &', v, and {v} that does not correlate with v nor vy,
v, must be proportional to §' — (§'|v, {v}) (the only such linear
combination by definition), and (v?) to Var (§'|v, {v}). That s,

('lv, {v}) = 8" — \/Var 3l{vhv,,

iy 4 Vel

Iar G| (v)) (6 — (5{v})), (F6)

Var (8'|v, {v}) = Var(8|{v}) (v)
[Var (8]{v})]”

= Var (100) = 0 Giren

(F7)
providing the conditional statistics of §' given v and {v} in
terms of those of § and §" given {v} alone. Since [Var (§|{v})] =
2Cov (8, §'|{ v}), these formulae reduce to the standard results for
constrained Gaussian variables, but taking derivatives makes their
calculation easier.

To compute v, and v, explicitly, one needs to insert (using Ein-
stein’s convention on repeated indices)

(Bl1{v}) = viCr vy, (F8)

Var (§|{v}) = o — ¥, C; ¥y, (F9)

in equation (F5), where Cj; = (v,v,) is the covariance matrix of the
constraint, and ¥; = (§vy) is the mixed covariance. The conditional
statistics obtained from equations (F6) and (F7) are then

o —Y,Crly

(8'lv, {v}) = ¥, Cr vy + ———— ==, (F10)
\Jo?— ViCr Y
a1 2
Var (8'[v, {v}) = (82) — ¥, Cr} ) — ©=ViCu¥s) gy

o2 =y Cr vy
[where v, is given by equation (F5)] from which one can evaluate
equations (15) and (16), after setting § = §.. Since (8'|v.) = v. and
Var (8’ | vc) =1/T?, equation (11) is recovered in the unconstrained
case. For later convenience, let us also note that the conditional
probability of v and v’ given the constraint {v} is

_ pc(wy) p6(8 — (8'|ve, {v})
=0

N

since by construction vy and §" — (8'|vc, {v}) o v/ are independent.

pc(v,v'[{v}) (F12)

F2 Conditioning to the saddle

Equation (F8) and its derivative guarantee that conditioning on the
values of S (that is, fixing the geometry of the saddle) returns
BIS) =§-8, Var(¥|S) =0’ - ¢,
(@18) = &S, Var (818) = (57) — £,
(V1/2|$> = 51/2 -S, Var (V1/2|5) =1 —512/2‘ (F13)
To make the equations less cluttered, here and in the following,
scalar products of these vectors are denoted with a dot, rather than in

Einstein’s notation. Equation (F13) effectively amounts to replacing
in all unconditional expressions

§>686—-¢-8,
8§ —458-&-8,
Vi — V1/2—§|/2'S, (F14)

MNRAS 476, 4877-4906 (2018)

reducing the problem to three zero-mean variables that no longer
correlate with S (but still do with each other!). The covariance of
8, 8" and v, at fixed S reads

Cov(8,81S) =0 —£-¢&,
Cov (‘3’ ‘)l/2|8) =w-—5§ &p,
Cov (8", v1plS) = o — & &, (F15)

with w and its derivative o’ given by equations (E14) and (E15).
The first equation in (F15) is one half the derivative of Var (§|S)
with respect to o from equation (F13), consistently with taking the
conditional expectation value of the relation 88’ = (1/2)d8?/do.
The third is the derivative of the second, since £;,, depends on
01,2 and not on o (the relation between the two scales arising since
01/, = 0(M/2) should be imposed after taking the derivative).

F3 Slope given height at distance r from the saddle

The saddle point being fixed, it can now be assumed that the excur-
sion set point is at the critical overdensity v = v.. The conditional
mean and variance of the slope are then

S, S = (315) 4 SV @LS) s
(8" |ve, >—<|)+W(c_<|>)
g5+ T 68, (F16)

after using equations (F13) and (F15), and

/ B ) Cov (5’,U|5)2
Var (8've, ) = Var (818) — = e
) , (0 —&- &)
— g CSEER (F17)

respectively. This result is equivalent to decorrelating the effective
variables § — & - S and & — &’ - S introduced in equation (F14),
whose covariance is in facto — &’ - €.

Equation (F16) contains an angle-dependent offset 7;G;;7 ;&> and
a density dependent one &y vs, entering through S. On the contrary,
the conditional variance does not depend on the angle nor the height
of the saddle. At large distance from the saddle, when & = £’ =0,
equations (F16) and (F17) tend as expected to the unconditional
mean v, and variance 1/I"? = (§'?) — 1.

From equations (F16) and (F17), one can compute the effective
upcrossing parameters presented in the main text

o—¢-&

0-2_',;;2

Xs(r) = ps(r)/+/ Var (§'|ve, S) . (F19)

nsr)y=§-S+ 6. —§-5), (F18)

F4 Upcrossing at ¢ with given formation time but no saddle

Recalling that @ = (88,,2) /01,2 and o’ = (8'81,2)/0 12, as defined
by equations (E14) and (E15), the conditional statistics of § and &’
given that vy, = vy are

(8lve) = wve, Var(§lvp) =0 — w”,
(8'lve) = v, Var (8'|v) = (87) — 0?,
Cov (8, (S’lvf) =0 —owo . (F20)

Hence, the conditional mean and variance of §’ given v, = §./0
and vy are
oc—ow

(8'lve, vp) = @'vr + ——— (8 — wvy), (F21)
g — W

2
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B (0 — W' w)?

Var (8'|ve, v) = (87) — 0 (F22)

o? — o2
which is equivalent to decorrelating the zero-mean effective vari-
ables § — wvr and 8’ — w'v;, whose covariance is 0 — @'w. From
equations (F21) and (F22), one can compute the parameters of the
effective upcrossing problem

we(Dp) = (8'|ve, vr) (F23)

Xi(Dy) = pi(Dy)/+/ Var (8| ve, vy) , (F24)

introduced in Section 2.2.

F5 Upcrossing at ¢ given formation time and the saddle

Similarly, thanks to equations (F13) and (F15), the mean and co-
variance of pg(v|vg, S) are
Cov (8, vl/ZIS)
A\ TUEIET _ S)) .

Var (v11S) (v = (v121S))
=§-S+Qus, (F25)

(Blvr, S) = (81S) +

Cov (8, v1/2|8)2
Var (1)1/2|S)
=02 —£2-Q?, (F26)

Var (8|ve, §) = Var (§|S) —

)

where [recalling that £ has the dimensions of § but &;, has those
of v, see equation (F3)]

=(Vf—$1/2'3) w—f'fl/z

Vis = 5 s 5
1 _51/2 1_51/2

As discussed in Appendix F1, the statistics of pg(8'|ve, v¢, S) can
be derived from those of pg(§|vs, S) as follows:
Var (8|v;, S)
2Var (8|vg, S)

thanks to the relations (8|v;, S) = (§'|v¢, S) and Var (8|v;, S) =
2Cov (88’|vf, S), and

Q= (F27)

(8'Ive, vr, S) = (8lvr, S) + (8c — (8]vr, S))  (F28)

_ [Var @)y, )1

Var (8'|ve, v¢, S) = Var (8'|vs, S . F29
ar (§ve, vr, ) = Var ('lvr, ) = S0 160 =) 29
Hence, taking derivatives of equations (F25) and (F26) give
(8 e, v, S) =& - S+ Qv s
o—&.-£-QQ

+m(3c —§-8—-Qus), (F30)
and
Var (8'|ve, v, S) = (87) — &7 — Q~

(0 —&-&§—QQ)?
— RS SR (F31)

where
o — o' =& -&p (F32)

y1-§ 12 /2
which can finally be used to compute the effective slope parameters

pes(Dr,r) = (8've, v, S) (F33)

Xt s(Dt, 1) = pus.s(Dr, r)/+/ Var (§'|ve, vr, S). (F34)

APPENDIX G: GENERIC AND MOVING
BARRIER

The results presented hereby hold for a constant barrier, however,
one can easily recover the results for a non-constant one — where
the upcrossing conditions becomes 8. > 8, — by replacing u, by
Wy — 8, in the general formula of equations (15) and (16), yielding

o = (8've, {v}) — 8, (GI)
and by taking into account contributions from &/, in v,
8, 8
W= 2 (G2)
o o

and in the definition of accretion rate
5
o8 —48,)

in equation (19). In practical terms, dealing with a moving barrier
simply amounts to replacing

p— (8've) =8, (G4
pg = (8'|ve, vg) — 8., (GS)
ps —> (8've, S) = 8¢, (G6)
mes = (8've, vr, S) = 8¢, (G7)

in equations (12), (33), (50), and (67), which automatically affects
also the corresponding X, Xy, X5, and X s, as wellas Y, and ¥,, s
in equations (24) and (60).

For instance, for a barrier of the type 8. + B0 §;; rgij, r (Castorina
et al. 2016), where g;; r is the traceless tidal tensor smoothed on
scale R, and S is some constant, one would use

8. = B(Gij.rGij.r +203]; zGij k) - (G8)

More generally, barriers should involve {1, }, the rotationally invari-
ants of g;; r defined in Appendix D.

APPENDIX H: IMPLIED GALACTIC COLOURS

Letus in closing attempt to convert the position-dependent accretion
rates, computed in the main text, in terms of colour modulo some
reasonable assumption on the respective role of AGN and how star
formation proceeds at low and high redshifts. Galaxy colours are
proportional to the amount of recent star formation, which in turn is
driven by the recently accreted gas from cosmic infall. One compli-
cation comes from the impact of feedback on heating the gas to be
accreted on to galaxies. Cosmological hydrodynamical simulations,
which include the feedback of supermassive black holes, suggest
that, at intermediate and low redshift, mass accretion through merg-
ers triggers AGN feedback in massive galaxies. This in turn heats up
the circumgalactic medium and prevents subsequent smooth gas ac-
cretion from feeding central galaxies efficiently (e.g. Dubois et al.
2010), quenching star formation and reddening massive galaxies
(hosted in haloes with mass of 10'> M h~"' or more). Conversely,
at higher redshift, cold flows are less impacted by galactic feedback
and reach the centre of dark haloes unimpaired, so that matter in-
fall translates into bluer galaxies (though it has been suggested that
in massive haloes, the disruption of cold flows can be significant,
Dubois et al. 2013). Fig. HI sketches these ideas, while distin-
guishing low- and high-mass haloes. As argued in the main text,
this

MNRAS 476, 4877-4906 (2018)
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High
redshift

Figure H1. Scheme of the intensity of expected colour/SFR at different
location near a filament-type saddle for different final halo mass. The dis-
played colour encodes galactic colour (or equivalently sSFR from high blue
to low red). Massive galaxies in the filament (respectively, nodes) are ex-
pected to accrete more cold baryonic matter at high redshift and be bluer
than less massive ones and than their counterparts in voids (respectively,
filaments). At lower redshifts, AGN feedback is expected to quench cold
gas accretion, thus reddening the massive ones — they are more likely to be
central ones. The impact on lower mass satellite galaxies may also depend
on the efficiency of processes such as starvation or ram-pressure stripping.

MNRAS 476, 4877-4906 (2018)

scenario remains speculative, if only because the impact of AGN
feedback is still a fairly debated topic. For instance ram-pressure
stripping on satellites plunging into clusters is known to induce
reddening, but its efficiency within filaments is unclear. Fig. 16
encodes the robust result of the present investigation.

This paper has been typeset from a TEX/I&TEX file prepared by the author.
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z [Mpc/h] (direction of filament)

0 2 a 6 8 10
x [Mpc/h] (direction of void)

Figure 3.3.1: Isocontours of constant typical redshift 2 = O mean density (filled con-
tours), mass (dotted lines) and accretion rate (dashed lines) in the frame of a filament
(along the Oz axis) in Lagrangian space (initial conditions) from low (light colours) to
high values (dark colours). The saddle is at coordinate (0, 0) while the induced peak
and void are at coordinates (0, +7) and (£8,0)Mpc/h, respectively. The gradients of
the three fields, are not parallel (the contours cross). The choice of scale sets the units
on the x- and z-axis (chosen here to be 5 Mpc/h, while the mass and accretion rates
are computed for a local smoothing of 0.5 Mpc/h). At lower redshift/smaller scales,
one expects the non-linear convergence of the flow towards the filament to bring those
contours together, as shown on figure 3.3.2.

Conclusion

Let me complement the conclusions of this article in the context of this dissertation and of
subsequent works.

We have shown that the excursion set theory can be extended to take into account anisotropic
effects induced by the cosmic web. This can be done by constraining the statistics entering the
excursion to the presence of a proto-filament at a given location, which in turn spatially modulates
the mean and the variance of the field, resulting in a biasing of the excursion. From this, one can
show that different quantities derived from the properties of the excursion under the anisotropic
constrain, such as the halo mass function and the accretion rate and formation time at fixed
final mass, become distinct functions of the local mean and variance of the field, so that their
modulation by the cosmic web is different.

The differential effect induced by the cosmic web can be illustrated by computing the isocon-
tours of the different assembly variables, which can be shown to explicitly cross, as illustrated on
figure 3.3.1. The figure shows that, for example, isodensity contours cross isocontours of accretion
rate at fixed final mass. As a consequence, while most of the spatial variation of the accretion rate
can be attributed to the modulation due to the local density surrounding a given halo, part of the
variation is due to the tidal effect of the large-scale filamentary structure. The same conclusion
can be drawn for the formation time and lead to the conclusion that the structure of the cosmic
web, as encoded by the filament-type saddle point, drives part of the assembly bias signal. More
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Figure 3.3.2: Typical mass measured in the Horizon-AGN simulation (left panel, from
Kraljic et al., 2019) and predictions from constrained excursion set theory (right) along
the axis of filaments (vertical axis). Compared to the prediction without Zel’dovich
boost (dashed lines), the isomass contour lines after the boost are compressed in the
direction of filament.

massive halos are found in the filament compared to the surrounding void and wall, while the
most massive halos are found in nodes of the cosmic web. At fixed final mass, halos forming
close to the saddle are stalled and formed early, whereas those forming close to the nodes formed
later and accrete more. The same hierarchy is found between wall and filaments. Similar trends
have been measured for galaxies in the GAMA spectroscopic survey (Driver et al.,, 2011) and
the Horizon-AGN simulation in a paper I contributed to (Kraljic et al., 2018, see appendix B.1).
Namely, it was shown that galaxies in filaments are more massive than their wall counterparts.
In addition, galaxies also segregate by colour, with an excess of red passive galaxies close to the
filament core than in the wall.

In a follow-up work (Kraljic et al., 2019, see appendix B.2), we measured the properties of
virtual galaxies in the Horizon-AGN simulation in the frame of the cosmic web, reproducing the
same maps as Musso, Cadiou et al., 2018, figure 8. In this work, I have shown that the results from
the constrained excursion set theory can be qualitatively reproduced if one takes into account
the mean Zel’dovich displacement (following the idea of Bond and Myers, 1996), which has the
effect of squeezing the isocontour lines in the direction perpendicular to the filament and stretch
them in the direction parallel to the filament. This is for example illustrated on figure 3.3.2, which
shows typical mass isocontours in the Horizon-AGN simulation (left panel) and the prediction
from the constrained excursion set theory (right panel).

The constrained excursion set theory presented in this chapter enabled us to study the impact
of the cosmic web on the formation of dark matter halos, yet more work is required to understand
its impact on galaxy formation, as was presented in appendices B.1 and B.2. In chapter 4, I propose
a new theoretical model that can be used to quantify the effect of the cosmic web on galaxy
formation, by looking at special events that drive the evolution of galaxies, namely halo mergers
and filament disconnections, as these events impact galactic infall, which then impacts galaxy
formation, and in particular disk formation. This is further studied chapters 5 and 6, where I
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study the transport of angular momentum from the large scales down to the disk in a suite of
high-resolution hydrodynamical simulations.
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Introduction

To what extent can today’s properties of galaxies be predicted from the initial Gaussian random
field from which they emerge? Within the paradigm of the spherical collapse, one can draw a
relationship between the time of collapse of a given proto-halo given its over density, and between
its mass and the scale at which its initial patch must be smoothed to pass a given threshold. As
the halo grows in mass, it will explore larger and larger radii. In the extended Press-Schechter
theory, this excursion is usually described in terms of the mean overdensity found at increasing
radii, recovering the result that large overdensities collapse earlier in cosmic time and can be
further refined to take into account non-spherical collapse (e.g. R. K. Sheth et al., 2001; Hahn
et al.,, 2009), or the effect of gravitational clustering (Bond and Myers, 1996). In this sense, the fate
of a given region is encoded in its initial conditions and is captured by the multi-scale properties
of the corresponding Gaussian random field. Most of the aforementioned works have typically
described proto-halos as peaks in the primordial field, effectively compressing the continuous
density field into a set of points (peaks). In a more general way, the topology of the field can
be described by the set of its critical points (peaks, saddle points and voids). In Hanami, 2001
it was suggested that the drift of these critical points, which draws the so-called skeleton tree,
bears physical meaning, as it captures the variation of this topology with scale, hence cosmic
time. In Manrique and Salvador-Sole, 1995; Manrique and Salvador-Sole, 1995; Hanami, 2001 the
focus was on the coalescence of filament saddles with maxima which the authors called slopping
saddles (as they are vanishing saddle points on the slope of peaks), and are proxy for halo merging
events.

More generally here I will consider the coalescence of minima with wall-saddles and wall-
saddles with filament-saddles corresponding respectively to the disappearance of a wall and a
filament. It is the sequence and geometry of these special events in the Lagrangian patch and
its vicinity that will later form a halo which will shape the fate of its host galaxy. Indeed, these
coalescences impact the geometry of the cosmic web (in particular the filaments) which in turn
defines preferred directions along which galaxies are fed with cold gas and acquire their spin.
Merger events are also known to play an important role in triggering AGN feedback, which in
turn impacts gas inflow and therefore galactic morphology. Hence, I will extend Hanami, 2001 by
studying the clustering of these other merger events in the multi-scale landscape. The aim is to
provide a compact description of the cosmic web in the initial conditions that is able to capture
important events in the life of a galaxy, which includes its merger history, but also the merger
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Figure 4.1.1: Snapshot and zooms of a hydrodynamical simulation showing filaments
(in red) walls (in shades of blue to green) and peaks (at the nodes of the filamentary
network) as traced by DisPERSE (Sousbie et al.,, 2011). The cosmic evolution of these
large scale structures impacts the geometry of infall. As this simulation forms galaxies
their properties reflect partially the corresponding tides and the funnelling of cold gas
along the filamentary structure. Understanding when and how the topology of this
network changes is therefore of great interest in this context.

history of the filaments feeding it and the merger history of the walls feeding its filaments. My
motivations are many-fold:
i) Study the generalised history of accretion: what mergers happen when, at what frequency?
ii) Study the relation between different merger events, and their clustering in space and time,
iii) quantify the merger rates in a larger scale filamentary structure to study assembly bias.
In order to achieve these goals, I will present the general theory of the merger events, which I
will refer to as “critical events”. Section 4.2 provides a mathematical description of these events
in the initial conditions and computes their one-point statistics (number counts). Section 4.3
predicts the clustering properties of these special events. Section 4.4 compares the predictions
to realisations of Gaussian random fields and validates the theoretical formulas. Section 4.5
presents applications of the theory in the context of galaxy formation. Finally section 4.6 wraps
up. Section 4.A presents the counts in arbitrary dimensions and illustrates them in up to 6D.
Section 4.B explains how the critical events are measured in random field maps and cubes.
Section 4.C presents the joint PDF of a Gaussian random field up to the third derivative of the field.
Throughout the chapter, sections where the third form is used (we, us) were done in collaboration
with S. Codis and C. Pichon.

Theory: one-point statistics

Let me consider the overdensity field 0 = (p — p)/p to be a homogeneous and isotropic Gaussian
random field of zero mean, described by its power spectrum P(k), as defined in section 2.1.1.2.
In this section, I will focus on one-point statistics associated with merger rates. In section 4.2.1,
I define the concept of critical events. In section 4.2.2, I present the number counts of critical
events, counted together and by type (peak, filament and wall mergers). In section 4.2.3, I present
the number counts as a function of the events’ height. Section 4.2.4 sketches the corresponding
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theory in two-dimensions, while section 4.2.5 presents its extension to non-Gaussian fields.

Critical events definition

When studying the time evolution of the density field, the spherical collapse model has shown that
one can establish a mapping between collapse time and overdensity — high overdensity regions
collapse earlier in the history of the Universe than underdense ones. At the same time, larger
overdensities enclose more mass and will hence give birth to more massive structures. These
relations mathematically read
Oc Ar 4
ve(R) = AR)D()’ M = ?pR ) (4.1)
where R is the smoothing scale of the Top-Hat filter, o(R) is the variance of the field at that
scale, D(z) is the linear matter growth function at redshift z (see section 2.1.2.1), . = 1.69 is
the spherical collapse critical overdensity (see section 2.1.2.2) and p is the mean matter density
of the Universe. Here I have introduced the density contrast v = ¢ /o (R), which is a zero-mean
unit-variance Gaussian random field. The spherical collapse threshold can also be adapted to
study the formation of voids (R. K. Sheth and van de Weygaert, 2004; Jennings et al., 2013) with
dy = —2.7. From a theoretical perspective, the action of smoothing the density field § enables to
probe the time-evolution of spherical proto-halos by following the density evolution of peaks as
smoothing scale increases. One caveat of using a Top-Hat filtering lays in the fact that the second
derivative of the smoothed field has an infinite variance, so that one cannot study the statistics of
its peaks and extrema. In the following of the work, I will make use of a Gaussian filtering instead,
as it provides smooth fields'. In order to match the results of equation (4.1) with a Gaussian filter,
one needs to establish a mapping of the smoothing scales between Top-Hat filtering and Gaussian
filtering. This is usually achieved by matching the variance of the field o (R/a) = orr(R). At
scales of a few Mpc/h, the scale ratio is of the order of a ~ 2.1 for a ACDM power spectrum
(see section 2.1.7.2) so that equation (4.1) becomes
M = %Tﬁ(aR)g (4.2)
for a field smoothed by a Gaussian filter of radius R. This translates the fact that the variance
of the field smoothed with a Gaussian filter at scale R is the same as the field smoothed with a
Top-Hat filter at scale aR, so that at fixed smoothing scale, one can assign a larger mass to a peak
found using Gaussian filtering compared to a region smoothed with a Top-Hat filtering.

Let me now define critical events associated to mergers. These events are defined in smoothing-
position space and correspond to mergers of critical points (peaks, saddle points and minima). The
slopping saddles defined in Hanami, 2001 are particular critical events that correspond to mergers
between a peak and a saddle point. In this chapter, I will instead focus on all critical events as
they are of interest to study the evolution of the geometry of the cosmic web. The formation
and location of critical events is illustrated for a 1D field on figure 4.2.1: critical events are found
at the tip of critical point lines and represent the disappearance of a critical point into a critical
point of another kind (e.g. a maximum and a minimum in 1D, a maximum and a saddle point in 2
or 3D). They encode locations where the topology of the field is changed by removing a pair of
critical points.

Let me emphasise here that critical points are a compact encoding of the proto-structures:
each proto-filament has at its centre a filament-type saddle-point, while proto-walls have at their
centre a wall-type saddle-point. Using an analogy with a mountainous landscape, one can describe
a given mountain range by giving the set of its peaks and passes. In practice, this procedure has

'In practice, all the derivatives of the field have a well-behaving variance.
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compressed the continuous information about the height of the mountains into a discrete set of
critical points. A similar approach can be used to describe the skeleton of the cosmic web as a set
of its critical points.

Let me illustrate the concept of critical events using the same analogy, the latter being
restricted to 2D space, see figures 4.2.2 and 4.2.3. A mountainous landscape is made of peaks
analogous to proto-halos. Each pair of neighbouring peaks is linked via a pass, analogous to a
proto-filamentary structure. Following the ridge from one peak to another one is analogous to
following a filamentary structure between two proto-halos. On each downhill side of a pass there
are two valleys whose faces are analogous to proto-walls in the cosmic web while their depth
(hence their geometry) is described by their lowest point. With the action of time, the mountains
will erode until eventually no peak will subsist — this is analogous to the smoothing operation.
In the process, a disappearing peak will see its height (the density) decrease with time. If the
peak is not prominent enough, it will eventually be smoothed to the point where it no longer is a
peak but a shoulder on another peak’s slope. Just before the peak disappears, it is still linked to
its neighbour via a pass. When the peak disappears so does the pass — indeed a pass is always
located between two peaks ; when one disappears, so does the pass. This particular event is what
I define as a critical event. It encodes the moment when two critical points (here a peak and a
saddle point) annihilate. This can also be interpreted as the moment a peak disappears on the
slope of its nearest neighbour - the two peaks merged and the most prominent subsisted. Critical
events have hence a dual interpretation: in the initial Lagrangian space, critical points are found
at the location where a critical event merges into a critical event of another kind (e.g. a peak with
a filament saddle-point). In the Eulerian physical space, critical points spot the merger of two
similar structures, for example two halos merging into a single one (squashing the filament in
between them).

Since the primordial density field is a 3D field, the density landscape is made of peaks (proto-
halos), saddle-points (proto-filaments and proto-walls) and minima (proto-voids). Critical events
record the merger of peaks into proto-filaments (PF critical events), of proto-filaments into
proto-walls (FW critical events) and of proto-walls into proto-voids (WV critical events).

Using the duality discussed above, they also encode halo mergers (PF critical events), fil-
ament mergers (FW critical events) and wall mergers (WV critical events). This is illustrated
on figure 4.2.4. PF critical events (top panel) encode the merger of two halos separated by a
filament. After the merger, the most prominent peak subsists, while the other proto-halo and
the proto-filament have annihilated. FW critical events (centre panel) encode the merger of two
filaments separated by a wall. After the merger, the most prominent filament subsists, while
the other proto-filament and the proto-wall have annihilated. WV critical events (bottom panel)
encode the merger of two walls separated by a void. After the merger, the most prominent wall
subsists, while the other proto-wall and the proto-void have annihilated.

3D critical events number counts

In this section, I will present the derivation of the number count of critical events in smoothing-
position space in 3D. In section 4.2.2.1, I present how one can express the critical event constraint
as a function of the local properties of the field and its derivatives. I then express the condition
in the frame of the Hessian of the field in section 4.2.2.2 where it takes a simpler expression. In
section 4.2.2.3, I extend the previous formula to distinguish between different critical event types
(halo mergers, filament mergers, wall mergers). In the following of the section, I will use the
quantities defined in section 2.1.7.1, namely o;, 7, ¥ which were defined as

o2(R) = —— / dk K2P(k)k2W2(kR), ~ = oo L_ % (4.3)
! 22 1= 000’ = 0103 '

Here W is a Gaussian filter W (z) = exp(—k*R?/2).
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Figure 4.2.1: 2D “landscape” of a 1D field smoothed at a scale R in smoothing-position
space. Here R is the smoothing scale, while § is the density smoothed at the given scale.
Solid lines indicate maxima (red) and minima (blue). Critical point lines end at critical
events (black dots). The projections of the critical point lines are shown as red and blue
dashed lines, while vertical dotted purple lines indicate the projection of critical events
to illustrate that critical events are found at the location where two critical points merge.

General formulation

Following Hanami, 2001, the number density of critical events in smoothing-position space is
given by
o'N
Or30R

(6% r — r0) (R — Ro)), (4.4)

where 7 is the position of a critical event (i.e. a critical point with a degenerate direction) in real
space and Ry its associated smoothing scale. Following the definition of section 4.2.1, critical
events are found at the smoothing-position location where two critical points of different types
(maximum, saddle points or minimum) merge. The nature of a critical point (occurring where
V§ = 0) is characterised by its index, that is to say the number of negative eigenvalues of the
density Hessian matrix at this point. Critical events can then be defined as critical points for which
one of the eigenvalues vanishes, which is also equivalent to having a vanishing determinant. By
definition, only critical points whose indices differ by one can merge (peak—filament type saddle
point, filament-wall type saddles, wall type saddle-void) so that only one eigenvalue vanishes?.

Let me therefore first define the determinant of the Hessian d(0) = det(VV4) = A1 A2,
A1 < A2 < A3 being the ordered eigenvalues of the Hessian matrix VV§. In the following,
I will use O to denote derivatives with respect to scale R. Since critical events are found
where d = 0 and V4 = 0, let me rewrite equation (4.4) in terms of the properties of the field,
using the coordinate transformation from r, R to V4§, d. This involves the 4D Jacobian of the

*The event where two eigenvalues vanish has a null probability.
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Figure 4.2.2: 3D “landscape” of a 2D field smoothed at a scale R in smoothing-position
space. The density field (blue to red map) is smoothed at increasing R. For each scale,
the critical points (red lines: peaks, green lines: saddle points, blue lines: minima) are
found. At the tip of each branch a critical event is found (@: peak-saddle critical events,
x: saddle-minima). Lines near the boundaries have been hidden for the sake of clarity.

transformation®
| Ogrd vd | Ord vd
I(d, V) = ’aRvaT vvi| = ‘—RVV%T vV (5)
using the fact that for a Gaussian filter (see Table 2.2)
Ord = —RV?4, (4.6)

with V2 the Laplacian operator. The fully covariant formulation of the number density of critical

events is then PN
s = (17195/(V6) o (d)). (4.7)

The expectation value in equation (4.7) can be evaluated using the joint distribution of the field
and its successive derivatives up to third order, P(z, z;, z;j, :L'Z'jk) which involves 20 variables,
see section 4.C for the PDF for Gaussian random fields. One difficulty in evaluating equation (4.7)
spans from dp(d). In practice, it can for instance be dealt with numerically by ‘broadening’ the
Dirac delta function: this method is used for validation and when considering two-point statistics
in the section 4.3.1. Alternatively, one can go to the Hessian’s eigenframe as described in the next
section.

*Note that the determinant can be developed along the first line or the first column of the Jacobian matrix to find
out — as shown by the simplifications in the next section — that the final result in our case does not depend on Jrd,
thanks to the zero determinant constraint det VV§ = 0.
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Figure 4.2.3: From left to right and top to bottom, a smoothing sequence of a Gaussian
random field, whose density is colour coded from blue to red as a function of height
(analogous to the slices shown on figure 4.2.2). The skeleton tracing the ridges is shown
in purple, while the anti-skeleton tracing the trough is shown in white. The saddles
shown as green crosses lay at the intersection. The Maxima are shown as red triangles
while the minima as blue squares. As one smooths the field, these critical points drift
towards each other along the skeletons, until they vanish in pairs. The upcoming
coalescence are identified with grey circles. Note that as saddle points vanish, the two
corresponding skeletons do too. Note also that the direction of coalescence is typically
set by the skeleton’s just before coalescence. In this two dimensional example, the ratio
of peak+saddle to void+saddle event is one. The black segment in the bottom left of the
first and last image represents the amount of smoothing. This chapter is concerned with
studying the one and two-point statistics of these grey circles. Note that these events
are indeed proxy for mergers of the peaks of the underlying field: for instance, between
snapshot 3 and 5 the central four peaks have merged into one. Similarly, between 1 and
4 the central four voids have merged into one. I provide an interactive tool to follow
such events in 2D and 3D.

4.2.2.2 Expression in the frame of the Hessian

The Jacobian is by construction invariant under rotation, so one can rewrite it in the frame of
the eigenvalues of the Hessian (which will be denoted with tildas) without loss of generality.
Developing d into 03711 %22¥33 and assuming (arbitrarily) that direction 3 is the degenerate one,
the Jacobian can be rewritten as follows

J(d, o . ORZ T334
A e ] i B (@8)
010503 RT;  Tij
OR¥33 133 T233 1333
. OrT1 11 0 0
= - - 4.
|Z11Z22] Opis 0 Fs 0| (4.9)
ORT3 0 0 0

= |Z11%22|?|OpE3]| E333), (4.10)


https://pub.cphyc.me/Science/3d/critical_point_2D.html
https://pub.cphyc.me/Science/3d/critical_point_3D.html
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Figure 4.2.4: Illustration of critical events in a 3D random fields and their physical
meaning. @ symbols are peaks, X symbols are filament-type saddle points (filament
centres), ® symbols are wall-type saddle points (wall centres) and O symbols are minima
(void centres). Top: Peak-filament critical events encode the merger of two halos and
the disappearance of their shared filament. After the merger, only one peak subsists
and the filament disappears. Middle: Filament-wall critical events encode the merger
of two filaments and the disappearance of their shared wall. After the merger, only
one filament subsists. Bottom: Wall-void critical events encode the merger of two
walls and the disappearance of their joint void (surrounded by the two walls and the
dotted lines). After the merger, only one wall-type saddle-point subsists and the void
has disappeared. Halo mergers are encoded by peak-filament critical events, filament
mergers. Alternatively, one could have chosen to describe these events as resp. filament,
wall and void disappearances.

where the factorisation with |Z1;Z22| along the first line in equation (4.8) is a consequence of Z33
being zero — which also nulls the last component of equation (4.9). Using equation (4.6) again to
re-express the derivative w.r.t. smoothing in terms of the Laplacian of the field, one can rewrite
the number density of critical events using the typical scales of equation (2.95) as *

2
SJZ = }2?7;12’ <|Zi573ii!|57333|5§)(@) |€5115722|5D(9?33)> : (4.11)
where I introduced n = 93N\ /0r3 the volume density of critical events (that does not depend on
the spatial location 7 as the field is assumed to be stationary). Let me stress that the distribution
of the fields expressed in the frame of the Hessian matrix differs from the original ones. The
statistics of z and x; and x;,, are left unchanged and I therefore drop the tildes for the field and its
first and third derivatives . However, going from cartesian coordinates to the Hessian eigenframe

*One factor of |F11Z22| drops between equation (4.10) and (4.11) because of the Dirac of d in equation (4.7).
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modifies the distribution of the second derivatives that were chosen here to be ordered (such that
the Doroshkevich formula is recovered)

P(&11, F99, T33) = 2102 (Z33 — @o2) (Foz — F11)(F33 — F11) %

P(x11=2=211, T2 =22, £33 =233, 212 =0, 23 =0, 213=0),

where 211 < Z22 < T33 are distributed according to P and fields in cartesian coordinates follow
the distribution . Note that the factor 272 is due to the integration over the Euler angles.
Equation (4.11) therefore introduces a jacobian 272 |x11 222 (211 —222)|, as 233 is null, when going
from the Hessian eigenframe to cartesian coordinates and the differential number count of critical
events becomes

on B 2m2R

OR R2R3 <‘Zix3ii"x333|5§)($i) |z11222|? |21 — T22|0p (33) 5§)(xi¢k)> , (4.12)

where 5](33 )(xi;ék) must be understood as a product of Dirac delta functions of all the off-diagonal
components of the Hessian matrix. Here R, and R are the typical inter critical point separation
and inter inflection point separation introduced in equation (2.95), section 2.1.7.1. The novelty
of equation (4.12) w.r.t. the classical BBKS formula is the weight |) . 3;;||x333| which requires
the knowledge of the statistics of the 3rd order derivative of the field. The expectations in
equation (4.12) can be evaluated with the joint statistics of the field and its successive derivatives,
P(x113, 223, T333, T11, T22) which now only involves 5 variables. Interestingly, because the
dominant contribution to the expectation value of (|3, x3;i||z333]) comes from (2345) with very
good accuracy (at the percent level), equation (4.12) is very well approximated by

2
g% ~ }2{;]% <5131233351(33)(35i) | 211220 |? 211 — 22| 0p (33) 5](33)(9Ci¢k)> . (4.13)
Note that this equation closely resembles the equation giving the flux of critical lines per unit
surface presented in Pogosyan et al., 1998, up to the delta function on the third eigenvalue in the
present context. This is in fact expected since I require here that along the filament’s direction the
curvature should be flat, whereas they marginalised over all possible longitudinal curvature. The
similarity reflects the fact that critical points essentially slide along critical lines as one smooths
the field, see figure 4.2.3. In some sense the 3D event count can be approximatively recast into a 1D
event count along the ridges. The expectation involves the product of the transverse curvatures
because the larger those curvatures the larger the flux of such lines per unit transverse surface.

Gaussian number density of critical events per type

The aforementioned formalism makes no assumption on the type of the merging critical points.
While the coalescence of peaks with filaments (PF critical events, the slopping saddles of Hanami,
2001) are clearly central to the theory of mass assembly, the filament-saddle to wall-saddle
(FW critical events) and wall-saddle to minima coalescence (WV critical events) also impact the
topology of galactic infall, as they destroy filaments, walls, voids within the surrounding cosmic
web.

Let me therefore compute the number density of critical events of each type of mergers (P =
PF, F = FW and W = WV). Using the fact that for Gaussian random fields, equation (4.12) can
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be split into odd- and even-derivative terms, one can write

Codd

Onj 27T2R
9R 7R <|Z%

<19H($33 — x92) V(222 — 211) oD (55) 5](33)(%7&0

555105 )(sz')> X (4.14)

)

where ¢ is the completely antisymmetric Levi-Civita tensor, ¥ the Heaviside function, and j =
1,2, 3 for peak (P), filament (F) and wall (VW) mergers respectively. Note that equation (4.14) for
a given value of j is essentially the same as equation (4.12), modulo a choice of null eigenvalue
and the requirement that the eigenvalues are sorted. In 3D, Cyqq and C} cven have analytical
expressions given by

Jkl 2 2
Z%xkkﬂfu(%k — )
Kl

Cj ,even

C.even = (M A30p(A2)) = ,
157

~29-66

C even — C even — A1A20p (A = 4.15
1, 3, (A1 A20D(A3)) TV (4.15)
and
V27(1 - 7% 2 21(1 — 42)
Codd = +tan 1 Y12 ) 4.16
4 V5075 21(1 — 52) 2 (4.16)

which can also be computed in arbitrary dimensions as shown in section 4.A. From this I can
compute the ratio of peak to filament mergers rp JF= C3,even/C1 even- Interestingly, the event
ratio is independent of the spectral index of the field and is given by

24+/3
rogp = ————
P~ 992 — 1243

which is nothing but the ratio between the mean number of wall-type saddles and peaks minus
1, a relationship which is valid in arbitrary dimension, as shown in section 4.A.4. This equation
shows that there are twice more filament disappearing in filament merger events (F events) than
in halo merger events (P events). Similarly, I can compute 75 to deduce that there are twice
more walls disappearing due to filament mergers (F events) than due to void mergers (JV events).
Section 4.A also presents these ratios in dimension 4 to 6.

37
~ 2.05508 =~ — 4.17
a3 (417)

3D differential event counts of a given height

Introducing dp(z — ) in the expectation of equation (4.14) allows me to write the density of
critical events as a function of height, hence make the distinction between mergers of important
critical points and less significant ones. The introduction of the height will also be used later to
compute the number density of events as a function of cosmic time in section 4.5.1.

For Gaussian random fields, the field only correlates with its even derivatives (second in this
case). Imposing the height of the critical events considered here therefore only modifies the term
Cj even While Coqq is left unchanged, following

Cj,even(V) = <19H(ac33 — 1‘22) 79H((L'22 — xu) (5D(wjj)(5l()3)(xk#) (5D(ac — V) (4.18)

> |

&l 2 2
X E oy TepZ(TrE — T01)
ki
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Interestingly, C' even (V) appears to have an analytical expression once rotational invariants are
used to evaluate the expectations. Following the formalism described first in Pogosyan et al., 2009,
we introduce the variables

Ji=1, Jo=1-3I, (4.19)
27 9 x+vJ1

J3 ——I3—7I1[2+Il, (= —F/—=,
Vi
that are linear combinations of the density field « and rotational invariants of its second derivatives
namely the trace I; = tr H = A\; + Ao + A3, minor Iy = 1/2((trH)? — tr H- H) = A\ +
A2A3 + AzA; and determinant I3 = det H = AjAoA3 of the Hessian matrix H = (z;;). The
distribution of these variables is given by

25107 1 1 5
P(¢, Jy, Jo, J3) = 247r2exp<—2g2 — §J12 — 2J2> : (4.21)

(4.20)

where J3 is uniformly distributed between —J; /? and Jg /? and Ja is positive. Using these
rotational invariants, one can rewrite equation (4.18) for each type of critical event

o) = (e Y19 B2} < < 1)
Caeven(v) = (|00 = v) dn(I5) B(~ Jl/Z <h<h), (4.22)

C3,even(V) - <|I2’5D($ n V) 5D(I3) (J1/2 <1 < 2J21/2)> = CLeven’

with
2 _ 713
op(13) = 575]3 (Jg — 3J1J22J1> , (4.23)
1 v+vJ1

Op(r —v) = —7—=90 T~ | 4.24

and the condition that the determinant is null due to \; being zero is enforced by restricting the
range of J; according to the Boolean specified in equations (4.22). Eventually, the integration in
equation (4.22) can be done symbolically and an analytical expression for C; cven(v) follows

1/2
C ,even\V)= C1,; €XpP (_) ) (4.25)
ton()= 3 o 2070
V2
even = = 57 | 4.26
Carmalt) = (=777 429
with
3y/ 37 VT =72 (2757* + 3092 (2 —23)+351)
Cl,l —

w3/2 (9 — 52)"*

S A
erf<\/§ 574—11724—6) +1

€16 = — ;
VBT /6 — 5792

2

026 = —F———or,
7/30 — 2572

erf( ——Y2 )41
V57 144219 3600404 N 12072 (27357212
45 (9 — 592)%2 (9 — 592) 9 — 592

c1,9 =

+57574 — 123072+783> .
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Figure 4.2.5: The PDF of critical events of the various types (P, F) in 2D for ng =
—2,—3/2,—1,—1/2 from light to dark. Note that the dominant change with spectral
index is in the amplitude which scales like 1/ R? /R%. The rest of the shape variation
comes from the weaker v and 4 dependence of Cyqq and Ceyen.

The resulting counts of critical events as a function of their height v is plotted in figure 4.4.1
for different values of the spectral index ngs. Note that 9?n/0ROv scales like 1/R* but is also a
function of R via the spectral parameters ~ and 7.

2D event counts and differential counts

Since the formalism is very similar, let me also briefly present the analogues of equation (4.14) for
2D fields. It reads

9%n _ 27R
OROv R2R?

(211 + w222||T222]0D (21) O (22)) ¥ (4.27)
(Vu(xe2—211) Op(222)0p (712) 0p (2 — V) |T11—222])

which after some algebra, given the knowledge of the 2D PDF given in section 4.C, yields for the
peak merger rate

(4.28)

9%n RCoqq | 4yv4/1 — 2 . p( V2 )
_ wl -7
2(

ORIV R2R? | (3—272) 1—~2)
4 20,2 _ 2
N V8m(29t + 42 (12 - 5) +3)erfc ( Y )ex ( 3v )] 7

(3 —292)%/2 VAt =1072 + 6 66— 492

with
4+ 35 tan™! (39)
472

The wall merger rate is obtained by swapping v to —v in this expression. The two rates are
plotted in figure 4.2.5 and validated against Gaussian random fields in figure 4.4.2. The counts,
On/OR = 2Cyqq R/ (3v/3R?R2) follows by integration over v.

Section 4.A also presents differential counts in dimension 4 to 6, together with asymptotic
expressions in the large dimension limit for the integrated count ratios. As expected, for any

Codd = , given 4 = /1 —A2.
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dimension the number counts per unit log-volume is logarithmically scale invariant (up to the
slow variation in the spectral parameters), i.e. R? 9°n? / dlogROv is a function of 7, 4 and v
only.

Beyond Gaussian statistics

Let us finally compute the one-point statistics for close to Gaussian fields. The Edgeworth
expansion joint statistics of the field at «, P(x, x;, %, %1 ), involving the hierarchy of cumulants
obeys

P(z) = Po(a) (1 1y ot Ble) Hk<a:>) , (429)
k=3

where Hy, is a vector of orthogonal polynomials with respect to the kernel P obeying Hjy, =
(—=1)% 0¥ P /0x* /Pc while at three order in perturbation theory (Bernardeau et al., 2002),
(Hy(x)) /o?*~2isindependent of the variance 0% (z) below k = 6. Equation (4.29) is in practice an
expansion of the Gaussian PDF in the mildly non-linear regime where o(z) < 1, so that the model
is particularly accurate at large scales and at early times. Cumulants such as <x%x111> entering
equation (4.29) could in the context of a given cosmological model involve a parametrisation of
modified gravity (via e.g. a parametrisation of Fy(k1, k2)), and/or primordial non-gaussianities
(via e.g. fn1)- From this expansion, or relying on the connection between event ratio and
connectivity discussed in section 4.A.5, we can for instance compute the non-Gaussian correction

to the ratio of critical events, defined in equation (4.17) as

Tp/F

=1+c¢ (8(J})—=10(J1J2) — 21 (¢*/1)) + O(c?). (4.30)
P/F,G

where ¢, = (29v/2+12v/3) /210/y/7, while 07¢*> = |Vp|? the modulus square of the gradient,
J1 and Js are defined in equation (4.20) via the trace and minor of the Hessian. These extended
skewness parameters are isotropic moments of the underlying bispectrum which, when gravity
drives the evolution, scale with o at three order in perturbation theory (e.g. <Jf’> /o is indepen-
dent of ). The correction to one entering equation (4.30) is negative (approximately equal to
—o(1/7—log(L)/5) for a ACDM spectrum smoothed over L Mpc/h), suggesting that gravita-
tional clustering reduces the relative number of peak mergers compared to filament mergers: fila-
ments disconnect. When astronomers constrain the equation of state of dark energy using the cos-
mic evolution of voids disappearance they effectively measure o in equation (4.30). Conversely, for
primordial non Gaussianities, the extended skewness parameters must be updated accordingly (see
Gay et al,, 2012; Codis et al., 2013). For instance, (J1¢?) = (J1¢?)grav—2fN0y/ 1+ f2r / (1+4f21).

Since the computation of the expectation (4.14) with the Edgeworth expansion (4.29) is beyond
the scope of this dissertation, let us investigate an alternative proxy for the event rate. Figure 4.2.6
makes use of the perturbative prediction of Gay et al., 2012 to first order in o for the gravitationally-
driven non-Gaussian differential extrema counts to compute the product of such counts as a proxy
for the events, namely P(v) o< P(v)x F(v), F(v) x F(v) x W (v), and W(v) x W (v) x V(v).
This Ansatz is reasonable, since for a merger to occur, two critical points of the same height must
exist beforehand. We use the Gaussian PDF as a reference, to recalibrate the relative amplitude of
the filament to peak merger counts. Since Gay et al., 2012 provide fits to the critical PDFs as a
function of o, it is straightforward to compute their product.

From figure 4.2.6, we see that gravitational clustering shifts the peak event counts to lower
contrast, as it should. This is confirmed in simulation in figure 4.5.6. Less trivially, the filament
merger rates also shift towards negative contrasts. From these PDFs one can re-compute the
cosmic evolution of the ratio of critical events: it scales like 7p/r = 7/34(1 — 0/7) (for n = —1),
in good agreement with equation (4.30), suggesting that this approximation indeed captures the
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Figure 4.2.6: Predicted cosmic evolution of the product of extrema counts as a proxy
for the event counts (W in blue, F in green and P in red) for the variances ¢ = 0, 0.04,
0.08,0.12, 0.16 (from light to dark) and an underlying scale invariant power spectra of
index n = —1. The F counts have been rescaled by a constant 205/332 factor to better
match the actual counts. The predicted trend with o are in qualitative agreement with
the measured counts presented in figure 4.5.6.

main features of gravitational clustering. This provides a physical understanding of the evolution
of the one-point distribution of the critical events in the mildly non-linear regime.

Theory: two-point statistics

In the previous section, I have presented the concept of critical events (section 4.2.1) and derived
their number counts counted together and by type (section 4.2.2), and by height (section 4.2.3). I
have also presented how these results can be transposed in two dimensions (section 4.2.4 and
eventually in d dimensions, see section 4.A.3). The formalism has also been extended in the mildly
non-linear regime section 4.2.5.

Let me now present a method to compute the two-point statistics of critical events. Such
statistics are of interest, for example to study the cosmic evolution of the connectivity of peaks, or
to understand how large scale tides bias mass accretion (the so-called assembly bias). Section 4.3.1
presents the two-point statistics of merger events in 3D, while section 4.3.2 provides analytical
approximations while assuming mergers occur along a straight filament. Section 4.3.3 computes
the conditional merger rates subject to larger scale tides.

Clustering of critical events in R, r space

One cannot generally assume that the orientation of the two critical events are aligned w.r.t. the
separation vector, so the covariant condition for critical event of type j € {P, F, W}, condy, is
given by the argument of the expectation in equation (4.7) multiplied by requirement on the sign
of the two non-zero eigenvalues. For instance

condp(x) = [J|65 ;) dp(d) x Vr(—tr(waw))Vu (12 (i) — tr(zazm)),

where the two Heaviside conditions ensure that the trace is negative and the minor positive so
that the two eigenvalues are negative. From the joint two-point count of critical events, I can
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define the relative clustering of critical events of kind ¢, j smoothed at scales (R,, R,) and located
at positions (74, 7y), &;(s) as

(cond;(x) cond;(y))
(cond;(x))(cond;(z)) ’

1+&j(s) = (4.31)

with

s=v2 | =Ty | (4.32)
\/ 2+ R’

the event separation between x(0) and y(s). Note that this definition of the separation includes
the dependence of the correlation functions to the smoothing scale, as the product of two Gaussian
kernels with scales R, R, is equivalent to smoothing at a single scale R = | /(R2% + R2)/2. The
definition of equation (4.32) provides a natural distance ladder when comparing points at two
different smoothing scales. Evaluating the expectation in equation (4.31) requires full knowledge
of the joint statistics of the field P(x, x;, ij, Tijk, Y, ¥i, Yij» Yijk) (involving 40 variables, see
section 4.C.2).

We rely on Monte-Carlo methods in MATHEMATICA in order to evaluate numerically equa-
tion (4.31). Namely, we draw random numbers from the conditional probability that = and y
satisfy the joint PDF, subject to the condition that x = 0, y, = 0, x = v; and y = 1. For each
draw (z*), y(*)) depending on the type of critical event hence the sign of tr(z;;) and tr?(z,) —
tr(z;,x;) we drop or keep the sample; if it is kept, we evaluate | J () |(5](3€) (d(x)) |J(y) |<5](3€) (d(y))
where 5](36 ) is a normalised Gaussian of width €, which in the limit of ¢ — 0 would correspond to
a Dirac function imposing here that the two determinants are zero. Eventually

Pm(CC:Vhy:VQ,SUl:yz:O)X

N
kgsjj ‘J(zc(k))‘ég) (a®)) ‘J(yw))‘(;g) (aty®), @3

(cond;(x)cond;(y)) ~

where N is the total number of draws, P, the marginal probability for the field values and
its gradients, and S;; is the subset of the indices of draws satisfying the constraints 4, j on the
Hessians. The same procedure can be applied to evaluate the denominator. Equation (4.31) then
yields an estimation of &;;(s, v1, v2). This algorithm is embarrassingly parallel.

This is illustrated in figure 4.3.1a which shows the auto-correlation of peak merger {pp on
the one hand, and the cross-correlation of peak and filament merger {pr on the other at fixed
merger height, as labelled. Here we used € = 0.1. Note that because equation (4.31) is a ratio, the
prefactors in the counts involving scales all cancel out. Similar results are presented in 2D on
figure 4.3.1b.

Correlation of peak merger along filament

Let us briefly present the two-point statistics of high density peak mergers while assuming for
simplicity that the mergers occur along the same (straight) filament (discussed in section 4.2.2), as
it is instructive and simpler. In this approximation we can resort to one dimensional statistics.
In the high density limit, we may drop the Heaviside constraint on the sign of the eigenvalues
since all high density critical points tend to be automatically maxima. Then the (1D) correlation
function of peak mergers, 1 + £,,,,(s) of height v1 and v, becomes

(0p(z —v1) 231,0p(21) dp(z11) (Y — 12) ¥11190 (Y1) b (y11))
(0p(z — v1) 23110 (21) O (211)) (Op (¥ — v2) Y1119 (Y1) O (Y11))




4.3 Theory: two-point statistics 105

1+&pp 1+§Pp
20 7 peak 1 0.75
peak 1 0.75 —_— peak 1.25 1.
— peak 1.25 1. — peak 1.5 1.25
1 — peak 1.5 1.25 5| — peak 1.75 1.5
— peak 1.75 1.5
saddle 1 0.75 4 saddle 1 0.75
10 saddle 1.25 1. saddle 1.25 1.
saddle 15 1.25 3 saddle 1.5 1.
— saddle 1.75 1.5 o — saddle 1.
5
1 _____________
S S
0 0.0 0.5 1.0 15 2.0 25 3.0

(a) 3D (b) 2D

Figure 4.3.1: (a): The auto-correlation of peak merger {pp (in shades of red, as labelled
in terms of the height of the two critical points) and the cross-correlation of peak and
filament merger {pr (in shades of yellow, as labelled) as a function of separation s. As
expected, the saddle mergers are clustered closer to the higher peak compared to the
peak mergers. (b): The two-point correlation of events in 2D fields with scale invariant
power spectra of index ng = —1

where the expectation is over the Gaussian PDF whose covariance for the field (x, z1, 211, 111,
Y, Y1, Y11, Y111) obeys

10 =y 0 90 71 72 703
0 1 0 —% 7 7m M2 73
-y 0 1 0 92 72 722 723

0 = 0 1 73 73 723 733 (4.34)

Yoo Yor Y02 Y3 10—y O ’
Y1 1 M2 mz3 0 1 0 —%

Yo2 M2 Y22 Y23 —y O 1 0

Y3 Y13 Y23 vz 0 —y 0 1

where for instance Yp2(s) = (x(0)y22(s)), which can be computed using the formalism presented
in section 2.1.1.3. The dominant contribution in the large threshold v, v5 > 1, large separation
s > 1 regime reads

AfBIVQ(S) _ (v00(s) +(’1y (_2:022)(25) + y7y22(8)))

which as expected scales like the underlying correlation, yoo(s), boosted by the bias factor v
(Kaiser, 1984b)°. In that limit, the next order correction to the correlation function involving the
third derivative of the field reads

, (4.35)

- - 2
2 (¥*111(s) + 29m3(s) +y33(s))
(1-7%7
where 7-weighted linear combination of the auto-correlation of VAJ and the cross-correlation of
VAé and V0 appear, evaluated at events separated by s. The assumption of successive mergers

of peaks occurring along a straight filament is of course very idealised, and prevents us from
considering cross-correlations between peak mergers and e.g. filament mergers.

, (4.36)

AL, (s) =

5As ~Yo2 and 722 decay faster than 7oo.
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Conditional merger rates in vicinity of larger tides

In the context of galaxy formation, it is of interest to quantify conditional merger rates computed
subject to tides imposed by the large scale structure to explain geographically the origin of
assembly bias. To do so one must compute the conditional event counts, subject to a given large
scale critical point at some distance s from the running point . The critical point can be e.g. a
peak of a given geometry and height, if one is concerned with the impact of clusters on mergers
trees of dark halos in their vicinity (Hahn et al., 2009; Ramakrishnan et al., 2019), or it could be a
saddle point, as a proxy for a larger scale filament, when studying how halo growth stalls in such
vicinity (Borzyszkowski et al., 2017; Musso et al., 2018). In turn this involves the joint expectation

(cond;(x) op(y;)|det yij]) . (4.37)

Here cond; is defined as in equation (4.31), namely it is the argument of equation (4.7) for a
critical event of kind j

Evaluating equation (4.37) requires the full knowledge of the joint statistics of the field at 7,
and ry, P(x, i, Tij, Tijk, Y, Yi, Yij) (involving 30 variables). The correlations of the PDF involves
the covariance of the field and its derivatives computed at two smoothing scales, R, and R2,. I
can then marginalise over all variables, subject to e.g. imposing the height, v, and shape, uf of
the large scale critical point

(cond(x)0p ()| det yij|op (z — v)dp(y — ve)Iu(—\i) op (i — p5))

where ); are the eigenvalues of x;; and p; are the eigenvalues of y;;. The conditions imposed
by the mergers and the properties of the peaks and large scale environment reduces the number
of integrals from 30 to 21. Section 4.B.3 describes how to sample conditional event counts using
constrained realisation of Gaussian random fields. While a direct integration of equation (4.38) is
beyond the scope of this dissertation, section 4.5.1 presents the statistics of critical events in the
vicinity of a large-scale filamentary structure, sampled using constrained Gaussian random fields.

Measurements for Gaussian random fields

In the previous sections, I have provided the one-point statistic