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Résumé
À grande échelle, il est frappant de voir que la distribution anisotrope de la matière forme un

large réseau de vides délimités par des murs qui, avec les �laments présents à leurs intersections,

tissent la toile cosmique. La matière qui doit former plus tard les halos de matière noire et leurs

galaxies a�ue vers les nœuds compacts se situant à l’intersection des �laments et garde dans ce

processus une empreinte de la toile cosmique.

Dans cette thèse, je développe une extension contrainte de la théorie de l’excursion dans son

approximation dite “du franchissement vers le haut” pour prédire la masse, le taux d’accrétion et le

temps de formation des halos de matière noire au voisinage des proto-�laments (qui sont identi�és

comme des points-selles du potentiel). Les points-selles sont utilisés comme un référentiel local

dans lequel l’évolution des propriétés physiques et morphologiques des galaxies est quanti�ée aux

grandes échelles. À masse �xée, le modèle prédit que le taux d’accrétion et le temps de formation

varient avec l’orientation et la distance au point-selle, con�rmant que le biais d’assemblage est

sensible aux forces de marées de la toile cosmique. Les halos peu massifs, s’étant formés tôt et

“a�amés” sont regroupés le long de l’axe principal des �laments, tandis que les halos plus massifs,

plus jeunes sont répartis autour des nœuds. Les di�érents gradients observés pour di�érentes

quantités, tels que la masse typique et le taux d’accrétion, ont pour origine l’anisotropie du

point-selle et leur dépendance distincte aux moyennes et aux variances du champ. Pour les

faibles décalages vers le rouge, ce modèle prédit qu’à masse �xe il y a un excès de galaxies rouges

dans des directions préférentielles, comme l’ont montré des relevés spectroscopiques (GAMA) et

photométriques (COSMOS), mais aussi les simulations hydrodynamiques (Horizon-AGN).

J’ai également calculé les taux de fusions par analyse multi-échelle des conditions initiales pour

prédire l’assemblage anisotrope des halos et comprendre son impact sur la formation des galaxie.

Outre les fusions de halos, j’ai aussi pris en compte les fusions de murs et de �laments qui ont un

e�et sur l’accrétion galactique et j’ai calculé leurs statistiques à un et deux points en fonction du

temps cosmique. J’ai établi le lien entre les taux de fusion et la connectivité. J’ai ensuite exploité

ce lien pour estimer l’e�et des structures à grande échelle sur le biais d’assemblage. Cette théorie

décrit l’anisotropie de la toile cosmique, qui est un élément important pour décrire conjointement

l’évolution de la physique et de la dynamique des galaxies dans leur environnement, en particulier

les alignements intrinsèques ou les diversités morphologiques.

A�n d’étudier l’accrétion cosmique à de plus faibles échelles, j’ai implémenté une nouvelle

méthode de particules traceuses dans le code à ra�nement de grille adaptatif Ramses. Cette méth-

ode est basée sur un échantillonnage de Monte-Carlo et est capable de reconstruire la trajectoire

lagrangienne du gaz et son retraitement. Je démontre que la distribution spatiale des particules

traceuses reproduit précisément celle du gaz, et je propose une extension capable de suivre tout

le cycle des baryons dans leurs échanges avec les étoiles et les trous noirs. Cette approche est

particulièrement adaptée aux problèmes astrophysiques qui requièrent simultanément d’avoir

une résolution e�cace des chocs avec un solveur de Godounov et de suivre l’histoire lagrangienne

des baryons. Je l’utilise ensuite dans plusieurs simulations zoomées pour étudier l’acquisition

du moment angulaire par les galaxies via leur accrétion bi-modale pour les hauts décalages vers

le rouge. J’y observe que l’amplitude et l’orientation du moment angulaire du gaz froid sont

conservées jusque dans le halo interne où le moment angulaire contribue à l’augmentation de la

rotation des galaxies. Les couples de pressions sont plus importants en amplitude mais, de par

leur turbulence, ils sont incohérents et sont dominés globalement par les couples gravitationnels.

Les couples de la matière noire dominent dans le halo externe, ceux des étoiles dominent dans le

disque.
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Abstract
The strikingly anisotropic large-scale distribution of matter is made of an extended network of

voids delimited by sheets, with �laments at their intersection which together form the cosmic

web. Matter that will later form dark matter halos and their galaxies �ows towards compact nodes

at �laments’ intersections and in the process, retains the imprint of the cosmic web.

In this thesis, I predict the mass, accretion rate, and formation time of dark matter halos

near proto-�laments (identi�ed as saddle points of the potential) using a conditional version of

the excursion set theory in its so-called up-crossing approximation. The (�lament-type) saddle

points provides a local frame in which to quantify the induced physical and morphological

evolution of statistical properties of galaxies on large scales. The model predicts that at �xed

mass, mass accretion rate and formation time vary with orientation and distance from the saddle,

demonstrating that assembly bias is indeed susceptible to the tides imposed by the cosmic web.

Starved, early-forming halos of smaller mass lie preferentially along the main axis of �laments,

while more massive and younger halos are found closer to the nodes. Distinct gradients for

distinct quantities such as typical mass and accretion rate occur because the saddle condition is

anisotropic, and because the statistics of these observables depend on both the means and their

covariances. The signature of this model corresponds at low redshift to an excess of reddened

galaxies at �xed mass along preferred directions, as recently reported in spectroscopic (GAMA)

and photometric (COSMOS) surveys and in hydrodynamical simulations (Horizon-AGN).

I also compute the rate of merger events in the multi-scale initial conditions to forecast special

events driving the anisotropic assembly of dark matter halos and understand their impact on

galaxy formation. Beyond halo mergers, I consider all sets of mergers, including wall and �lament

mergers, as they impact the geometry of galactic infall. Their one- and two-points statistics

are computed as a function of cosmic time. I establish the relation between merger rates and

connectivity, which is then used to assess the impact the large scale structures on assembly bias.

The anisotropy of the cosmic web, as encoded in this theory, is a signi�cant ingredient to describe

jointly the physics and dynamics of galaxies in their environment, e.g. in the context of intrinsic

alignments or morphological diversity.

In order to explore the impact of cosmic infall on smaller scales I implemented a novel tracer

particles algorithm in the Eulerian adaptive mesh re�nement code Ramses. The tracer particles

are based on a Monte Carlo approach and keep tracks of where �uid elements originate, so as to

follow their Lagrangian trajectories and re-processing history. I show that they reproduce the gas

distribution very accurately and I extend them to also trace the stars and black holes through

the full cycle of baryons. These tracer particles are ideal to study complex astrophysical systems

where both the e�ciency of shock-capturing Godunov schemes and a Lagrangian follow-up

of the �uid are required simultaneously, in particular in cold �ows. Thanks to this accurate

tracer particle algorithm, the acquisition and loss of angular momentum of both cold and hot

accretion �ows onto galaxies at high redshift can be studied reliably. I �nd that the amplitude and

orientation of the speci�c angular momentum of the cold gas is preserved down to the inner halo

where the angular momentum contributes to the spin-up of galaxies, while for the hot gas it is lost

at larger radii. Pressure torques, stronger in magnitude than gravitational torques are, however,

spatially incoherent, which leads them to have no signi�cant impact on the redistribution of

angular momentum of the accretion �ows. Gravitational torques, which dominate globally, are

the main driver of the loss of angular momentum of the accretion �ows in those halos, with

dark matter gravitational torques dominating in the outer halo and stellar gravitational torques

dominating in the disk.
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1. Introduction

1.1 From a single galaxy to an expanding Universe

From the 18th century, most of the observed objects in the sky were thought to be located in a

single entity — the Milky Way — whose borders were the borders of the Universe. Setting apart

planets and stars, these objects were broadly classi�ed as nebulæ, from the Latin word for cloud

or fog, as they resemble di�use clouds in sky. In 1771, Charles Messier published his “Catalogue

des Nébuleuses et des Amas d’Étoiles” (Catalogue of Nebulæ and Star Clusters). Charles Messier

�rst interest was in comets, but in order to observe them, he had to be able to distinguish moving

objects from �xed objects in the sky, such as stars, star clusters and nebulæ. This led him to

systematically compile a list of the objects in the sky that were impairing his observations. This

catalogue, known as the Messier Catalogue is still today one of the most popular catalogues

among amateur astronomers.

With the advent of better observations and the systematic classi�cation of the objects, as-

tronomers started distinguishing star clusters from di�use nebulæ from spiral nebulæ. During the

18th and 19th centuries, many philosophers and mathematicians (E. Swedenborg, P.L. Maupertuis,

T. Wright) speculated that the Milky Way is itself a “spiral nebula”, made of a �attened disk

of stars and that the spiral nebulæ are its analogues, but reside outside the Milky Way, while

others argued that the spiral nebulæ were part of the Milky Way. This questioned not only the

location of the Milky way and the spiral nebulæ in space, but also their relative sizes. However,

observational evidences were missing to rule out any of the two models and it was not until the

20th century that it was �nally shown that these nebulæ live outside of the Milky Way. One of

the �rst proofs of the extra-galactic nature of the nebulæ can be attributed to Vesto Slipher. In

1912, he made spectrographic observations of the brightest spiral nebulæ ; all of them showed

signi�cant Doppler shifts, suggesting that the nebulæ are receding at velocities of hundreds to

thousands of kilometres per seconds, much greater than the relative velocities of the stars of the

Milky way. In 1917, observations of supernovæ in the Great Andromeda Nebula (now called the

Andromeda galaxy) revealed that the supernovæ were 10 magnitudes fainter than supernovæ in

the Milky Way, suggesting that they were much further away than the ones observed in the Milky

Way. Using conservative assumptions, Shapley and Curtis, 1921 estimated that the Andromeda
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Figure 1.1.1: The 110 objects of the Messier catalogue, taken and compiled by an

amateur astronomer. Credits: Michael A. Phillips.
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Figure 1.1.2: Le�: Rotational pro�le of the Andromeda galaxy from Rubin and Ford,

1970. Right: Scheme of the rotational velocity pro�le. The expected rotational velocity

pro�le with no dark matter is shown as a dashed line, the observed rotational pro�le is

shown as a solid line. Without dark matter, the rotation pro�le decreases after some radii

while the addition of dark matter makes the pro�le �atter at large radii, in agreement

with observations.

Nebula could not be any closer than 20 000 ly, but still 7 000 ly o� the plane of the Milky way.

This was further con�rmed by the distance estimations of the nebulæ by Edwin Hubble, which

de�nitely showed that nebulæ were too distant to be part of the Milky Way. We now call spiral

(and elliptical) nebulæ “galaxies” from the greek words γάλα (“milk”) and ξίας (“way”).

In 1929, Hubble was able to show that galaxies were receding at increasing velocities with

increasing distance, so that galaxies further away are receding faster, a relation now known as

Hubble-Lemaître’s law. The law states that the receding velocity is proportional to the distance

times the Hubble constant H . Even though the measurements were largely inaccurate — Hubble’s

measurements gave H = 500 km/s/Mpc while modern estimates are around 70 km/s/Mpc —

the result showed that the Universe is not only made of multiple galaxies, but it is also expanding,

paving the way to modern cosmology. At this point, the basic building blocks of the Universe

were broadly found: the Universe is made of a multitude of individual galaxies, each of which has

millions to several hundred billions stars, and sizes of the order of 10 kly to 100 kly, while the

distances between galaxies are of the order of the Mly.

The next step in our current understanding of the structure of galaxies and cosmology appeared



1.1 From a single galaxy to an expanding Universe 3

in the course of the 20th century. The discoveries of the distances and sizes of galaxies was shortly

followed by estimations of their mass. In order to do so, a simple way is to use the laws of gravity:

objects orbiting massive objects have smaller periods according to Kepler’s laws. By measuring

the velocities of objects gravitating in or around galaxies, one can infer their gravitational mass.

Since galaxies are made of stars, one can also estimate the stellar mass from the galaxies’ apparent

luminosity. The ratio of gravitational mass required to explain the observed velocities to the

observed stellar mass, known as the “mass-to-light” ratio was initially thought to be one. However,

observations in the 1920s showed that the mass required to explain the motion of stars in the

neighbourhood of the Sun is much larger than the observed one. Later in the 1930s, observations

of the motion of galaxies in the Coma cluster led to the same conclusion that the gravitational

mass should be much larger than the observed ones. These evidences were later con�rmed when

Rubin and Ford, 1970 showed that most of the mass of galaxies is not in stars. This was shown by

measuring the rotational velocity of HII regions in the Andromeda galaxy. If the bulk of the mass

of the galaxy was due to its stars, then the rotational velocity should increase from the centre to

a radius of 10 000 ly, reaching a maximum of ∼ 200 km/s before decreasing. The observations

however showed that the rotation curve rises as a function of radius before reaching a plateau

at a radius of 10 000 ly at about 250 km/s, as shown on �gure 1.1.2, left panel. This discovery,

followed by multiple similar results, all con�rmed that most of the mass in galaxies — and similarly

in galaxy clusters — is hidden and is invisible. This matter that interacts via gravity but cannot

be seen is now called Dark Matter (DM). In order to match observations, galaxies should be

embedded in an extended DM halo, so that the decrease of stellar density with increasing radius

is mitigated by the extended dark matter halo in the outskirts of the galaxy. This is schematically

illustrated on �gure 1.1.2, right panel. In addition to a correct distance ladder, astronomers now

had access to a mass scale, albeit imprecise: in addition to the billion of stars that make galaxies,

an extended and massive halo of dark matter surrounds each galaxy.

At about the same time other evidences for dark matter emerged with the discovery of

the Cosmic Microwave Background (CMB) by Penzias and Wilson, 1965. This electromagnetic

emission, emitted at the infancy of the Universe, shows that the Universe started in a quasi-

homogeneous hot and dense state, with tiny density �uctuations of the order of the 10−4
to

10−5
. In a model missing dark matter, these initial density �uctuations would be too small for

gravitational collapse to have time to pull matter together and form the observed large-scale

structures of the Universe. This is a consequence of the interaction of baryonic matter with

radiation: up to the emission of the CMB, gravitational collapse was prevented due to the radiative

pressure of photons scattering from atoms to atoms. Dark matter provides a solution to the

problem because it does not interact with light. Therefore, its density perturbations can grow �rst

and create a potential well into which baryonic structures will later collapse. In addition to the

CMB observations, several other observations such as gravitational lensing by galaxy clusters or

the temperature distribution of hot gas in galaxies and clusters all pointed towards dark matter.

These discoveries, in conjunction with the development of general relativity led to the emer-

gence of the standard model of cosmology, the Λ Cold Dark Matter (ΛCDM) model. The ΛCDM

describes the evolution of the Universe after the CMB and is made of the following building bricks

1. the CMB is described by a Gaussian random �eld with known statistical properties,

2. the Universe is homogeneous and isotropic with no spatial curvature,

3. the Universe contains dark energy (Λ term), cold dark matter (CDM) in addition to ordinary

matter and radiation.

According to the ΛCDM model, the Universe started from a hot dense state some 14 Gyr ago

and has been expanding since then, as measured by Hubble, 1929 and is now in accelerated

expansion, as a result of the non-null Λ term in Einstein’s equations. About 85 % of the current

matter of the Universe is DM, the remaining 15 % being ordinary baryonic matter (gas, stars,
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Figure 1.2.1: (Le�:) The galaxy distribution obtained from spectroscopic redshift sur-

veys (blue) and from mock catalogues (red) constructed from cosmological simulations.

From Springel et al., 2006. (Right:) Catalogue of the spectroscopic HectoMAP survey in

the local Universe (Hwang et al., 2016). The cosmic web made of large voids, �laments

and dense nodes is clearly visible.

etc.). All this matter only adds up to 30 % of the total energy density of the current Universe, the

remaining 70 % being dark energy. The success of the ΛCDM is well illustrated by the advent of

the “precision cosmology” era, in which the parameters of the model can be �tted to observations

down to percent levels using a variety of measurements, from CMB observations (Bennett et al.,

2013; Planck Collaboration, 2018a), baryonic acoustic oscillations (e.g. Eisenstein et al., 2005;

Moresco et al., 2016; Alam et al., 2017), type Ia supernovæ (e.g. Riess et al., 1998; Perlmutter et al.,

1999; Abbott et al., 2019), weak lensing, cluster abundances (see e.g. Weinberg et al., 2013, and

references therein for a detailed review).

1.2 The large scale structure of the Universe

Since the assumption of homogeneity clearly breaks down on small scales, as revealed by the

presence of galaxies or stars, there must be certain homogeneities present at a certain time in

history of the Universe. The homogeneities can be traced back in time to the CMB, but also to much

larger scales, as can be seen in galaxy surveys that have revealed the existence of superstructures

(cluster of galaxies, super-clusters and �laments and walls connecting them) on scales up to a

few tens to hundreds of Mpc1
, as can be seen on �gure 1.2.1. While each of these structures,

from galaxies to super clusters or �laments, is unique in its morphology and mass, their overall

statistical properties are homogeneous: the probability of any con�guration is independent on

the spatial location. Recent surveys, like the Sloan Digital Sky Survey (Abazajian et al., 2003), the

2MASS redshift survey (Huchra et al., 2012) or HectoMap (Hwang et al., 2016) have improved

signi�cantly our knowledge of the galaxy distribution showing with no doubt that galaxies form

a complex web-like network on large scales made of voids, walls and �laments that interconnect

with clusters of galaxies. This pattern is known as the cosmic web.

Due to the laws of gravity, the initial tiny �uctuations evolved into large and complex

anisotropic structures that shape the current Universe. At scales of up to a few tens of Mpc,

large under-dense regions called voids are found (Pan et al., 2012). Put together, the voids form a

foam-like structure where each bubble is bound by denser walls or pancakes, sometimes called

Zel’dovich pancakes (Zeldovich, 1970). The initial motion of particles can be well approximated

in their linear regime by a rectilinear trajectory where the direction is set by the initial peculiar

1

The pc length unit is commonly used in astronomy, where 1 pc ≈ 3.08× 1016 m ≈ 3.3 ly.
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gravitational forces. Similar to parallel light rays bent by a disturbed water surface, the particles

will travel until they form caustics. The �rst caustics to form, resulting from the collapse of matter

along one direction, are bi-dimensional in nature. Following this �rst collapse, a second direction

may collapse to form secondary caustics, resulting in uni-dimensional �lamentary structures.

Finally, �lamentary structures may also collapse to form “knots” or nodes of the cosmic web.

As the cosmic web builds up, dense and spheroidal regions will undergo spherical collapse,

resulting in the formation of dark matter halos. These primordial halos will later merge to form

larger halos that in turn will also merge. This continuous accretion and successive merger scenario

is often referred to as hierarchical formation. In classical models, galaxies form in (sub-)halos

(Kau�mann et al., 1993) themselves located in the cosmic web. The distribution of galaxies in the

Universe follows that of the large-scale structures as most of them are found in walls, �laments

and nodes of the cosmic web. Recent developments have also shown that not only does the spatial

distribution of galaxies relate to the cosmic web, but also some of their properties such as the

orientation of their spin or their colour.

1.3 From the cosmic web to galaxy formation
According to the classical galaxy formation paradigm, gas falling on a proto-galaxy heats up to

the Virial temperature of its host halo when crossing the virial radius (Rees and Ostriker, 1977;

Silk, 1977). In this scenario, the gas acquires the same angular momentum distribution as dark

matter before turning around and �owing towards the proto-galaxy, which has been con�rmed

by hydrodynamic simulations that do not describe cooling (e.g. van den Bosch et al., 2002). This

process of angular momentum acquisition, at the core of the understanding of the formation of

disk galaxies at high redshift, is well explained by the Tidal Torque Theory (TTT, Peebles, 1969;

Doroshkevich, 1973; S. D. M. White, 1984). It predicts that the angular momentum of the dark

matter increases under the e�ect of the gravitational torques of the cosmic web before dark matter

decouples from the expansion of the Universe. In the classic scenario, the gas undergoes the

same tidal �eld before decoupling but loses all dynamical and causal connection with the large

scale structures at the Virial radius. Following this idea, classical models of galaxy formation

typically ignore any explicit coupling of the baryons to their large scale environment, so that

galaxy properties are directly inherited from the mass history of their host halo or some quantities

averaged over all angles.

It has been established that the clustering of dark matter halos, as measured by halo bias, not

only depends on halo mass but also on other halo properties such as formation time, concentration,

spin and ellipticity (Gao et al., 2005; Wechsler et al., 2006; Gao and S. D. M. White, 2007; Hahn

et al., 2007). This problem, commonly referred to as the “assembly-bias problem” can be rephrased

as follows: the clustering of dark matter halos and their properties are correlated, beyond a mere

mass and density relation. On large scales, systematic galactic surveys (de Lapparent et al., 1986;

Geller and Huchra, 1989; Colless et al., 2001; Tegmark et al., 2004; Abazajian et al., 2003) have

revealed that the Universe is structured around voids, sheets, �laments and knots that form the

cosmic web. Using a di�erent approach, a growing number of evidence have since showed that

some halo and galaxy properties present distinct features at di�erent locations in the cosmic web.

As presented in Kraljic et al., 2018, void galaxies are found to be less massive, bluer and more

compact than galaxies outside of voids (Rojas et al., 2004; Beygu et al., 2016); galaxies infalling

into clusters along �laments show signs boosted star formation rate even before becoming part of

the clusters while those infalling from the voids do not (Porter et al., 2008; Martínez et al., 2016);

Kleiner et al., 2017 �nd systematically higher HI fractions for massive galaxies near �laments

compared to �eld population, interpreted as evidence for a more e�cient cold gas accretion from

the intergalactic medium. A small but signi�cant trend in the distribution of galaxy properties

within �laments was reported in the spectroscopic surveys VIPERS (Malavasi et al., 2017) and



6 Chapter 1. Introduction

GAMA (Kraljic et al., 2018) and with photometric redshifts in the COSMOS �eld (Laigle et al.,

2018). When corrected for large-scale density e�ects, these studies �nd signi�cant mass and

type segregations, where the most massive or quiescent galaxies are closer to �laments than less

massive or active galaxies, emphasizing that large-scale cosmic �ows play a role in shaping galaxy

properties. On the other hand, other works reported that the most important driver of galaxy

properties is stellar mass, as opposed to environment (Robotham et al., 2013; Alpaslan et al., 2015;

Alpaslan et al., 2016), while the environment may impact the e�ciency of galaxy formation (Guo

et al., 2015; Eardley et al., 2015).

On large scales, the Tidal Torque Theory (TTT) naturally connects the distribution of matter

to the angular momentum of halos (see section 2.1.6, e.g. Lee and Pen, 2001; Hirata and Seljak,

2004) in its recently revisited, conditioned formulation (Codis et al., 2015), with low-mass galaxies

being preferentially aligned with �lament’s direction while more massive ones have their spin

perpendicular to it. While it is far from obvious that the alignment of halo spin implies that the

galactic spin are also aligned (Tenneti et al., 2015; Chisari et al., 2017, e.g. ), the e�ect has also

been con�rmed for galaxies in numerical simulations (Dubois et al., 2014; Welker et al., 2014;

Martizzi et al., 2019) and recently observationally (e.g. Trujillo et al., 2006; Lee and Erdogdu, 2007;

Paz et al., 2008; Tempel et al., 2013; Tempel and Libeskind, 2013; Pahwa et al., 2016, see also for

B. J. T. Jones et al., 2010; Cervantes-Sodi et al., 2010; Andrae and Jahnke, 2011; Goh et al., 2019 for

contradictory results).

Classical models have proven quite successful in explaining many observed properties of

galaxies, via the so-called halo model (see Cooray and R. Sheth, 2002, for a detailed review),

in particular against isotropic statistics such as the two-point correlation function, yet they

fail to capture some galactic properties, such as spin alignments, which are speci�cally driven

by scale-coupling to the cosmic web (Codis et al., 2015), nor do they fully take into account

how a given galaxy is gravitationally sensitive to the larger scales anisotropies. Indeed, when

gas cooling is accounted for, it has been shown that a substantial part of the baryon mass and

angular momentum is acquired via cold �lamentary �ows (Birnboim and Dekel, 2003; Ocvirk

et al., 2008; Dekel et al., 2009; Kereš et al., 2009), feeding the galaxy in a highly anisotropic way.

Unlike shock-heated gas, cold �ows are able to penetrate halos to reach their innermost regions,

feeding galaxies with pristine fuel for star formation. A three-dimensional visualization of galactic

formation processes at intermediate scales (made possible by the joint use of tracer particles for

the cold gas phase, and well-resolved zoom simulations) reveals that these gaseous �ows stem

from the cosmic web. In fact, the spatial distribution of caustics (the geometric location of the dark

matter shell crossing and the isothermal shock of cold gas) provides us with direct information

on the dynamical state of the gas likely to be accreted on the proto-galaxy: in this scenario, the

gas �rst �ows towards the caustics created by the dark matter to form wall-like structures, in

which galaxies are embedded (Danovich et al., 2012). The gas then radiatively cools and looses

its velocity component in the direction perpendicular to the walls to condense at the centre of

dark matter �laments found at the intersection of walls. In the process, the gas retains a net

transverse motion that sets the direction and amplitude of its angular momentum which will later

be fed coherently into growing proto-galaxies. Doing so, it retains its angular momentum — and

hence its causal connection to the cosmic web — until it reaches the innermost part of the galaxy

(Pichon et al., 2011; Danovich et al., 2015), providing a unique testbed to assess the e�ect of the

cosmic web on the formation of galaxies.

With the advent of large spectroscopic surveys (GAMA, Driver et al., 2011; VIPERS, Guzzo

et al., 2014) and cosmological simulations (Illustris, Vogelsberger et al., 2014; Horizon-AGN

Dubois et al., 2014; Dubois et al., 2016; Eagle, Schaye et al., 2015; Massive-Black II, Khandai et al.,

2015), astronomers can now explore time modulations of the galactic properties with statistically

meaningful data, but also their spatial modulations in the frame of the cosmic web (e.g. Alpaslan
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et al., 2016; Malavasi et al., 2017; Laigle et al., 2018; Kraljic et al., 2019). There is now a dire need

for both new methods and models to understand the coupling between the anisotropic cosmic web

and the baryonic physics of galaxies. In particular one needs to build new estimators to quantify

the spatial modulation of galaxy properties beyond isotropic two-point correlation functions on

top of the classical halo model. As the e�ect of the cosmic web is expected to be second-order

(after mass and local density dependence), new estimators and models have to be built that take

into account explicitly the anisotropy of the cosmic web to prevent the signal from being lost

when averaging over all possible angles.

The aim of this dissertation is to provide such estimators and models, with a novel framework

devoted to the study of the e�ect of anisotropic features on the formation of dark matter halos

and their galaxies. The approach followed in my work is two-fold: I study the e�ect of the cosmic

web on large and small scales on the assembly of dark matter halos across cosmic time using

conditional excursion set and critical set theory and use numerical simulations to unveil how

these e�ects impact galaxy formation.

Chapter 2 describes the context on which this dissertation is based, presenting the di�erent

models and tools used in the course of my work. Chapter 3 presents an extension of the excursion

set theory and predicts the accretion rate, formation time and typical mass of dark matter halos

as a function of their environment. Chapter 4 presents a framework based on the peak theory to

quantity the environmental e�ects acting on halo formation. In particular, it aims to provide a

comprehensive description of the major events relevant to the assembly of galaxies. Chapter 5

presents a new numerical scheme able to accurately track the cosmic accretion in mesh-based

hydrodynamical simulations. Chapter 6 presents results obtained from a numerical study of how

angular momentum is acquired from the cosmic web and transported towards galaxies via cold

�ows. Chapter 7 wraps things up and discusses perspectives.
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Disclaimer
The results presented in chapter 3 have led to a publication in MNRAS (Musso, Cadiou et al.,

2018). I have derived all the equations of the paper independently and checked their correctness

using numerical simulations. I also produced all the plots of the paper. The writing of the paper

was done in collaboration with M. Musso, with contributions from C. Pichon, S. Codis, K. Kraljic

and Y. Dubois.

The results presented in chapter 4 have been obtained in collaboration with C. Pichon and

S. Codis, with contributions from Y. Dubois and M. Musso.

The results presented in chapter 5 have led to a publication in A&A (Cadiou et al., 2019). I

have produced all the results of the paper, with contributions from Y. Dubois and C. Pichon.

I have produced all the results of chapter 6, with contributions from Y. Dubois and C. Pichon.

I have read and contributed to to all publications presented in appendix B, albeit not as the

main author. More speci�cally, I contributed to the theoretical sections of Kraljic et al., 2018;

Kraljic et al., 2019. I contributed to the numerical setup of Beckmann et al., 2019 by providing the

tracer particle code.

To the best of my knowledge, all the results presented in the dissertation are original.
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2. Context

In this chapter, I will present the di�erent models used throughout my work. In section 2.1, I

will present the cosmological context in which galaxies form, before describing the processes

involved in galaxy formation in section 2.2.

2.1 Cosmology

In this section, I detail the di�erent models that describe the initial conditions of the Universe in

section 2.1.1. In section 2.1.2, I detail how these initial �uctuations grow to form the large-scale

structure of the Universe and dark matter halos. In sections 2.1.3 to 2.1.5, I present models suited

to study the statistical properties of dark matter halos and detail how they then acquire angular

momentum in section 2.1.6. Finally, in section 2.1.7, I provide some tools to describe the initial

conditions of the Universe.

Figure 2.1.1: Map of the CMB as observed by the Planck satellite in 2013. Credit: ESA,

Planck Collaboration.
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2.1.1 Properties of the initial conditions of the Universe

In the standard model of cosmology, the time and space frame of the Universe was created at

the Big Bang. Between 10−36 s and 10−33 s ∼ 10−32 s, the Universe experienced a phase of

exponential growth known as in�ation. Quantum �uctuations in the microscopic scales were

quickly expanded to cosmological scales to yield a �at, statistically homogeneous and isotropic

Universe. After the end of in�ation, the hot initial plasma cooled until light and matter decoupled

at about 3 000 K, a moment known as the Last Scattering Surface (LSS). Photons emitted from the

LSS were able to travel freely through space and experienced only the expansion of the Universe

since then. Today, they can be observed in the microwave range of the light spectrum — as they

have been emitted at z ∼ 1100 — and form the well-studied CMB illustrated on �gure 2.1.1.

The CMB is as-of-today the best example of a black body spectrum with a temperature of

2.726 K. It is characterised by very small temperature �uctuations of about 0.0013 K. These

�uctuations can theoretically have two forms. Isocurvature perturbations have the property that

the total energy density is constant in space so that the sum of the fractional variation of each

component compensates exactly. An increase of 1 % of any component is compensated by a net

decrease of 1 % of other components. Cosmic strings are commonly associated to isocurvature

perturbations.

On the other hand, for adiabatic perturbations, the fractional variation of each component of

the matter (baryons, photons, DM, neutrinos) are the same so that an excess of 1 % of photons

results in an excess of 1 % of baryons. This is the model favoured by cosmic in�ation. In the

following, we will assume that the initial perturbations are adiabatic perturbations. Under this

assumption, regions that are hotter are also denser ones so that the CMB is therefore also an

observation of the density �uctuations of the Universe at z ∼ 1100. The �uctuations in the

initial density �eld are very well described by a homogeneous Gaussian Random Field, whose

mathematical properties are described in section 2.1.1.1.

The evolution of the Universe after in�ation is well described by the ΛCDM model, as already

mentioned in the introduction. The ΛCDM is made of cold DM and a cosmological constant, Λ,

entering Einstein’s equation, resulting in an expanding Universe. At low redshifts (later times),

the expansion becomes accelerated once the density of the Universe is Λ-dominated. The model

is described by six parameters: the baryon density Ωb, the dark matter density Ωc, the age of the

Universe t0, the spectral index ns, the normalization of the amplitude of the primordial �uctuations

∆2
R and the reionisation optical depth. From these parameters, one can derive the Hubble constant

H0, the total matter density Ωm = Ωc + Ωb, the root-mean-square of the �eld linearly evolved at

z = 0 and smoothed with a Top-Hat �lter of size 8 Mpc/h , σ8. The values of the six parameters

are now measured from observations of the CMB (WMAP, Planck Collaboration, 2018a), as well

as many other independent observations (see Weinberg et al., 2013, for a detailed review). The

best-�t values from CMB observations are reported in Table 2.1. They show that today’s Universe

is in accelerated expansion, with 70% of the energy density in the form of dark energy (Λ term),

25% as DM and only 5% as baryonic matter while other particles — such as photons or neutrinos

— make a negligible contribution.

In the following, we will particularly focus on the density contrast δ

δ ≡ ρ− ρ̄
ρ̄

. (2.1)

Here ρ̄ is the mean density of the Universe and ρ is the local density. This �eld is well represented

by a Gaussian random with zero mean.
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Table 2.1: Planck collaboration best-�t cosmological parameters. See Planck Collabora-

tion, 2018a for more details.

Parameter Comment Value Unit

ns Scalar spectral index 0.9667(40)
H0 Hubble constant 67.74(46) km s−1 Mpc−1

Ωb Baryon density 0.0486(10)
Ωc Dark matter density 0.2589(57)
Ωm Matter density 0.3089(62)
ΩΛ Dark energy density 0.6911(62)
σ8 R.m.s. of the matter �uctuation 0.8159(86)
z∗ Redshift at decoupling 1089.90(23)

2.1.1.1 Gaussian Random Field
Since the initial conditions of the Universe

1
are very well described by a Gaussian random �eld, it

is worth providing a mathematical description of their structure and properties. While a more

in-depth and mathematical description of random �elds and their geometry is provided in Adler

and Taylor, 2007, let us provide some basic de�nitions and properties.

A random variable X ∈ R has a Gaussian distribution (or normal distribution) with mean µ
and variance σ if its PDF reads

P (X) =
1√

2πσ2
exp

(
−(X − µ)2

2σ2

)
. (2.2)

This de�nition can easily be generalized to d dimensions: a random vector X ∈ Rd has a

multivariate Gaussian distribution with mean µ ∈ Rd and variance Σ ∈M(Rd), where Σ is a

positive-de�nite matrix, if its PDF reads

P (X) =
1√

(2π)d det Σ
exp

(
−1

2
(X − µ)TΣ−1(X − µ)

)
. (2.3)

The element i, j of the covariance matrix is the covariance of the ith element ofX with its j-th
element. It can be formally written as

Σij = 〈(Xi − µi)(Xj − µj)〉, (2.4)

where the brackets indicate an ensemble average. For a function F : Rd → R, the ensemble

average over the ensemble of possible realizations Ω is de�ned as

〈F 〉 ≡
∫

Ω
ddX ′ F (X′)P (X ′). (2.5)

In the following, brackets symbols are expectation, integrated over all possible realisations. Using

ergodicity in an isotropic and homogeneous �eld, this is equivalent to averaging over space.

Using multivariate Gaussian distributions, we can also de�ne a discrete Gaussian random

�eld. Let X be a discrete �eld de�ned at positions {ri}i=1,...,N . The �eld is said to be a Gaussian

random �eld if the vectorX = {X(ri)}i=1,...,N is distributed following a multivariate Gaussian

distribution. In cosmology, it is very common to use the two-point correlation function instead of

1

In the following of the manuscript, I will call “the initial conditions” the initial conditions in the matter dominated

Universe, which are set by the measurements of the CMB.
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the covariance. For a given pair of point ri, r
′
j , the two-point correlation function of a �eld is

de�ned as

ξ(ri, r
′
j) ≡

〈
(X(ri)− µ(ri))(X(r′j)− µ(r′j))

〉
, (2.6)

where µ(r) = 〈X(r)〉 is the mean of the �eld (it is a �eld itself). This is the generalization of

equation (2.4) to a discrete �eld.
2

Since a multivariate Gaussian distribution is described uniquely

by its mean and covariance, a discrete Gaussian random �eld is entirely described by its mean

and two-point correlation function.

We are now in a position to de�ne a (continuous) Gaussian random �eld. Let X by a �eld in

d dimensions. The �eld is a Gaussian random �eld if for any given position r there exists µ, σ
such that

X(r) ∼ N (µ, σ), (2.7)

and the covariance of the �eld at any pair of point r, r′ is given by the two-point correlation

function

ξ(r, r′) =
〈
(X(r)− µ(r))(X(r′)− µ(r′))

〉
. (2.8)

The standard model of cosmology further assumes that the Universe is statistically homoge-

neous and isotropic. Mathematically, a Gaussian random �eld is homogeneous and isotropic if its

correlation functions veri�es

ξ(r, r′) = ξ(
∥∥r − r′

∥∥) = ξ(s), (2.9)

where s = ‖r − r′‖ is the separation and its mean is a constant

µ(r) = µ0. (2.10)

As a consequence, the statistical properties of the �eld are invariant by translation and rotation.

2.1.1.2 Power spectrum
In a statistically homogeneous Universe, it is convenient to represent the random the �eld δ by

its Fourier components using the following convention

δ(k) =

∫
d3r δ(r)e−ik·r, δ(r) =

1

(2π)3

∫
d3k δ(k)eik·r. (2.11)

The power spectrum P (k) of the �eld is the expectation value

〈
δ(k)δ?(k′)

〉
≡ P (k)(2π)3δD

(
k − k′

)
. (2.12)

Here the superscript
∗

stands for the complex conjugate, which makes P (k) positive de�nite.

The Dirac delta is a consequence of translational invariance (homogeneity). Otherwise, the

ensemble average 〈δ(k)δ(k′)〉 would acquire a phase factor when r → r + ∆r. If the �eld is

real δ?(k) = δ(−k), and we obtain

〈
δ(k)δ(k′)

〉
= P (k)(2π)3δD

(
k + k′

)
. (2.13)

Requesting further rotational invariance implies that the power spectrum depends only on

k = ‖k‖, i.e. 〈
δ(k)δ?(k′)

〉
= P (k)(2π)3δD

(
k − k′

)
. (2.14)

Taking the Fourier transform of equation (2.12), we obtain the relation between the two-point

correlation function and the power spectrum

ξ(r) =
1

(2π)3

∫

k
d3kP (k)eik·r. (2.15)

2

Note that this de�nition is not speci�c to Gaussian random �elds.
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Figure 2.1.2: (Le�:) Plot of the matter power spectrum as a function of the wave number

assuming a Planck 2018 (Planck Collaboration, 2018a) cosmology. At scales involved in

galaxy formation (0.1 Mpc/h to 10 Mpc/h), the spectrum resembles a power-law with

slope ∼ −2. (Right:) Standard deviation of the �eld smoothed with di�erent �lters as

labelled.

For a statistically homogeneous and isotropic Gaussian random �eld in three dimensions this can

be rewritten in a more compact way as

ξ(r) =
1

2π2

∫ ∞

0
dk k2P (k)j1(kr), (2.16)

where j1 is the second spherical Bessel function. For the sake of completeness, note that in one

and two dimensions we have

ξ1D(r) =
1

π

∫ ∞

0
dk P (k)j0(kr), (2.17)

ξ2D(r) =
1

2π

∫ ∞

0
dk kP (k)J0(kr), (2.18)

where J0 is the �rst Bessel function and j0 the �rst spherical Bessel function. The ΛCDM power

spectrum depends on the properties of in�ation and of the early Universe. It features notably

a peak at ∼ 100 Mpc/h and then decreases roughly as a power-law with index ns ∼ 1− 2, as

shown on �gure 2.1.2, left panel.

Generating Gaussian Random Field
Because the initial conditions of the Universe are well described by a Gaussian random �eld, the

generation of Gaussian random �eld is the �rst step of any numerical simulation that aims at

simulating the Universe from its birth. Let us describe a method to generate Gaussian random

�elds on a periodic grid with a given power spectrum P (k). The �rst naive approach works as

follows

1. generate a white noise �eld from a Gaussian distribution with zero mean and unit variance

µ(r) ∼ N (0, 1),

2. compute µ(k), the Fourier transform of µ(r) (using e.g. the Fast Fourier Transform (FFT)

algorithm),
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Table 2.2: Correspondence of linear operators between their real-space and Fourier-

space representations. Note that real space �lters are convolution operators while their

Fourier representation is a multiplication.

Operator Real space Fourier space

Gradient ∇ ik

Laplacian ∇2 −k2

Spatial shift δ(r) 7→ δ(r + ∆r) eik·∆r

Gaussian �lter WG(r) ≡ 1

(2π)3/2R3
e−r

2/2R2
W̃G(k) = e−(kR)2/2

Top-Hat �lter WTH(r) ≡ 3

4πR3
ϑH

(
1− r

R

)
W̃TH(k) =

3j1(kR)

kR

Sharp k �lter Wsharp(r) ≡ 3

4πR3

3j1(r/R)

r/R
W̃sharp(k) = ϑH(1− kR)

Derivative of TH W ′TH = ∂R[WTH] − 3

R
j2(kR)

Derivative of Gaussian W ′G(r) = − 1

2R2
WG(r) −k

2

2
W̃G(k)

3. compute the Fourier �eld

δ(k) =
√
P (k)µ(k),

4. obtain the real-space overdensity δ(r) using an inverse Fourier transform of δ̃(k).

While the naive approach is easy to implement, it has a number of issues for small boxes (see e.g.

Pen, 1997). Indeed, the power spectrum is assumed to be spherically symmetric, an assumption

that does not hold on a �nite rectangular box. One way to partially solve the problem is due to

Hahn and Abel, 2011, where they suggested sampling the power spectrum in real-space instead

of Fourier space, so that the periodicity of the box is correctly accounted for. This is the approach

used in the Music software to generate initial conditions for cosmological simulations.

2.1.1.3 Correlation of the field and linear operators
In the context of excursion set theory and peak theory, discussed in sections 2.1.3 and 2.1.5, one

needs to be able to compute correlation functions of the �eld and its derivatives with respect

to space or smoothing scale. The motivations to compute these correlation functions will be

discussed in further details in sections 2.1.3 and 2.1.5 for excursion set theory and peak patch,

while the importance of the smoothing operation is discussed in section 2.1.2.2. One of the

properties of Gaussian random �eld is that any linear combination of a Gaussian random �eld is

itself a Gaussian random �eld. Stated di�erently, any linear transformation of a Gaussian random

�eld is a Gaussian random �eld itself so that, in general, any linear operator will conserve the

Gaussian property of a �eld. Following the lines of section 2.1.1.2, let us de�ne the two-point

cross-correlation function between two Gaussian random �elds δ1 and δ2

ξδ1,δ2(r) ≡ 1

(2π)6

∫
d3k

∫
d3k′

〈
δ1(k)δ?2(k′)

〉
ei(k−k

′)·r. (2.19)

The results of section 2.1.1.2 can be recovered setting δ1 = δ2.

Let F be a linear operator. We de�ne its Fourier representation F̃ as

F̃ [δ](k) =

∫
d3r e−ik·rF [δ](r). (2.20)

The Fourier representation of convolution �lters, such as the Top-Hat �lter and the Gaussian �lter,

become simple multiplications in Fourier space. Noting that any derivation operators (∇,∇2, . . . )
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can be written as a convolution with the relevant distribution, their representation in Fourier

also become a simple multiplication, where the multiplication factor does not depend on the

underlying �eld. This means that F̃ [δ](k) = F̃(k)δ(k). Some common operators and their

Fourier representations are given in Table 2.2. In the following, we will restrain ourselves to

operators that can be written as multiplications in Fourier space
3
. Using this formalism, we can

compute any correlation function between two operators applied to a Gaussian random �eld. The

correlation between F1[δ] and F2[δ], where F1 and F2 are linear operators, reads

ξF1F2 = 〈F1[δ]F2[δ]〉

=
1

(2π)6

∫
d3k

∫
d3k′ F̃1(k)F̃?2 (k′)

〈
δ(k)δ?(k′)

〉

=
1

(2π)6

∫
d3k

∫
d3k′ F̃1(k)F̃?2 (k′)(2π)3P (k)δD

(
k − k′

)

=
1

(2π)3

∫
d3kP (k)F̃1(k)F̃?2 (k). (2.21)

Note that in general the �elds returned by the operators may not be invariant under rotation

or even translation, even when the underlying �eld is itself isotropic or homogeneous. This is

for example the case when considering the gradient of the �eld in a given direction of space. As

an example, let us compute the correlation function between the �eld smoothed by a Gaussian

�lter at scale R1 and the �eld smoothed by a Gaussian �lter at scale R2 at a separation r4
using

equation (2.21)

ξR1,R2(r) = 〈(WG,R1 ∗ δ)(0)× (WG,R2 ∗ δ)(r)〉

=
1

(2π)3

∫
d3kP (k)W̃G,R1(k)W̃G,R2(k)e−ik·r

=
1

(2π)3

∫
d3kP (k) exp

(
−k

2(R2
1 +R2

2)

2
− ik · r

)
. (2.22)

2.1.2 Formation of the structures of the Universe
In this section, I detail the models that describe the formation of the structures of the Universe. In

section 2.1.2.1, I present how initial tiny �uctuations grow in the linear regime. In section 2.1.2.2, I

detail the analytical solution of the spherical collapse that will be at the base of our understanding

of the formation of dark matter halos. In section 2.1.2.3, I detail how the �rst structures emerge

from the displacement of matter in the Zel’dovich approximation.

2.1.2.1 Linear perturbations
Since the initial conditions of the Universe are given by tiny �uctuations of the density �eld

around its mean value, it is expected that the initial evolution can be described in the linear regime,

expressed as perturbations of the density contrast δ. In the linear regime, the variance of the

density contrast increases as matter departs from under-dense regions to reach over-dense regions.

In order to study this regime, let us �rst restrict ourselves to a pressure-less �uid approach that

describes well DM in the ΛCDM model. In this model, the DM is assumed to start from a state

where the velocity �eld has no velocity dispersion (the velocity �eld is single-valued). Linear

perturbations aim at providing a description of the density contrast up to the moment where

multiple particles with di�erent velocities are found at the same location, a moment known as

3

This includes any operator that can be written as a convolution operation with a distribution, in particular

convolution and linear di�erential operators.

4

The separation can be interpreted as a shift operator applied to the �eld.
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shell-crossing. It turns out that this regime provides a good description of the �rst steps of the

formation of the large scale structures of the Universe.

The equations of interest are the continuity, Euler (with no pressure) and Poisson equations

∂ρ

∂t
+∇ · ρv = 0, (2.23)

∂v

∂t
+ (v · ∇)v = −∇Φ, (2.24)

∇2Φ = 4πGρ. (2.25)

Equation (2.24) can be obtained from the Vlasov-Poisson equation, assuming that a single velocity

is found at each location. Here spatial derivatives have been done in proper units. We can compute

the comoving position via r = a(t)x. In these variables, the peculiar velocity u is the sum of the

Hubble �ow and the comoving velocity v

u ≡ ȧ(t)x+ v, v ≡ aẋ. (2.26)

Under the change of variable r → x, equations (2.23)–(2.25) can be rewritten using the following

transformation for the time derivative and gradient operators

∇→ ∇x

a
,

∂

∂t
→ ∂

∂t
− ȧ

a
x · ∇x. (2.27)

Recalling that δ(r, t) = (ρ(r, t)− ρ̄(t))/ρ̄(t), this yields in comoving coordinates

∂δ

∂t
+

1

a
∇x · [(1 + δ)v] = 0, (2.28)

∂v

∂t
+
ȧ

a
v +

1

a
(v · ∇x)v = −∇xΦ

a
, (2.29)

∇2
xΨ = 4πGρ̄a2δ, (2.30)

with Ψ ≡ Φ + aäx2/2. (2.31)

These equations can then be linearised at �rst order in δ, v and Ψ

∂δ

∂t
+

1

a
∇x · v = 0, (2.32)

∂v

∂t
+
ȧ

a
v = −∇xΦ

a
, (2.33)

∇2
xΨ = 4πGρ̄a2δ. (2.34)

We then derive equation (2.32) w.r.t. t and use equations (2.33) and (2.34) to �nally get the second

order partial di�erential equation

∂2δ

∂t2
+

2ȧ

a

∂δ

∂t
− 4πGρ̄δ = 0. (2.35)

In order to move forward, we can use the Fourier representation of the overdensity δ(k). This

yields a second order ordinary di�erential equation

d2δ(k, t)

dt2
+

2ȧ

a

dδ(k, t)

dt
− 4πGρ̄δ(k, t) = 0. (2.36)

We can immediately see that equation (2.36) does not have any scale dependence: all modes grow

(or decay) at the same rate. The perturbations evolve as a function of time only and can formally

be written as

δ(k, t) = A(k)D+(t) +B(k)D−(t), (2.37)
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where D+(t) is a growing mode and D−(t) is a decaying mode and A and B are constants of

time. D+ is usually normalized to its value at t(z = 0) so that D+(z = 0) = 1. The decaying

mode can be directly expressed as a function of the Hubble constant

D−(t) ∝ H(t), (2.38)

and the growing mode is obtained using

D+(t) ∝ H(t)

∫ t

0

dt′

a2(t′)H2(t′)
∝ H(z)

∫ ∞

z

1 + z′

E3(z′)
dz′ , (2.39)

where

E(z) ≡ H(z)

H0
=
√

ΩΛ,0 + (1− Ω0)(1 + z)2 + Ωm,0(1 + z)3 + Ωr,0(1 + z)4. (2.40)

Ω0 is equal to one in a �at Universe, while ΩΛ,0,Ωm,0 and Ωr,0 are the current Λ, matter and

radiation density. They are linked to their value at redshift z by

ΩΛ(z) =
ΩΛ,0

E2(z)
, Ωm(z) =

Ωm,0(1 + z)3

E2(z)
, Ωr(z) =

Ωr,0(1 + z)4

E2(z)
. (2.41)

In the matter dominated era or in an Einstein de-Sitter (EdS) universe
5
, the growing mode scales

as

D+(z) ∼ t2/3 ∼ 1

1 + z
. (2.42)

In the general case in a ΛCDM cosmology, there is no explicit formula for D+ but equation (2.39)

can be integrated numerically, as shown on �gure 2.1.3. Alternatively, a good approximation is

due to Carroll et al., 1992

D+(z) ∝ Ωm(z)

1 + z

[
Ω4/7

m (z)− ΩΛ(z) +

(
1 +

Ωm(z)

2

)(
1 +

ΩΛ(z)

70

)]−1

. (2.43)

This approximation holds for a close Universe with non-null matter density and a Λ contribution.

In the remainder of the dissertation, the linear growth factor will be noted D(z) ≡ D+(z) for

the sake of simplicity, while the decaying mode will be neglected.

2.1.2.2 Spherical collapse
Let us consider a region of the Universe with uniform initial density ρi and radius Ri. For the

sake of simplicity, we will assume to be in an EdS Universe, but similar results can be found

including a cosmological constant (see e.g. Lacey and Cole, 1993; Lahav et al., 1991). Following

section 2.1.2.1, we assume that there is no shell-crossing. We thereforce assume that collapse will

happen in concentric spheres, with the outermost spheres collapsing in a time larger or equal

to the collapse time of the inner spheres. Under this assumption, the total mass in a sphere is

constant. Let δi = (ρi − ρ̄m,i)/ρ̄m,i be the initial overdensity of the region w.r.t. the cosmic mean

matter density ρ̄m,i. The total mass in the region is given by M = (4π/3)R3
i ρ̄i(1 + δi). The

region evolves under the action of gravity following

d2R

dt2
= −GM

R2
= −H

2
i R

3
i

2R2
(1 + δi), (2.44)

5

An EdS Universe is a �at, matter-only Universe with no cosmological constant. It is a good approximation to our

Universe after the radiation-dominated era z < 300 and before the Λ-dominated era z > 2.



18 Chapter 2. Context

0.0 0.2 0.4 0.6 0.8 1.0
a

0.0

0.2

0.4

0.6

0.8

1.0

D
(z
)

Exact
Carroll

100 10 5 2 1 0.5 0.2 0
z

Figure 2.1.3: Linear matter growth factor in a Planck 2018 cosmology (Planck Collabo-

ration, 2018a) using the exact expression of D+ (equation (2.39), solid black) and the �t

by Carroll et al. (equation (2.43), dashed blue).

whereHi is the initial Hubble rate. It is worth noting that at �xed initial overdensity, equation (2.44)

is scale invariant: the evolution of the sphere depends on the initial density only. Let us now

integrate equation (2.44) over time to get the speci�c energy equation
6

1

2
Ṙ2 − H2

i R
3
i

2R
(1 + δi) = E. (2.45)

If E > 0, the solution is unbound and the radius will grow forever. If E < 0, the solution is

bound and the radius will eventually collapse to R→ 0. At early times, the bulk velocity is due

to the Hubble �ow Ṙi ≈ HiRi so that the total energy reads

E = −H
2
i R

2
i

2
δi. (2.46)

The energy is negative for overdensities δi > 0 and positive otherwise. This shows that in the

spherical collapse model, any initial overdensity will eventually collapse. Let us now assume that

δi > 0 to derive the evolution of the spherical region. Under this assumption, the solution of

equation (2.44) can be written parametrically

r = A(1− cos θ), t = B(θ − sin θ). (2.47)

Here A and B are set by the initial conditions

A = −GM
E

, B2 = −(GM)2

E3
. (2.48)

The evolution for a spherical region collapsing in a Hubble time (r(tH) = 0) is shown on

�gure 2.1.4. Using the conservation of energy and equations (2.45) and (2.46), we can compute

the turnaround radius — or maximum radius — Rt for which the radial velocity vanishes

Rt =
(1 + δi)

δi
Ri, tt =

π

2
Hi

1 + δi

δ
3/2
i

. (2.49)

6

Since the mass of the sphere is assumed to be constant, this speci�c energy is conserved.



2.1 Cosmology 19

0.0 2.5 5.0 7.5 10.0 12.5

t (Gyr)

0

2

4

6

δ

δSC
δl

δl (ΛCDM)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
t/tt

0.0 0.2 0.4

t (Gyr)

0.0

0.1

0.2

Figure 2.1.4: Plot of the evolution of spherical collapse overdensity δSC (blue) and linear

overdensity δl (orange) in a EdS Universe and in a ΛCDM Universe (dotted orange). The

spherical collapse solution diverges in a time t = te = 2tt (here te = tH ≈ 13.8 Gyr).

At this time, the linear overdensity has a value δc ≈ 1.69 (horizontal solid grey line). At

turnaround (vertical solid grey line) the spherical-collapse overdensity is δSC ≈ 4.55
and the linear overdensity δl ≈ 1.06. At early times (inset), the spherical collapse model

and the linear evolution coincide with δ(t) ∼ (1 + z)−1
.

After turnaround, the region will start contracting until R(tf) = 0 with tf = 2tt. For small initial

overdensities, turnaround time and radius scale like

Rt ∼
Ri

δi
, tt ∼

π

2

Hi

δ
3/2
i

. (2.50)

This shows that small overdensities have large turnaround radii, since collapse time is inversely

proportional to the initial overdensity. This regime is the one of interest assuming cosmological

initial conditions, as the observation of the CMB gives us |δi| ∼ 10−3
at z ∼ 1000.

In practice, the region will not collapse to a single point. As the region collapses, the e�ect of

the initial (random) velocity dispersion will become non-negligible so that the assumption of a

perfectly spherical collapse will break. Instead of converting all the gravitational energy to kinetic

energy, both terms will eventually reach equilibrium. This process, known as “virialization” will

relax to the state where the Virial theorem is veri�ed, i.e.

2K + U = 0, (2.51)

where K = Ṙ2/2 is the speci�c kinetic energy and U = −GM/R is the speci�c gravitational

energy. Combining equations (2.46) and (2.51) and introducing the Virial radius Rvir we �nd that

Rvir =
Rt

2
. (2.52)

After virialization, the radius of the region will be half the radius at turnaround and the density

is eight time the density at turnaround. It can be shown that the overdensity at the time of

virialization is

1 + δ(tvir) = 18π2 ≈ 178. (2.53)
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This overdensity is frequently used in numerical simulation to de�ne the radius of dark matter

halos and is written ∆178 or quite frequently ∆200 when using a value of 200. The corresponding

linear density contrast at the time of virialization, which de�nes the critical density δc is

δc ≡ δl(tvir) =
3

5

(
3

4

)2/3

(θvir − sin θvir)
2/3 =

3

5

(
3π

2

)2/3

≈ 1.6865. (2.54)

As underlined in the introduction of the section, equation (2.54) only holds in an EdS Universe,

but similar values can be derived for a ΛCDM Universe. This critical density is of interest, as it

provides a way to �nd regions that will collapse non-linearly following the spherical models using

the linear overdensity �eld: any region with their linear density δ > δc should be considered as

collapsed and virialized. This will be further discussed in section 2.1.3

2.1.2.3 Zel’dovich approximation
An interesting approach to understand the genesis of the cosmic web is to adopt a Lagrangian

view dual to the Eulerian description used in section 2.1.1. Instead of expressing quantities at

�xed comoving coordinates (Eulerian view), one can indeed write the cosmic �elds as a function

of the initial position q. This initial position is related to the comoving coordinate x at time t by

a displacement term

x(q, t) = q +ψ(q, t), (2.55)

where ψ(q, t) is the displacement �eld. Starting from a homogeneous initial density �eld, the

local density at time t then reads

ρ(q, t) =
ρ̄(q)

J
, (2.56)

where J is the Jacobian of the Eulerian-to-Lagrangian transformation J = |dx/dq | given by

J =

∣∣∣∣δK
ij +

∂ψi
∂qj

∣∣∣∣, (2.57)

with δK
ij the Kronecker delta. Lagrangian Perturbation Theory �nds a perturbative solution for

the displacement �eld,

ψ(q, t) = ψ(1)(q, t) +ψ(2)(q, t) + · · · . (2.58)

The Zel’dovich approximation is the �rst-order approximation to equation (2.58), which reads

ψ(q, t) ≈ ψ(1)(q, t) =

∫
dk

(2π)3
eik·q

ik

k2
δk(t). (2.59)

Applying the same formalism as in section 2.1.2.1, we �nd that the displacement �eld has a

growing and a decaying mode. Keeping only the growing mode, we can express equation (2.59)

in terms of the linear matter growth function

ψ(q, t) ≈ ψ+(q)D+(t). (2.60)

Plugging equation (2.60) into the Jacobian of equation (2.57) we �nd that the density reads

ρ(q, t) =
ρ̄

|(1−D+(t)λ1)(1−D+(t)λ2)(1−D+(t)λ3)| , (2.61)

with λ1 ≥ λ2 ≥ λ3 the eigenvalues of− ∂ψ+
i

/
∂qj . Note that the deformation tensor− ∂ψ+

i

/
∂qj

is equal to the hessian of the gravitational potential — the tidal tensor — up to a time-dependent

factor (4πGρ(t)a2(t)D(t))−1
(Porciani et al., 2002). The Zel’dovich displacement is therefore a

rectilinear trajectory that moves particles along the direction of the initial force that converts the
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Figure 2.1.5: Scheme of the triaxial collapse under the Zel’dovich approximation,

showing the collapse of an initial spherical shell as consecutive ellipsoids. The last shell

is represented in shaded red and resembles a �attened spheroid (a Zel’dovich pancake)

in the yz plane, the �rst axis to collapse is the x axis, the second y and the last z.

three-dimensional sphere in q-space to a �attened ellipsoid in the real r-space, see �gure 2.1.5.

Multiple studies have shown that the Zel’dovich approximation holds up to the mildly non-linear

regime of structure formation (e.g. M. White, 2014) and describes well the anisotropic collapse of

matter that shapes the cosmic web. Indeed, equation (2.61) suggests that for D+(t)λ1 → 1, the

density diverges resulting in the formation of a caustic. The approximation clearly does not hold

any more for particles that shell crossed, but it still provides a good approximation for particles

that surround the shell-crossed region. In addition, the Zel’dovich approximation gives us a

physical understanding of the next likely direction(s) of collapse. If λ2 > 0, the region contracts

in the corresponding direction, eventually leading to the formation of a �lamentary structure.

Finally, if λ3 > 0, the region will also contract along the third direction, leading to the formation

of a node of the cosmic web. While the details of the secondary and third collapse are not well

predicted by the Zel’dovich approximation, various models have been designed to overcome this

shortcoming, such as the adhesion model (Kofman et al., 1992) or more recently the origami model

(Neyrinck, 2014).

2.1.3 The excursion set theory

The excursion set approach, originally formulated by Press and Schechter, 1974, assumes that

virialized halos form from spherical regions whose initial mean density equals some critical value.

The distribution of late-time halos can thus be inferred from the simpler Gaussian statistics of

their Lagrangian progenitors. The approach implicitly assumes approximate spherical symmetry

(but not homogeneity), and uses spherical collapse, as presented in section 2.1.2.2, to establish a

mapping between the initial mean density of a patch and the time at which it recollapses under

its own gravity.
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According to this model, a sphere of initial radius R shrinks to zero volume at redshift z if

its initial mean overdensity δ equals δcD(zin)/D(z), where D(z) is the growth rate of linear

matter perturbations, zin the initial redshift, and δc = 1.686 for an Einstein–de Sitter universe,

or equivalently, if its mean overdensity linearly evolved to z = 0 equals δc/D(z), regardless of

the initial size. If so, thanks to mass conservation, this spherical patch will form a halo of mass

M = (4π/3)R3ρ̄ (where ρ̄ is the comoving background density). The redshift z is assumed to be

a proxy for its virialization time.

Bond et al., 1991 added to this framework the requirement that the mean overdensity in all

larger spheres must be lower than δc, for outer shells to collapse at a later time. This condition

ensures that the infall of shells is hierarchical, and the selected patch is not crushed in a bigger

volume that collapses faster (the so-called cloud-in-cloud problem). The number density of halos of

a given mass at a given redshift is thus related to the volume contained in the largest spheres whose

mean overdensity δ ≡ δ(R) crosses δc. The dependence of the critical value δc on departures

from spherical collapse induced by initial tides was studied by Bond and Myers, 1996, and later by

R. K. Sheth et al., 2001, who approximated it as a scale-dependent barrier.

As the variation of δ(R) with scale resembles random di�usion, it is convenient to parametrize

it with the variance

σ2(R) ≡ Var(δ(R)) =

∫
dk

k2P (k)

2π2
W̃ 2

TH(kR) (2.62)

of the stochastic process, smoothed with a real-space Top-Hat �lter W̃TH, rather than withR orM ;

see section 2.1.1.3 for the details of the �lter and its Fourier representation. In equation (2.62), P (k)
is the underlying power spectrum. The three quantities σ,R andM are in practice interchangeable.

The mass fraction in halos of mass M at z is

M

ρ̄

dn

dM
=

∣∣∣∣
dσ

dM

∣∣∣∣ f(σ) , (2.63)

where dn/dM is the number density of halos per unit mass (i.e. the mass function) and f(σ) —

often called the halo multiplicity — is the probability distribution of the �rst-crossing scale of the

random walks, that is of the smallest σ (largest R) for which

δ(R, r) ≡ 1

(2π)3

∫
d3k δm(k)W̃TH(kR)eik·r =

δc

D(z)
, (2.64)

where δm is the (unsmoothed) matter density. The �rst-crossing requirement avoids double

counting and guarantees that f(σ) is a well-behaved probability distribution, and the resulting

mass fraction is correctly normalized.

The �rst-crossing probability, f(σ)∆σ, is the fraction of walks that cross the threshold

between σ−∆σ and σ for the �rst time. Considering discretized trajectories with a large number

of steps σ1, . . . , σN of width ∆σ ≡ σi − σi−1 (corresponding to concentric spheres of radii

R1, · · · , RN ), the �rst-crossing probability is the joint probability that δN > δc and δi < δc for

i < N , with δi ≡ δ(σi) and σN = σ = N∆σ. Hence, the distribution f(σ) is formally de�ned as

the limit

f(σ) ≡ lim
∆σ→0

1

∆σ

〈
ϑH(δN − δc)

N−1∏

i

ϑH(δc − δi)
〉
, (2.65)

where ϑH(x) is Heaviside’s step function, and the expectation value is evaluated with the multi-

variate distribution p(δi, . . . , δN ). This de�nition discards crossings for which δi > δc for any

i < N , since ϑH(δc − δi) = 0, assigning at most one crossing (the �rst) to each trajectory. For

instance, in �gure 2.1.6, trajectory B would not be assigned the crossing marked with (3), since



2.1 Cosmology 23

Halo A
larger mass

Halo B
smaller mass

δc

σ

MB

σB
R,M

δ(σ)

(1) (2)
(3)

σA

MA

Figure 2.1.6: Pictorial description of the �rst-crossing and upcrossing conditions to

infer the halo mass from the excursion set trajectory. The �rst-crossing condition on σ
assigns at most one halo to each trajectory, with mass M(σ). Upcrossing may instead

assign several masses to the same trajectory (that is, to the same spatial location), thus

over-counting halos. Trajectory B in the �gure has a �rst crossing (upwards) at scale

σB (1), a downcrossing (2) and second upcrossing (3), but the correct mass is only given

by σB . However, the correlation of each step with the previous ones makes turns in

small intervals of σ exponentially unlikely: at small σ most trajectories will thus look

like trajectory A. Thanks to the correlation between steps at di�erent scales, for small σ
(large M ) simply discarding downcrossings is a very good approximation.

the trajectory lies above threshold between (1) and (2). Since taking the mean implies integrating

over all trajectories weighed by their probability, f(σ) can be interpreted as a path integral over

all allowed trajectories with �xed boundary conditions δ(0) = 0 and δ(σ) = δc (Maggiore and

Riotto, 2010).

In practice, computing f(σ) becomes di�cult if the steps of the random walks are correlated,

as is the case for real-space Top-Hat �ltering with a ΛCDM power spectrum, and for most realistic

�lters and cosmologies. For this reason, more easily tractable but less physically motivated

sharp cuto�s in Fourier space have often been preferred, for which the correlation matrix of the

steps becomes diagonal, treating the correlations as perturbations (Maggiore and Riotto, 2010;

Corasaniti and Achitouv, 2011). The upcrossing approximation described below can instead be

considered as the opposite limit, in which the steps are assumed to be strongly correlated (as is the

case for a realistic power spectrum and �lter). This approximation is equivalent to constraining

only the last two steps of equation (2.65), marginalizing over the �rst N − 2.

2.1.4 The upcrossing approximation to f(σ).
Indeed, Musso and R. K. Sheth, 2012 noticed that for small enough σ (i.e. for large enough masses),

the �rst-crossing constraint may be relaxed into the milder condition

δ′ ≡ dδ

dσ
> 0 ; (2.66)

that is, trajectories simply need to reach the threshold with positive slope (or with slope larger

than the threshold’s if δc depends on scale). This upcrossing condition may assign several halos

of di�erent masses to the same spatial location. For this reason, while �rst-crossing provides a

well-de�ned probability distribution for σ (e.g. with unit normalization), upcrossing does not.

However, since the �rst-crossing is necessarily upwards, and down-crossings are discarded, the

error introduced in f(σ) by this approximation comes from trajectories with two or more turns.
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Musso and R. K. Sheth, 2012 showed that these trajectories are exponentially unlikely if σ is

small enough when the steps are correlated. The �rst-crossing and upcrossing conditions to infer

the halo mass from excursion sets are sketched in �gure 2.1.6: while the trajectory A would be

(correctly) assigned to a single halo, the second upcrossing of trajectory B in the �gure would be

counted as a valid event by the approximation, and the trajectory would (wrongly) be assigned

to two halos. The probability of this event is non-negligible only if σ is large. This is further

illustrated on �gure 2.1.7. The �gure presents bundles of random trajectories drawn using a

ΛCDM power spectrum constrained to a crossing (up or down) at a given radius. For small

values of σ most of the trajectories that are �rst-crossing are also upcrossing. The fraction drops

signi�cantly for larger values of σ.

Returning to equation (2.65), expanding δN−1 around δN gives

ϑH(δc − δN−1) ' ϑH(δc − δN ) + δD(δc − δ) δ′∆σ , (2.67)

where the crossing scale σ, giving the halo’s �nal mass M , is de�ned implicitly in equation (2.64),

as the solution of the equation δ(σ) = δc/D
7
. The assumption that this upcrossing is �rst-crossing

allows us to marginalize over the �rst N − 2 variables in equation (2.65) without restrictions.

The �rst term has no common integration support with ϑH(δN − δc), and only the second one –

containing the Jacobian (δ′ − δ′c) – contributes to the expectation value (throughout the text, a

prime will denote the derivative d/dσ). Adopting for convenience the normalized walk height

ν ≡ δ/σ, for which

〈
ν2
〉

= 1, the corresponding density of solutions in σ-space obeys

∣∣ν ′ − ν ′c
∣∣ δD(ν − νc) = (|δ′|/σ) δD(ν − νc) , (2.68)

where νc ≡ δc/(σD) is the rescaled threshold. The probability of upcrossing at σ in equation (2.65)

is therefore simply the expectation value of this expression,

fup(σ) ≡ pG(ν = νc)

∫ ∞

0
dδ′ δ′pG(δ′|νc) , (2.69)

where the integral runs over δ′ > 0 because of the upcrossing condition (2.66). Usually, one sets

D = 1 at z = 0 for simplicity so that νc = δc/σ. For Gaussian initial conditions
8
, the conditional

distribution pG(δ′|νc) is a Gaussian with mean νc and variance 1/Γ2
, where

Γ2 =
1

〈δ′2〉 − 1
=

γ2

1− γ2
=

1

σ2 〈ν ′2〉 , (2.70)

and γ2 = 〈δ′δ〉2/
〈
δ′2
〉 〈
δ2
〉

is the cross-correlation coe�cient between the density and its

slope
9
. Thanks to this factorization, integrating equation (2.69) over δ′ yields the fully analytical

expression

fup(σ) = pG(νc)
µ

σ
F (X) , (2.71)

where pG is a Gaussian with mean 〈ν〉 = 0 and variance Var(ν) = 1. For a constant barrier, the

parameters µ and X are de�ned as

µ ≡ 〈δ′ | νc〉 = νc , and X ≡ µ√
Var(δ′ | νc)

= Γνc , (2.72)

7

A careful calculation shows that the step function should be asymmetric, so that ϑH(δ − δc) = 1 when δ = δc
instead of 1/2.

8

No conceptual complications arise in dealing with a non-Gaussian distribution, which is nonetheless beyond the

scope of this dissertation.

9

recalling that 〈δ′δ〉 = σ so that γ2 = 1/
〈
δ′2

〉
.
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with

F (x) ≡
∫ ∞

0
dy

y

x

e−(y−x)2/2

√
2π

=
1+erf(x/

√
2)

2
+
e−x

2/2

x
√

2π
, (2.73)

which is a function that tends to 1 very fast as x→∞, with correction decaying like e−x
2/2/x3

.

It departs from one by ∼ 8% for a typical Γνc ∼ 1. Equation (2.71) can be written explicitly as

fup(σ) =
νce
−ν2c /2

σ
√

2π
F (Γνc) , (2.74)

where the �rst factor in the r.h.s. of equation (2.74) is the result of Press and Schechter, 1974,

ignoring the factor of 2 they introduced by hand to �x the normalization. For correlated steps,

their non-normalized result reproduces well the large-mass tail of f(σ) (which is automatically

normalized to unit and requires to correcting factor), but it is too low for intermediate and small

masses. The upcrossing probability fup(σ) also reduces to this result in the large mass limit, when

Γνc � 1 and F (Γνc) ' 1. However, for correlated steps fup(σ) is a very good approximation

of f(σ) on a larger mass range. For a ΛCDM power spectrum, the agreement is good for halo

masses as small as 1012 M� h−1
, well below the peak of the distribution. The deviation from the

strongly correlated regime is parametrized by Γνc, which involves a combination of mass and

correlation strength: the approximation is accurate for large masses (small σ and large νc) or

strong correlations (large Γ). Although Γ mildly depends on σ, �xing Γ2 ∼ 1/3 (or γ ∼ 1/2)

can be theoretically motivated (Musso and R. K. Sheth, 2014a) and mimics well its actual value

for real-space Top-Hat �ltering in ΛCDM on galactic scales. The limit of uncorrelated steps

(Γ = 0), whose exact solution is twice the result of Press and Schechter, 1974, is pathological

in this framework, with fup becoming in�nite. More re�ned approximation methods can be

implemented in order to interpolate smoothly between the two regimes (Musso and R. K. Sheth,

2014b).

From equation (2.71), a characteristic massM? can be de�ned by requesting that the argument

of the Gaussian be equal to one, i.e. νc = 1 or σ(M?) = δc/D. This de�nes M? implicitly via
equation (2.62) for an arbitrary cosmology. This quantity is particularly useful because fup(σ)
does not have well-de�ned moments (in fact, even its integral over σ diverges). This is a common

feature of �rst passage problems (Redner, 2001), not a problem of the upcrossing approximation:

even when the �rst-crossing condition can be treated exactly, and f(σ) is normalized – it is a

distribution function –, its moments still diverge. Therefore, given that the mean 〈M〉 of the

resulting mass distribution cannot be computed, M? provides a useful estimate of a characteristic

halo mass. In chapter 3, I will revisit this subject to imposing larger tides. We will see that since

the process remains Gaussian, it boils down to shifting the mean and the covariances.

2.1.5 The peak patch theory
The peak patch theory as introduced by Bond and Myers, 1996 aims at providing a more com-

prehensive description of the formation of dark matter halos. It is built as a combination of the

excursion set theory (detailed in section 2.1.3), spherical collapse (detailed in section 2.1.2.2) and

the Zel’dovich approximation (detailed in section 2.1.2.3). The theory aims to reproduce the mass

distribution of dark matter halos using smoothing operations in the initial Lagrangian �eld, but

also to predict the spatial distrbution in Eulerian space, using the Zel’dovich �ow as an estimation

of the displacement of the structures from their initial Lagrangian position.

The fundamental quantity in peak theory is the set of local maxima of the density �eld;

therefore, peaks de�ne a point process. Since the evolved density �eld is highly nonlinear, the

peak constraint is generally applied to the initial (Lagrangian) Gaussian density �eld, with the

assumption that the most prominent peaks should be in one-to-one correspondence with luminous
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Figure 2.1.7: Excursion set trajectories constrained to δ = δc (dotted line) at σ = 0.5
(blue bundle), σ = 1 (orange bundle) and σ = 1.5 (green bundle), dashed lines show

mean trajectories. 93% (resp. 74%, 64%) of the �rst-crossing trajectories at σ = 0.5
(resp. σ = 1, σ = 1.5) are upcrossing.

galaxies or massive halos in the Universe. The theory is based on the study of the peaks of the

initial density �elds, which can be derived using the Kac-Rice formula (Kac, 1943; Rice, 1945). For

a Gaussian random �eld δ, let {q1, q2, . . . , qp, . . . } be the Lagrangian position of point-particles

such as centres of halos in some volume. The comoving Lagrangian density ng(q) of these

point-particles is formally written as a sum of Dirac distributions

n(q) =
∑

p

δ
(d)
D (q − qp) . (2.75)

In order to derive the number density in terms of the properties of the �eld, let us introduce the

following variables

x ≡ δ

σ
, xi ≡

∂iδ

σ1
, xij ≡

∂i∂jδ

σ2
, (2.76)

where the σi are de�ned in section 2.1.7.1. Here we are using a di�erent naming convention

compared to the original paper Bardeen et al., 1986. For reference, their result can be obtained

using the following substitutions x = ν, xi = ηi/σ1 and xij = ξij/σ2. Here we implicitly

assumed the �eld to be smoothed at some scale R with any �lter for which σ2 is �nite. Filters that

veri�es this property are notably the sharp-k �lter and the Gaussian �lter, while the physically

motivated Top-Hat �lter does not. Indeed, at large k, WTH(kR) ∼ −3 cos(kR)/kR so that the

integrand of σ2 becomes ∼ k2P (k) cos2(kR) which, for any power spectrum decaying more

slowly than k−2
, has a UV-divergence.

In the case of critical points (maxima, saddle points and minima) the number density ncp(q)
can be entirely expressed in terms of x, xi and xij . Without loss of generality, let us suppose that

a critical point exists at the origin and let us derive the expression of the number density in its

vicinity. Since the gradient at the critical points is null by de�nition, the gradient at a position q
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can be expressed using a Taylor expansion

xi(q) = xi(0)
︸ ︷︷ ︸

0

+
σ2

σ1
qixij(0). (2.77)

This expression can then be plugged back in equation (2.75), provided that xij is invertible
10

,

ncp(q) = δ
(d)
D

(
σ2

σ1
(xij)

−1xi

)
, (2.78)

where d is the number of dimensions. All the terms except for xi can be taken out of the Dirac

distribution so that the number density becomes

ncp(q) =

(
σ1

σ2

)d
|xij |δ(d)

D (xi) . (2.79)

In order to get the number density of a given kind of critical point, equation (2.79) needs to

be extended to take into account the eigenvalues λ1, λ2, . . . , λd of the hessian of the �eld. The

number density of maxima is given by

nmax(q) =
|xij |
Rd∗

δ
(d)
D (xi)

∏

j≤d
ϑH(−λj) . (2.80)

Here R∗ is the typical distance between extrema, see section 2.1.7.1. In more general terms,

one can de�ne the kind of a critical point by the sign of its (sorted) eigenvalues, also named the

“signature”. In three dimensions, maxima have a signature−−−, �lament-type saddle points +−−,

wall-type saddle points ++− and minima +++. Noting k the number of negative eigenvalues,

the number density reads

nk(q) =
|xij |
Rd∗

δ
(d)
D (xi)

∏

j≤k
ϑH(−λj)

∏

j>k

ϑH(λj) . (2.81)

The mean number density can be exactly calculated for a Gaussian �eld in two and three dimen-

sions. In two dimensions, the mean number densities are

〈nmax〉 = 〈nmin〉 =
1

8
√

3πR2∗
, (2.82)

〈nsad〉 =
1

4
√

3πR2∗
. (2.83)

In three dimensions, the mean number densities are

〈nmax〉 = 〈nmin〉 =
29
√

15− 18
√

10

1800π2R3∗
, (2.84)

〈nsadf〉 = 〈nsadw〉 =
29
√

15 + 18
√

10

1800π2R3∗
. (2.85)

The “localized” number density, i.e. the number density at �xed height, can be easily derived from

there

nk(q, ν0) = nk(q)δD(x− ν0) . (2.86)

10

The extension to the case where xij is not invertible is provided in chapter 4.
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Figure 2.1.8: 3D representation of the mean angular momentum of halos (arrows) in the

vicinity of a �attened �lamentary structure (red cylinder) computed from �rst principle

using conditional tidal torque theory. Close to the �lament saddle point, the spins are

aligned with the axis of the �lament. Close to the nodes (at both ends of the �lament),

the spins become perpendicular to the axis of the �lament and “rotate” around its axis.

This quantity is of interest to the study of the formation of halos, as it yields the number density

of peaks of a given height. Using the spherical collapse model with x = σδc/D(z), one can then

relate equation (2.86) to the number density as a function of time (using spherical collapse) and

mass (using the smoothing scale). In peak theory, the number density of halos in Eulerian space

is then obtained by shifting each peak by their individual Zel’dovich displacement, connecting

the properties of the initial �eld to the later time halo distribution.

2.1.6 Tidal torque theory
The tidal torque theory has been developed to address the problem of the halo and galaxy

angular momentum acquisition. In this model, proto-halo and proto-galaxies acquire their angular

momentum by tidal torquing coming from the surrounding matter distribution (Hoyle, 1949;

Peebles, 1969; Doroshkevich, 1970; S. D. M. White, 1984; Catelan and Theuns, 1996; Crittenden

et al., 2001; Schäfer, 2009). Given a proto-halo that will later collapse, TTT provides an estimate of

the growth of the angular momentum about the centre of mass, to the lowest non-vanishing order

in perturbation theory. To do so, TTT links the evolution of the angular momentum (de�ned

below) to the misalignment of the inertia tensor, which describes the spatial distribution of matter

in the proto-halo, and the tidal tensor, which describes the tides from the larger scale environment.

The upshot of the theory is that gravitational torques act to realign the inertia tensor of matter

with the tidal tensor at larger scales, resulting in a net torque.

In general, the angular momentum L(t) of a rotating volume V , with velocity v(r, t) and

density ρ(r, t) with respect to its centre of mass is

L(t) ≡
∫

V
d3r r× vρ(r, t). (2.87)

Here I have implicitly assumed that the centre of mass is at the origin for the sake of simplicity and

that the mean velocity is 0. Let me now assume an initial proto-halo of volume VL in Lagrangian
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space, with mean density ρ0. I have shown in section 2.1.2.3 that in the mildly non-linear regime,

the time evolution of the particles can be described as a function of the displacement �eld using

equation (2.55) and equation (2.60)

ẋ = Ḋ+(t)∇ψ. (2.88)

One can then rewrite equation (2.87) for the proto-halo in terms of the peculiar velocity of its

particles, i.e.

L(t) = a5ρ0

∫

VL

d3q q× ẋ ≈ a5ρ0D+

∫

VL

d3q q×∇ψ(q). (2.89)

Let me further assume that the displacement �eld varies slowly in the proto-halo, so that

∇ψ(q) ≈∇ψ(0) + q∇∇ψ(0), (2.90)

so that the displacement �eld can be expressed as function of the tidal shear gensor ∇∇ψ
evaluated at the centre of mass. The expression of the angular momentum of the volume can be

further simpli�ed introducing the inertia tensor I (the quadrupole moment of the mass distribution)

in Lagrangian coordinates

Iij ≈ ρ0a
3

∫

LV

d3q qiqj . (2.91)

For an initally uniform density, one can use the inertia tensor to describe the mass distribution as

an ellipse whose axes are the eigenvectors of I and semi-axes are the square root of the eigenvalues.

In the end, the i-th component of the angular momentum can be expressed as a function of time

and the initial inertia tensor and tidal shear tensor

Li(t) = a2Ḋ(t)εijkIjlψlk. (2.92)

Here I have used the fully anti-symmetric Levi-Civita tensor εijk and the tidal shear tensor ψij .
Equation (2.92) shows that the angular momentum initially grows as a2(t)Ḋ(t) which is ∼ t for

a EdS Universe (Porciani et al., 2002). In addition, only the traceless parts of the inertia and the

tidal shear enter equation (2.92), as the trace describes the compression (or expansion) of the

proto-halo. Equation (2.92) also shows that L(t) is null if the volume is spherical (so that the

inertia tensor is symmetric) or is bounded by an equipotential surface (so that the tidal shear is

symmetric). In the frame of the eigenvalues (t1, t2, t3) of the tidal shear, equation (2.92) simply

reads Li ∝ (tj − tk)Ijk, where i, j, k are cyclic permutations of 1, 2 and 3 (Porciani et al., 2002),

e.g. L1 ∝ (t2− t3)I23. Tidal torquing is e�ective until the moment of turnaround in the spherical

collapse picture, because the collapse dramatically reduces the lever arms. After the collapse, the

halo conserves the angular momentum it has accumulated until turnaround.

More recently, Codis et al., 2012 suggested an extension of the TTT, coined “constrained TTT”.

The theory relies on the study of the primordial �eld, constrained to a large-scale �lamentary

structure, in which the tidal tensor as well as the inertia tensor become functions of space. Since

the tidal tensor probes larger scales than the inertia tensor, the e�ect of large-scale structures

act di�erentially on their typical orientations: the former tends to be aligned towards large

overdensities (typically a node of the cosmic web), while the former is aligned to the local most

massive structure (typically the nearest �lament). On average, the upshot of the theory is that the

typical orientation of the angular momentum of the proto-halo, which measures the misalignment

of the two tensors, is modulated by the cosmic web: the angular momentum is aligned with the

�laments for small proto-halos, found close to the �lament saddle point, and become perpendicular

for larger ones, found close to the nodes (the spin rotates around the �lament), as shown on

�gure 2.1.8. This is a typical example of the impact of the cosmic web on a galactic property.

This approach, where the initial conditions are constrained to take into account large-scale

�lamentary structures, will be further explored in the following of the dissertation.
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2.1.7 Description of Gaussian random fields
In this section, I provide some useful variables that can be used to describe a Gaussian random

�eld. In section 2.1.7.1, I de�ne the variance of the �eld and its derivatives, as well as spectral

parameters that encode the cross-correlation of the �eld and its derivatives. In section 2.1.7.2,

I show how one can match smoothing scale when smoothing a �eld with di�erent �lters, in

particular going from Gaussian �ltering to Top-Hat �ltering.

2.1.7.1 Spectral parameters of the field
When deriving quantities from the initial density �eld, it is of interest to quantify the variance of

the �eld as they are natural scales for the rarity of events. This is usually done in terms of the

generalized variance of the �eld and its derivatives and anti-derivatives

σ2
i (R) =

1

2π2

∫
dk k2P (k)k2iW 2(kR) , (2.93)

so that

σ2
0 = 〈δ2〉, σ2

1 = 〈(∇iδ)2〉, σ2
2 = 〈(∆δ)2〉, σ2

3 = 〈(∆∇iδ)2〉, (2.94)

where the gradient∇iδ can be evaluated in any arbitrary direction. The evolution of σ0(R) for

di�erent �lters is shown on �gure 2.1.2, right panel.

Following closely Pogosyan et al., 2009, let us introduce the characteristic scales of the �eld

R0 =
σ0

σ1
, R∗ =

σ1

σ2
, R̃ =

σ2

σ3
. (2.95)

These scales are ordered as R0 ≥ R∗ ≥ R̃. The �rst two have well-known meanings of typical

separation between roots of the �eld R0 and mean distance between extrema, R∗ (Bardeen et al.,

1986) and the third one, R̃ is, by analogy, the typical distance between in�ection points. This also

gives a motivation for the ordering of the scales: in 1D, there is at least one extrema between

each root of a function and there is at least one in�ection point between each root, so that the

distance between consecutive roots is larger than the typical distance between peaks. As shown

in section 2.1.5, the scales enter naturally the expressions of the number density of peaks (R∗)
and anticipating the results to come, we can expect R̃ to enter any number density requiring the

knowledge of the �eld and its third derivative.

Let us de�ne a set of spectral parameters that depend on the shape of the underlying power

spectrum. Out of these three scales two dimensionless ratios may be constructed that are intrinsic

parameters of the theory

γ ≡ R∗
R0

=
σ2

1

σ0σ2
, γ̃ ≡ R̃

R∗
=

σ2
2

σ1σ3
. (2.96)

From the geometrical point of view γ speci�es how frequently one encounters a maximum

between two zero crossings of the �eld, while γ̃ describes, on average, how many in�ection points

are between two extrema. Using the results of section 2.1.1.3, one can rewrite σ2
1 in terms of〈

δ∇2δ
〉

so that γ and γ̃ are the cross-correlation coe�cients between the �eld and its derivatives

at the same point

γ = −〈δ∆δ〉
σ0σ2

, γ̃ = −〈∇δ ·∆∇δ〉
σ1σ3

. (2.97)

These scales and scale ratios fully specify the correlations between the �eld and its deriva-

tive at the same point. For power-law spectra with Gaussian smoothing at scale R, R0 =
R
√

2/(n+ 3), R∗ = R
√

2/(n+ 5) and R̃ = R
√

2/(n+ 7) while γ =
√

(n+ 3)/(n+ 5) and

γ̃ =
√

(n+ 5)/(n+ 7). Note that the de�nition of equation (2.96) is not the same as the de�nition
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used in the excursion set theory (see e.g. equation (2.70)). In the following of the dissertation,

unless stated otherwise, we will use the de�nition of equation (2.96). For the sake of completeness,

let us remind here the de�nition of γ entering the excursion set theory, which we will distinguish

from the de�nition above using the subscript “ES”

γ2
ES =

〈δδ′〉2
〈δ2〉 〈δ′2〉 . (2.98)

For power-law spectra with an index ns < −1 smoothed with a Top-Hat �lter, γES = (ns +
1)(ns + 3)/ns(ns + 5).

2.1.7.2 Matching smoothing scales
Figure 2.1.2, right panel shows the variance of the �eld smoothed with di�erent �lters. It shows

that at the same scale, the Gaussian �lter has a smaller variance than the Top-Hat �lter. In order

to study the same level of non-linearity, one has to establish a mapping between the smoothing

scale. Using the de�nition of the variance of the �eld

σ2(R) =

∫ ∞

0
dk

k2P (k)

2π2
W (kR)2, (2.99)

we have for a Top-Hat �lter with a power-law power spectrum with spectral index n

σ2
TH(R) = 9× 2n−1 (n+ 1)R−n−3 sin

(
nπ
2

)
Γ(n− 1)

π2(n− 3)
, (2.100)

while for a Gaussian �lter it is

σ2
G(R) =

R−n−3Γ
(
n+3

2

)

4π2
. (2.101)

The �eld smoothed by a Top-Hat �lter at scale R and a Gaussian �lter at scale (R/α) have the

same level of non-linearity if σTH(R) = σG(R/α), i.e.

α(n)n+3 = 9× 22−n sin
(
nπ
2

)
Γ(n− 1)

(n− 3)Γ
(
n+1

2

) . (2.102)

For example α(−2) = 6
√
π

5 ≈ 2.12. For a ΛCDM power spectrum α becomes a weak function

of the smoothing scale, for example α(R = 0.5 Mpc/h) = 2.14 while α(R = 8 Mpc/h) = 2.12.

The evolution of α with the smoothing scale is shown on �gure 2.1.9, which shows that at scales

involved in galaxy formation α ≈ 2.1.

2.2 Galaxy formation
On large scales, the e�ect of baryonic processes is very small and baryons simply follow the

dark matter dynamics. However, on small-to-intermediate scales, baryonic physics cannot be

neglected and should be taken into account. This is particularly challenging, as the physics

driving the evolution of the baryons is made of non-linear and highly coupled equations. To make

things worse, the gravitational force and turbulence couple di�erent scales together. A pragmatic

approach to the problem of galaxy formation is to write numerical codes that simulate all relevant

physical processes. In the simulated in silico Universe, one can then study the formation of

galaxies to better understand observations and constrain their models.

In practice, the problem of galaxy formation could be rephrased as a Cauchy problem, where

the initial conditions are set to a Gaussian random �eld according to the ΛCDM model, while
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Figure 2.1.9: Ratio of the Gaussian smoothing scale to the Top-Hat smoothing scale to

get the same level of non-linearity for a ΛCDM power spectrum σTH(R) = σG(R/α).

Horizontal gray lines show the value of α for some power-law power spectra (which

does not depend on R).

coupled partial di�erential equations describe the interactions via the four fundamental forces.

However, the di�erent scales at play make a numerical treatment particularly di�cult: the

formation of a galaxy depends on its large scale environment on Mpc scales, its dynamical

evolution is on kpc scales, while the evolution of its stars and its central Supermassive Black Hole

(SMBH) act on sub-pc scales and these scales are coupled via the gravitational force.

The challenge for cosmological numerical simulations is then two-fold. First, since the

resolution of numerical simulations is �nite, e�ective models should be build to account for the

unresolved physics. Second, numerical simulations should be able to capture processes at very

di�erent scales. Section 2.2.2 provides a description of the di�erent physical processes involved

in galaxy formation while focusing particularly on their implementation in the code Ramses.

Section 2.2.3 presents the set of equations solved and the numerical methods involved in their

resolution.

2.2.1 Classical model of galaxy formation
In the classical model of galaxy formation, galaxies grow by the accretion of gas at the centre

of the potential well of DM halos. The gas is initially distributed uniformly and traces the DM

distribution (on scales larger than the Jeans length). Following the evolution of proto-halos, the

gas �rst expands with the Hubble �ow until turn-around. Let me �rst describe the physical state

of the gas in the halo, before discussing implication on the mode of accretion.

Let me assume a cloud of monoatomic gas of mass Mgas in the potential of the DM halo, with

mass Mvir and virial radius Rvir. If one assumes that the gas is in equilibrium, the virial theorem

reads

2K + U + Σ = 0, (2.103)

where K is the kinetic (thermal) energy of the gas, U is the gravitational potential energy and

Σ is the work of the external pressure forces. For an isothermal monoatomic gas (γ = 5/3) and

assuming that the external pressure vanishes, we have

K =
3MgaskBT

2µmp
, U = −3GMgasM

5r
, (2.104)

where µ is the mean molecular weight of the gas and mp the proton mass. Here, I have assumed

that the cloud has a radius r and spherical symmetry. If one introduces the circular velocity
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V 2
c = GM/r, the temperature of the gas then reads

T =
µmp

5kB
V 2
c = 2.4× 105µ

(
Vc

100 km s−1

)2

K, (2.105)

which de�nes the virial temperature. At the centre of the halo where the density is higher, gas

slowly cools down from the inside-out and therefore looses its pressure support. This enables

further gravitational collapse, which, in turn, leads to star formation.

Upon its entry in the halo, the accreted gas will encounter the hot halo gas at temperatures of

the order of 2× 105 K. If the accreted gas is cooler than the virial temperature, as is expected

for primordial gas, a general expectation is that an accretion shock will form (see e.g. Binney,

1977; Bertschinger, 1985; Tozzi and Norman, 2001; Benson, 2010, and references therein), with

a general conclusion that the shock occurs at a radius comparable to or slightly larger than the

virial radius and the accreted gas will be shock-heated to the virial temperature.

On the contrary, if the cooling time is short compared to the dynamical time, the gas is able

to �ow into the centre of the halo without heating (S. D. M. White and Frenk, 1991). Based on

3D numerical simulations, it was con�rmed that a signi�cant fraction of the gas in low-mass

galaxies has never been shock heated (see e.g. Kereš et al., 2005; Ocvirk et al., 2008; Kereš et al.,

2009; Nelson et al., 2013) and reaches the galaxy through cold �ows. Using an analytic treatment,

Birnboim and Dekel, 2003 showed that if the cooling times are su�ciently short in the post-shock

region, the shock looses its pressure support and becomes unstable, shrinking to smaller radii.

This is expected for small mass halos M < 1012 M�, but also for more massive ones at z > 2.

These cold �ows have since been identi�ed as a robust prediction of the ΛCDM model, consistently

reproduced in di�erent numerical codes with di�erent subgrid models (Stewart et al., 2017).

2.2.2 Baryonic processes
This section provides an overview of the di�erent phenomenon at play in galaxy formation. It is

particularly focused on their numerical implementation and especially in Ramses. Section 2.2.2.1

describes how gas is cooled and heated. Section 2.2.2.2 describes how stars form and release energy

as supernovæ. Section 2.2.3 details the di�erent methods used to account for the cosmological

context.

2.2.2.1 Gas cooling and heating
Following the results of section 2.1.2.2 halos are virialized structures that cannot collapse much

further as their kinetic energy balances out their gravitational energy. In order to form galaxies

at their centre, the gas needs to be able to collapse further. This can only happen if the gas can

get rid of its thermal energy, which happens mainly via cooling. In order to understand galaxy

formation, one needs to compare the di�erent timescales. The �rst timescale at play here is the

cooling timescale

tcool =
E

Ė
. (2.106)

The timescale associated with the expansion of the Universe is the Hubble timescale

tH ∼ H(z)−1. (2.107)

The timescale associated with the monolithic collapse of a pressure-less �uid is the free-fall, or

dynamical, time

tdyn ∼ (Gρ)−1/2. (2.108)

There are then three scenarios. If tcool > tH, the Universe expands faster than the gas cools and

no signi�cant collapse can take place. If tdyn < tcool < tH, the system evolves quasi-statically
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Table 2.3: Various radiative transitions of importance in forming galaxies.

Type Reaction Name

Free-Free e− + X+ → γ + e− + X+ Bremsstahlung
Free-Bound e− + X+ → X + γ Recombination

Bound-Free e− + X → 2e− + X+
Collisional ionisation

Bound-Bound e− + X → e− + X∗ Collisional excitation

but the gas cannot cool e�ciently to form galaxies. In practice, a succession of cooling followed

by adiabatic contraction can happen at constant Jeans mass, but this does not lead to an e�cient

gravitational collapse. Finally if tcool < tdyn, the extra energy of the gas is quickly radiated away

and gravitational collapse can happen. In this case, the loss of pressure following a temperature

decrease is rapid so that the Jeans mass drops without giving the system a chance to re-adjust its

density. The drop in Jeans mass can lead to smaller structures being able to collapse gravitationally

and hence to fragmentation. The precise study of the cooling and heating processes is therefore

at the core of our understanding of galaxy formation. The main paths to cool the gas are the

Compton cooling and radiative cooling.

Cooling processes
Compton cooling happens when a low-energy photon passes through an ionised thermal gas. In

the process, photons and electrons exchange energy due to Compton scattering so that electrons

lose energy to the radiation �eld, causing the gas to cool. It turns out that the change in the

energy density of the radiation uγ can be expressed as

duγ
dt

=
4kb
mec

σTneuγ(Te − Tγ), (2.109)

where σT is the Thomson scattering cross-section, ne is the electron number density, Te is the

electron �uid temperature and Tγ is the temperature of the radiation. In the case of cosmology,

the photons come from the CMB and we have Te � Tγ . Thus, we have a net gain of energy in

the photons, and hence a net loss of energy in the electrons, which in turn will induce a net loss

in the gas. This process is known as inverse Compton scattering. Using the fact that uγ = aT 4
γ ,

where a is the expansion factor, the cooling rate per unit volume becomes

CComp =
4kBTe
mec

σTneaT
4
γ ∝ neTe(1 + z)4. (2.110)

The cooling is therefore most e�cient at high-redshift, but after reionisation since it requires free

electrons to interact with, and the cooling timescale is

tcool,Comp ≈ 2.3× 1012(1 + z)−4yr, (2.111)

which equals the Hubble time at about z ∼ 6. After reionisation and before z ∼ 6, the gas can

cool e�ciently using inverse Compton scattering.

Radiative cooling is a two-body radiative process that happens when a pair of atoms loses

energy as a result of their interaction. The main processes of radiative cooling are listed in

Table 2.3. The type of the interaction depends on the physical state of the electrons involved (free

or bound). At high temperatures T ' 107 K11
the dominating process in the fully ionised gas is

bremsstahlung. The process is due to successive interactions between electrons and ions which

11

The temperature depends notably on the metallicity of the gas.
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bends the trajectories of the electrons, resulting in the emission of a radiation. The cooling rate

per unit volume, assuming a charge number of unity and ni ∼ ne, valid for a completely ionised

hydrogen gas, is

Cff ≈ 1.4× 10−23

(
T

108 K

)1/2 ( ne

1 cm−3

)2
erg s−1 cm−3. (2.112)

This process gives us the behaviour of the cooling rate at high temperature Cff ∝
√
T .

At lower temperatures, several other processes become important. The �rst is collisional

ionisation, in which atoms become ionised by collisions with other atoms. In the process, part of

the kinetic energy of the atoms is used to ionise the electron. The second is recombination, in

which an electron recombines with an ion, emitting a photon. The third is collisional excitation,

in which atoms are �rst excited by collisions with electrons and then emit a photon on their

transition to the ground state. The e�ciency of the three processes depends strongly on the

temperature as well as the chemical composition of the gas.

At temperatures below 104 K, most of the electrons have recombined and cooling due to

collisional excitation drops quickly. At this temperature, cooling is still possible, albeit smaller, e.g.

by exciting the rovibrational levels of molecules. For metal enriched gas, CII and OI �ne structure

transitions contribute to the cooling (see e.g. Wol�re et al., 2003).

In practice, cooling is numerically treated using the cooling function

Λ ≡ C
n2

H

, (2.113)

where C is the total cooling rate (including all the mentioned processes) per unit volume and

nH is the number density of hydrogen atoms. The cooling function is usually derived in the

collisional ionisation equilibrium limit, assuming that the relaxation times are fast enough. The

cooling function also depends on the metallicity of the gas. Figure 2.2.1, left panel, shows the

cooling function of a Z = 0.02Z� gas. Most notably, the �rst peak of the cooling function is due

to collisions involving H atoms, while the second peak is due to He and metals collisions and

depends on the exact composition of the gas ; �gure 2.2.1, right panel, shows the contribution of

the di�erent chemical species to the cooling function for aZ = Z� plasma. It is worth mentioning

that some codes now compute out-of-equilibrium cooling rates for H and He, such as Grackle or

Krome (Grassi et al., 2014; Smith et al., 2017).

Heating processes
In addition to the di�erent cooling mechanism, an atom can also be ionised by absorbing a

photon, a process called photoionisation. The presence of a radiation �eld can change the

population of ions, which in turn can have an impact on the cooling rate of the gas. It can also

heat the gas via photoionisation heating: an ionising photon is absorbed by an electron, part of

the energy is used to ionise the electron and the surplus is transferred as kinetic energy. The

photoionisation heating rate per unit volume is expected to be proportional to the intensity

of the radiation �eld. Since the process is based on the ionisation of a an electron, it is most

e�cient at low temperatures where the gas is not fully ionised. In the presence of a UV radiation

background of J(ν) = 10−22 (νH/ν) erg s−1 cm−2 sr−1 Hz−1
, a gas in ionisation equilibrium has

a photoionisation heating that balances the cooling at temperature T / 104 − 105 K, depending

on the gas density.

2.2.2.2 Stellar models
To understand the non-linear problem of galaxy formation and evolution, theorists use cosmo-

logical simulations of DM, describing the �ow and collapse of baryonic star-forming gas either
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Figure 2.2.1: (Le�:) Cooling function in the collisional ionisation equilibrium limit for a

Z = 0.02Z� plasma. From Gnedin et al., 2015. (Right:) Cooling function for a Z = Z�
plasma, indicating the contributions the each chemical species to the cooling function.

From Wiersma et al., 2009. The dominant contribution to the cooling function at low

temperature are H and He atoms. At T ∼ 105 K, di�erent metals dominate the cooling

function, depending on the chemical composition of the gas. At large temperature, the

cooling is dominated by Bremsstahlung.

Figure 2.2.2: Le�: HST image of M82 showing “light echoes” around a supernova bubble

(from Yang et al., 2017) Centre: HST image of the crab nebula (remnant of SN1054).

Right: Composite image of Kepler’s supernova remnant (CXO, HST and Spitzer Space

Telescope). Credits: NASA, ESA, JHU.

with directly coupled hydrodynamics or semi-analytic models. Strong feedback in galaxies is

a vital ingredient in any model of galaxy evolution that comes even close to reproducing basic

observables, such as the star formation history of the Universe, the stellar mass function of

galaxies, the Kennicutt–Schmidt relation, rotational velocities and out�ows (e.g. Vogelsberger

et al., 2013; Dubois et al., 2014; Hopkins et al., 2014; Schaye et al., 2015; Somerville and Davé,

2015).

Indeed, naive arguments would predict that star formation consumes stars over a few free-fall

times, e�ectively depleting an entire galaxy in a few million years. Observations on the other

side show that the process of star formation should be rather slow and ine�cient. In addition,

observations show the ubiquitous presence of large, massive out�ows around galaxies (e.g. Cecil

et al., 2001) of hundreds of km/s, that each release about 1051 erg. The origin of these out�ows

can be traced back to bubbles expanding around supernova remnants (see for example �gure 2.2.2).

Each exploding supernova releases large amounts of energy that are able to drive large-scale

shocks, pushing gas outwards and leaving the shocked region heated and ionised.

Any simulation aimed at reproducing galaxies as we observe them must therefore include
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stars, but also track their evolution and their explosion. As of today, numerical simulations still

struggle to consistently track the formation, evolution and destruction of stars.

A full treatment of the formation of stars would indeed require to resolve the physics at play

in star formation: the collapse of molecular clouds into proto-stars, the ignition of their internal

fusion, the accurate tracking of the winds, and eventually their explosion into supernovæ, etc.

Some codes exist that do follow these processes (e.g. MESA, Paxton et al., 2011), yet they require a

simulation of their own for each individual star. While these codes provide useful information to

understand the evolution of small populations of star, they clearly cannot be scaled up to galaxy

or, even worse, cosmological simulations.

Since it is unpractical to follow all stars that make up a galaxy in a large cosmological

simulation, one should relax the goal to track each of them individually and track them as small

populations instead. This is the current approach of most cosmological simulations (e.g. Hopkins

et al., 2014; Dubois et al., 2016). Simulations are populated with “stellar particles” that represent a

star population with a coherent formation time. The rate of star formation is usually given by a

Kennicutt law (Kennicutt, 1998). This law links the local properties of the gas (local density and

local free-fall time) to the star formation rate ρ̇?

ρ̇? = ε
ρ

tff
, (2.114)

where ε is the star formation e�ciency, which is usually set to a few percent in order to agree

with observations, tff is the free-fall time and ρ the gas density. This law is the three-dimensional

counterpart of the Schmidt law (Schmidt, 1959) that links the surface brightness of a galaxy

to the observed surface density. More re�ned models have also been built in which the star

formation e�ciency becomes a function of additional properties of the gas, for example of their

gravo-turbulent properties (Kimm et al., 2017; Trebitsch et al., 2017) following the results of

Federrath and Klessen, 2012 which showed the role of turbulence in driving up or down the star

formation e�ciency. The stellar population is assumed to be sampled by its Initial Mass Function

(IMF). Various models exist (Salpeter, 1955; Kroupa, 2001; Chabrier, 2003) that mostly di�er on

the low and high mass ends of the IMF, which will in turn have an impact on the feedback caused

by the supernovæ. Indeed, top-heavy IMFs have more stars on the massive end and will produce

more supernovæ, boosting the e�ciency of the stellar feedback.

After a few million years, the most massive stars start exploding into supernovæ. Doing so,

they yield back metals as well as inject energy in the interstellar medium. Multiple models have

been proposed to track how and where energy and momentum is fed back to the gas, as well

as the total quantity returned (the yield). Let us brie�y detail those used in Ramses as well as

provide some hints of their pros and cons, following the lines of Rosdahl et al., 2017.

In the �rst supernova feedback models (Katz, 1992), all the energy was released as thermal

energy in the gas surrounding the stars. This however had little e�ect on the star formation rate,

which leads to the so-called overcooling problem. In this model, the energy is diluted into a large

amount of gas which in turn heats up a little bit. Because the energy has been spread over a

large volume compared to the physical size of the supernova bubble, the gas is able to radiatively

cool quickly. In practice, the cooling is so fast that the energy is usually radiated away in a few

timesteps, and all the injected energy is lost before a signi�cant fraction has been converted to e.g.

kinetic energy. While the cooling of the gas is physically motivated (see section 2.2.2.1), the issue

of this model is that the energy is spread into too large a volume, resulting in an overestimation

of the cooling rates.

In order to solve the overcooling problem, di�erent sub-grid models have been built, each of

which aimed at reducing the amount of energy loss by (over-estimated) radiative cooling, which

can be gathered into four classes.
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Figure 2.2.3: E�ect of the di�erent feedback models, from left to right: no feedback,

direct thermal dumping, kinetic feedback, delayed cooling, stochastic feedback and

mechanical feedback. From Rosdahl et al., 2017. E�ective feedback leads to smoother,

thick discs with larger out�ows.

In kinetic feedback models, a fraction of the supernova energy is directly injected as momentum

in the gas (Navarro and S. D. M. White, 1993; Springel and Hernquist, 2003; Dubois and Teyssier,

2008). In delayed cooling models, radiative cooling is temporarily disabled in the cell containing

the supernova remnant (Gerritsen, 1997; Stinson et al., 2013; Teyssier et al., 2013). In stochastic
feedback models, the supernova energy is spread over time and space into fewer but more energetic

explosions (Dalla Vecchia and Schaye, 2012; Rosdahl et al., 2017). Finally, multiphase models track

the di�erent phases of the gas (hot and cold), resulting in a more e�cient feedback. A physically

motivated approach to the problem would be to have di�erent models for di�erent grid resolutions

and di�erent states of the surrounding medium. This is the approach followed by the mechanical
feedback model (Kimm and Cen, 2014; Kimm et al., 2015). The e�ect of these models is illustrated

on �gure 2.2.3, which presents a comparison of the di�erent feedback models on the disc of an

idealized galaxy. The study of the impact of the feedback models on galaxy formation is an active

domain of research (e.g. Rosdahl et al., 2017; Kimm et al., 2017; Nelson et al., 2019).

It is worth noting that, in addition to Supernova (SN) feedback, a key ingredient in galaxy

formation is Active Galactic Nuclei (AGN) feedback (e.g. Silk and Rees, 1998; Magorrian et al.,

1998; Harrison et al., 2018, for a recent review).

2.2.3 Numerical simulations

While the formation of the large-scale structures of dark matter halos can be studied to some

extent from �rst principles, as detailed in section 2.1, the complex baryonic physics involved in

galaxy formation make the task much more complex on smaller scales. This is usually dealt with

numerical simulations. The intrinsic multi-scale nature of the phenomenon involved in galaxy

formation is however challenging to any numerical treatment, as was already underlined in the

previous section, as very di�erent scales are coupled. For example, sub-kpc scales involved in

galaxy formation are coupled to the large-scale hydrodynamical evolution of the gas by powerful

feedback events, which may disrupt the gas at hundreds of kpc. This in turn will impact the

in�ow of gas and couple back to feedback.

Let us illustrate this scale-coupling problem with some back-of-the-envelope calculation to

estimate the number of resolution element required to resolve galaxies and the cosmic web at

the same time. In order to accurately capture the evolution of a galaxy in its environment, the

size of the simulated Universe should be at least an order of magnitude larger than the maximum

distance travelled by the particles ending up in the central galaxy. Assuming that the galaxy is

a Milky-Way like progenitor, its initial Lagrangian patch has a size of the order of a few Mpc
so that the box size should at least be a few tens of Mpc. At the same time, in order to resolve

the scale-height of a disk galaxies h ∼ 1 kpc accurately, cell sizes should be at least an order of
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magnitude smaller which sets the resolution to about 50 pc. On a regular lattice, the number of

cells would therefore be

Ncell ≈
(

50 Mpc

50 pc

)3

= 1018 cell. (2.115)

In a very simple simulation that only stores the physical state of a monoatomic neutral gas

(density, pressure, velocities) in double-precision �oats, each cell would require 20 o of storage.

In total, storing the state of the gas on the full grid would therefore require 2× 1019 o = 20 Eo.

For the sake of comparison, setting each cell to 0 would require at least 200 yr on a 3 Ghz
single processor

12
. On the fastest currently-available super computer

13
, using all the 2 000 000

cores at the same time, it would still take more than a day for a single update. If we make a

very conservative assumption that each cell is updated once per timestep and that a timestep

corresponds to 1 Myr in the simulation, running a cosmological simulation on the fastest super

computer for 14 Gyr would take 60 yr to complete. This approach is obviously not practical so

that alternative approaches have been devised.

I �rst present the set of equations that numerical simulations have to solve in section 2.2.3.1.

Section 2.2.3.2 presents the two approaches used in astrophysics to solve the scale-separation

problem, focusing in particular on �nite volume methods. Section 2.2.3.3 details how the hydro-

dynamical equations are solved in �nite volume methods. Section 2.2.3.4 details how Poisson’s

equation is solved on a grid. Finally, section 2.2.3.5 presents the modi�cations required to take

into account cosmological expansion, how the initial conditions are set and also presents the

di�erent state-of-the-art cosmological simulations at the time of the writing of this dissertation.

2.2.3.1 Hydrodynamical equations
In the context of cosmological astrophysical simulations, the scales considered are much larger

than the mean free path λ

λ ∼ mp

σρ
= 7.4× 10−5

(
ρ

1 mp/cm3

)−1

pc, (2.116)

where mp ≈ 1.67× 10−27 kg is the proton mass, σ = 3.5× 10−20 m2
is the Hydrogen-Hydrogen

collisional cross section and ρ is the gas density. The mean free-path is below 1 pc as long as

the density is larger than 1× 10−4 mp/cm3
. As of today, no cosmological simulation reaches

sub-parsec resolutions in regions with such low densities so that the equation describing the gas

can be well approximated in the �uid limit.

Assuming that the gas is described by a pressure p, a density ρ, a velocity v and a speci�c

internal energy E , the evolution of the gas is described
14

by

∂ρ

∂t
+∇ · (ρv) = 0, (2.117)

∂v

∂t
+ (v · ∇)v = −

(
∇Φ +

∇p
ρ

)
, (2.118)

∂

∂t

[
ρ

(
v2

2
+ E

)]
+∇ ·

[
ρ

(
v2

2
+
P

ρ
+ E

)
v

]
− ρv · ∇Φ = H− C, (2.119)

∇2Φ = 4πGρtot. (2.120)

H, C are the heating and cooling rates per unit volume, as described in section 2.2.2.1, ρtot is the

total density accounting for the �uid, DM, stars and SMBHs. Φ is the gravitational potential. For

12

Assuming that the processor can update memory once per cycle.

13

DOE/SC/Oak Ridge National Laboratory, United States. Data from top500.org.

14

Here we assume that the di�erent gas phases are resolved and disjoint, so that a mono�uidic approach can be

used.

https://www.top500.org/list/2019/06/
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an ideal gas with adiabatic index γ, the system of equation is closed by the perfect gas Equation

of State (EoS)

P = ρ(γ − 1)E . (2.121)

These equations corresponds to the equation of conservation of mass (equation (2.117)), linear

momentum (equation (2.118)) and internal energy (equation (2.119)). The system is closed by

the Poisson equation (equation (2.120)) that connects the density to the Newtonian gravitational

potential. The set of equation equations (2.117)–(2.120) can be extended to take into account the

e�ect of cosmic rays, magnetic �elds, radiative transfer or dust. Here, for the sake of simplicity,

these e�ects have been ignored.

The heating term is due to photoionisation where an atom of �uid is ionised by a photon.

Ionising photons can originate from the UV background (see e.g. Haardt and Madau, 1996), stars

or AGNs.

Equations (2.117)–(2.120) do not have an exact solution in the general case, so that a numerical

treatment is required.

2.2.3.2 Finite-mass and finite-volume methods
Multiple methods have been developed to solve the set of equations (2.117)–(2.120), but in the

context of cosmological simulations two main methods emerged that provide a practical solution

to the scale-separation problem. They can be grouped in two main categories.

SPH simulations
Smooth Particle Hydrodynamics (SPH) simulations are based on a mass discretization of the �uid.

The �uid is described as a set of �xed-mass macro-particle, whose interactions are described by

the Lagrangian version of equations (2.117)–(2.119). In order to solve equation (2.120), the total

density is interpolated on a grid, onto which the equation is solved. Finally, the potential — or its

derivatives — is interpolated at the particles’ location. More details are provided in section 2.2.3.4.

Each �uid particle has a variable “smoothing length” that depends on the density of the �uid via
ρ ∼ m/r3

, where m is the mass of the �uid particle. The exact normalisation depends on the

choice of a kernel. The obvious advantage of this approach is to provide an accurate description of

the Lagrangian evolution of the gas, while Eulerian quantities can be approximated by projecting

particles onto an arbitrary mesh. This last step can easily be done in post-processing. This is

the approach used in GADGET (Springel, 2005), Gasoline (Wadsley et al., 2004), Gizmo (Hopkins,

2015). In its simplest form (all particles have the same mass), the scale-separation problem is

addressed by adapting the smoothing-length to match the local density.

AMR simulations
Adaptive Mesh Re�nement (AMR) simulations are �nite-volume methods. The evolution of

the gas is described in an Eulerian framework. Equations (2.117)–(2.119) are solved on a �xed

arbitrary grid. In order to capture the multi-scale evolution of the gas relevant to astrophysical

phenomenon, the grid is adaptively re�ned following arbitrary criteria. Commonly used criteria

are the following

• Semi-Lagrangian criterion: a cell is re�ned if its mass exceeds a �xed mass Mthreshold. This

is commonly used in cosmological simulations in order to have cells of similar masses (but of

di�erent sizes), so that overdense regions (e.g. galaxies) are more re�ned than under-dense

regions (e.g. cosmological voids).

• Jeans criterion: a cell is re�ned if its size exceeds the Jeans length λJ = cs
√
π/Gρ, where

c2
s = γP/ρ is the local sound speed. This is commonly used to resolve the gravitational

collapse (e.g. the collapse of molecular clouds in star forming regions).

• Pressure or density gradients: a cell is re�ned if the pressure or density gradient exceed

some fraction of the quantity itself. This is commonly used to resolve shock fronts (e.g. SN
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1 Mpc

(a) Patch-based AMR (enzo).

10 kpc

(b) Octree AMR (Ramses).

Figure 2.2.4: Plot of cosmological simulations with cell boundaries annotated in thin

white lines. (a): patch-based codes divide space using a set of nested grids (thick white

rectangles) made of an arbitrary number of cells in each dimension. (b): octree codes

divide space using nested octs made of 8 cells, allowing a �ner control of the grid

structure.

CPU 1

CPU 2

CPU 3

CPU 4

CPU 5

CPU 6

CPU 7

CPU 8

CPU 9

(a) Domain decomposition of the unit-square

CPU 1

CPU 2

(b) Bu�er zones

Figure 2.2.5: (a) Domain decomposition of the unit-square for a 322
grid over nine

domains using the Hilbert space-�lling curve, shown as the continuous line. (b) Bu�er

zones built at the interface between domains. The thick black line marks the boundary

of the spatial decomposition between CPU 1 and CPU 2. CPU 1 owns all the red cells

while CPU 2 owns the blue ones. There is a one-cell-thick bu�er zone outside of each

domain that a CPU can access (CPU 1 has access to light blue cells and CPU 2 has access

to light red cells). This ensures that each cell has access to all its 26 = 27 − 1 direct

neighbours (for example to compute spatial gradients).



42 Chapter 2. Context

blasts).

In addition, AMR codes can further be split into patch-based codes and octree codes. Patch-

based codes (e.g. Enzo (Bryan et al., 2014), see �gure 2.2.4a) use a nested hierarchy of rectangular

patches of increasing resolution. The building blocks of the computational grid are therefore

rectangular patches of various sizes, whose positions and aspects ratio are optimised with respect

to �ow geometry, speed and memory constraints in order to represent regions of increasing

resolutions. Space is divided in nested rectangular patches (thick white lines) made of cells of

�xed resolution.

Octree codes’ building blocks are octs (e.g. Art (Kravtsov et al., 1997), Ramses (Teyssier, 2002)).

An oct is an 2x2x2 set of cells, where each of the 8 cells is either a leaf cell or is itself an oct, as

illustrated in �gure 2.2.4b. The resulting grid follows complex �ow geometry more closely, at

the price of a data management which is more complicated than patch-based AMR. High density

regions are followed by �ne cells (as in the centre of the plot), while less dense regions have

coarser cells.

These two strategies enable the code to partition space. In order to compute the time evolution

of the hydrodynamical quantities, the codes then have to solve the so-called Riemann problem at

cell boundaries, as described in section 2.2.3.3.

In order to increase the computation power wielded by numerical simulations, most of the

numerical codes are now parallelized to run on multiple cores at the same time. They now

routinely run on hundreds or even thousands of cores. In this context numerical codes have to

be optimised to best balance the computation weight between each computation domain, while

trying to minimise the number of communications. This is further complicated by the fact that

for AMR codes, the grid is non-uniform so that there is no obvious space decomposition that will

balance the cells evenly between all domains.

In order to solve this issue, AMR codes usually use space-�lling curves. Space �lling curves

are bijective functions from 1d space to the 3d unitary cube, providing a unique index to each

cell in the simulation. In addition, they should also conserve locality so that two cells that are

close should have a close index. Using such a space-�lling curve, the load balancing problem

becomes a simple problem of sharing a set of N cells evenly between M domains. In Ramses

the space-�lling curve used is the Hilbert curve, as illustrated on �gure 2.2.5a. Each computing

unit has access to the list of the indexes on the Hilbert curve that separate the di�erent domains,

represented as black dashed lines on �gure 2.2.5a, so that it can easily compute to which domain

each cell belongs. This method is also a very e�cient way to encode the volumetric partition

of space into M log2(N) bits. For example in a simulation with 20 levels of re�nement and

4096 processors, the information about the spatial partitioning can be encoded optimally on

log2((220)3)× 4096 ≈ 250 kbit = 31 kio.

Once the space has been decomposed between M domains, boundary regions are constructed

at the interface between contiguous domains. The thickness of the boundary region depends on the

order of spatial derivatives involved in the evolution equations. In cases where the hydrodynamical

solver is using �rst-order �nite di�erences, as is the case with Ramses, a 1-oct-thick layer is built

at the interface between each domain, as illustrated on �gure 2.2.5b.

2.2.3.3 The Riemann problem and Godunov solvers

Let us consider the Riemann problem with initial left and right values values U = Ul for x ≤ 0
and U = Ur for x > 0. The state vector U follows a conservation equation

Ut + F (U)x = 0, (2.122)
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where F is the �ux vector and subscripts indicate partial derivatives relative to the variable (e.g.

Ut = ∂U/∂t ). Introducing the Jacobian matrix

A =
∂F

∂U
,

we can rewrite equation (2.122) into its conservative form

Ut + A(U)Ux = 0. (2.123)

The Riemann problem
The Riemann problem is the initial value problem of equation (2.123) with piece-wise initial

conditions. In general, the equation does not accept an analytical solution, so that one needs to

design a numerical solver. Let us now focus on Euler’s equation in 1D. U can be written using

the conservative formulation of equations (2.117)–(2.119) with an ideal gas EoS

U =




ρ
ρu

ρ
(
u2

2 + E
)


 and A(U) =




0 1 0
−1

2(γ − 3)u2 (3− γ)u γ − 1
1
2(γ − 2)u3 − a2u

γ−1
3−2γ

2 u2 + a2

γ−1 γu


 ,

(2.124)

where we have used the sound speed a =
√

γp
ρ . We can also use the �ux vector to have

F (U) =




ρu
ρu2 + p
u(E + p)


 , (2.125)

where we have used the total energy E per unit volume

E = ρ

(
1

2
u2 + E

)
. (2.126)

The di�erent waves propagating at the interface are described by the eigenvalues and eigenvectors

of the Jacobian A. In the 1D case, the eigenvalues are λ1 = u− a, λ2 = u, λ3 = u+ a describing

three waves propagating downstream, with the stream and upstream. The wave associated with

λ2 is a contact discontinuity characterized with a constant pressure and velocity. The two waves

associated with λ1 and λ3 are either rarefaction waves (smooth) or shock waves (discontinuities).

Rarefaction waves are characterized by a smooth change of ρ, u and p across the front. On the

contrary, shock waves are characterized by a jump of ρ, u and p which are described by the

Rankine–Hugoniot jump condition. Let us introduce the Mach number

M≡ u

a
=

√
ρu2

γp
. (2.127)

The Mach number is the ratio of the velocity to the sound speed. It can also be interpreted as the

ratio of ram-pressure ρu2
to thermal pressure. Denoting the pre- and post-shock regions with

subscript 1 and 2, the Rankine-Hugoniot jump conditions read

ρ2

ρ1
=
u1

u2
=

(γ + 1)M2
1

(γ − 1)M2
1 + 2

, (2.128)

p2

p1
=

2γM2
1 − (γ − 1)

γ + 1
. (2.129)

These conditions also imply the temperature jump

T2

T1
=

[
(γ − 1)M2

1 + 2
][

2γM2
1 − (γ − 1)

]

(γ + 1)2M2
1

. (2.130)

Further details can be found in Toro, 2009, p.87–91.
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t

Figure 2.2.6: HLLC approximate Riemann solver. Solution in the star region consist of

two constant states (U∗L and U∗R) separated from each other by a middle wave (S∗).
The left and right state are separated from the star region by two waves (SL and SR).

Adapted from Toro, 2009.

Riemann solvers
The task of Riemann solvers is to solve the Riemann problem. One such solver is the HLLC solver

(Toro et al., 1994) that is itself an extension of the HLL solver (Harten et al., 1983). The solver

approximates the evolution of the contact discontinuity with the three waves described above

(rarefaction, entropy and shock waves) that separate four states, as illustrated on �gure 2.2.6.

The �ux is then computed using the conservation equations and the properties of the di�erent

contact discontinuities at the interface between each state, see Toro, 2009, chapter 10 for more

details. The HLLC solver is frequently used in astrophysical setups, as it is very stable albeit quite

di�usive.

Godunov solvers
Godunov solvers is a class of conservative numerical schemes �rst described by Godunov, 1959.

It is based on a three-step algorithm
15

1. Reconstruction: the value of the state variable is interpolated at cell faces using the values at

the centre of the cells with a slope limiter. The slope limiter prevents spurious oscillations

to appear in the solution.
16

2. Evolution: the Riemann problem is solved using the interpolated values at the faces. This

is the physical step. This step can be solved using either an exact Riemann solver or an

approximate one (e.g. the HLLC solver described in the previous paragraph).

3. Averaging: the value of the state variable is updated using the �ux of the Riemann solver.

While the original Godunov scheme was �rst order in space and time, higher order methods have

since been introduced (e.g. MUSCL-Hancock (van Leer, 1984), PLM (Colella, 1985)). In the end the

Godunov scheme outputs a �ux that can readily be used to update the state vector. For MUSCL

schemes, the state vector is updated using

Un+1
i = Un

i +
∆t

∆x

(
F
n+1/2
i−1/2 − F

n+1/2
i+1/2

)
. (2.131)

Here i is the index of the cell and n is the timestep ; the �ux F is computed at half time steps

(n+ 1/2) at cell boundaries.

15

The �rst step is actually due to van Leer, 1984.

16

In practice, the slope limiter reduces the order of the scheme to 1 around discontinuities but increases the order of

the method in smooth regions.
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l = 0

l = 1

l = 2

l = 3

V-cycle l = 1 V-cycle l = 2

Figure 2.2.7: Illustration of the multigrid method. The multigrid algorithm starts at

level l = 0 where it solves the Poisson equation exactly. It then proceeds to level 1, does

a V-cycle, proceeds to level 2, does a V-cycle, ...

2.2.3.4 Poisson solvers

In addition to fully solve the equations of hydrodynamics, special care should be taken for the

gravitational force. Indeed, the gravitational force has in�nite range so that each cell and particle

in the simulation are gravitationaly coupled to any other. There are multiple methods to compute

the gravitational force, either by solving Poisson equation or using so-called “direct methods”.

The former is based on Poisson equation (2.120) while the latter uses the force equation

Fi = −
∑

j∧i

Gmimj

‖r‖3
r. (2.132)

Direct methods
Direct methods compute for each particle (or for each gas cell) the force due to all other particles

(or cells). While this method gives exact results, it su�ers from performance issue since it scales

as O(N2), where N is the number of massive elements (particles, cells, . . . ).

PM methods
In Particle Mesh (PM) methods, one �rst solves the Poisson equation to compute the potential,

then uses the gradient of the potential to compute the gravitational force. The DM, star, black hole

and gas density are projected onto a common mesh
17

. The Poisson equation is then solved on the

grid and the gravitational acceleration is computed using the gradient of the potential F = −∇Φ.

There are two notable techniques to solve the Poisson equation: the multi-grid approach and the

conjugate gradient approach.

In the multi-grid approach, the Poisson equation is solved iteratively using a succession of “V

cycles”. This is illustrated in �gure 2.2.7. At �rst, an exact solution is found at the coarsest level

l = 0. Then the algorithm goes to the next �ner level l = 1. An approximate solution is found

using the coarser solution, then corrected using the information at coarser levels. The algorithm

repeats itself until l = lmax.

The conjugate gradient method is a general method to �nd the solution of a linear problem

A ·X = B.

On a discrete grid, one can reformulate the Poisson equation into a simple linear problem,

17

The mesh is usually the AMR grid.
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presented here for the one-dimensional case, with

A =
1

2∆x




−2 1 0 · · · 0

1 −2 1
.
.
.

.

.

.

0 1 −2
.
.
. 0

.

.

.

.
.
.

.
.
.

.
.
. 1

0 · · · 0 1 −2



, (2.133)

X = {φi} and B = 4πG{ρi,tot}. The exact solution is found in N iterations for an AMR grid

with N cells. In practice the error on the solution decreases with each step so that a simple

convergence criterion is generally used to stop the iteration earlier, typically after a few hundreds

iterations. Any iterative method can be used in place of the conjugate gradient method to solve

the linear set of equations, for example the Gauss-Seidel method (which is the default method in

Ramses).

2.2.3.5 Cosmological simulations
In this section, we detail the modi�cations to numerical code that are usually implemented to

account for the cosmological expansion of the Universe and the initial conditions. Here, we focus

especially on simulations with box sizes large enough to capture the large-scale structures of the

Universe (& 50 Mpc/h), with enough resolution to capture galactic scales (∆xmin . 1 kpc) and

that include at least star formation, SN feedback, SMBH formation, AGN feedback heating and

cooling of the gas, gravity and dark matter, the whole simulation being evolved in an expanding

Universe.

Accounting for the cosmological expansion
In Ramses, cosmology is accounted for by the following change of “super-comoving” variables

dt̃ = H0
dt

a2
, x̃ =

1

a

x

L
, ρ̃ = a3 ρ

Ωmρc
, p̃ = a5 p

ΩmρcH2
0L

2
, ṽ = a

v

H0L
. (2.134)

These variables have been introduced by Martel and Shapiro, 1998. Here H0 is the Hubble

constant, Ωm is the matter density, L is the box size and ρc is the critical density. In these

variables, equations (2.117)–(2.120) become

∂ρ̃

∂t̃
+ ∇̃ · (ρ̃ṽ) = 0, (2.135)

∂(ρ̃ṽ)

∂t̃
+ ∇̃ · (ρ̃ṽ× ṽ) = −

(
∇̃p̃+ ρ̃∇̃φ̃

)
, (2.136)

∂(ρ̃ẽ)

∂t̃
+ ∇̃ ·

(
ρ̃ṽ

[
ẽ+

p̃

ρ̃

])
= −ρ̃ṽ · ∇̃φ̃, (2.137)

∇̃2φ̃ =
3

2
aΩm(ρ̃− 1). (2.138)

Note that an extra term has to be added to equation (2.119) if γ 6= 5/3. In order to write

equation (2.138), we have used the transformation from Eulerian potential Φ to peculiar potential

φ

Φ =
2πGρ̄r2

3
+

2πGρ̄Λr
2

3
+ φ. (2.139)

The peculiar potential is equal to the Eulerian potential in non-cosmological cases.
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Figure 2.2.8: Location of particles following the Zel’dovich �ow. Arrows indicate the

direction of motion. Time increases linearly going from left (t = 0) to right (�rst shell-

crossing). The background shows the initial overdensity �eld (red is overdense). These

positions provide the initial conditions to numerical simulations.

Initial conditions
In order to provide an ab initio scenario of the evolution of the Universe, cosmological simulations

are usually started at high redshifts. The initial conditions can be computed using a random

Gaussian random �eld and DM particles are then set on a regular grid and moved according to the

Zel’dovich approximation (see section 2.1.2.3), as illustrated on �gure 2.2.8. The approximation is

used to fast-forward time to z ∼ 100. At this time, the Zel’dovich approximation still provides

very accurate results, yet the density contrast is high enough for the approximate Poisson solver

to be able to solve the Poisson equation.

State-of-the-art cosmological simulations
Let us brie�y introduce the di�erent cosmological simulations. For the sake of comparison only

simulations with sizes comparable to ∼ 100 Mpc/h are mentioned here. They are presented in

Table 2.4; they usually have mass resolutions of the order of 1× 106 M� for SPH and moving

mesh simulations and spatial resolutions of 1 kpc for AMR simulations. In addition to di�erent

resolutions and hydrodynamical solvers, they have also very di�erent feedback recipes. Compre-

hensive comparisons of the di�erent simulation techniques and physical recipes is the topic of

ongoing research (see e.g. the Aquila comparison project Scannapieco et al., 2012, the AGORA

comparison project Kim et al., 2013; Kim et al., 2016).

In section 2.1, I have presented the cosmological context in which galaxies form. In section 2.1.1,

I have presented the current evidences that the Universe is organised at large-scales in the so-

called “cosmic-web”. In section 2.1.2, I have presented the models that describe the formation of

the large-scale structures of the Universe, and in particular the cosmic web. The remaining of the

dissertation will in particular focus on the link between the cosmic web and the formation of dark

halos and their galaxies. In order to do so, I have presented the di�erent tools I have used in my

work. From a theoretical perspective, one can predict properties of dark matter halos from �rst

principle using the excursion set theory, as presented in sections 2.1.3 and 2.1.4 and the peak-patch

theory, as presented section 2.1.5. These tools enable us to compute the properties of dark matter

halos, yet they fail at predicting the fate of baryons in galaxies, which is usually understood in

the classical model of galaxy formation presented in section 2.2.1. One way to study the evolution

of baryons is to rely on hydrodynamical numerical simulations, which I presented in section 2.2.
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Table 2.4: Summary of recent state-of-the art cosmological simulations. Only simula-

tions including gas and with box sizes of the order of 100 Mpc have been included. The

resolution is mentioned in mass for SPH simulations and in spatial resolution for AMR

simulations.
1
: This simulation is a re-zoom simulation of the Horizon-AGN simulation.

Simulation name Box size Resolution Method Reference

FIRE m13 60 Mpc 3× 105 M� SPH Hopkins et al., 2014

MassiveBlack II 100 Mpc/h 2× 106 M� SPH Khandai et al., 2015

Illustris-1 100 Mpc 1× 106 M� Moving mesh Vogelsberger et al.,

2014

Illustris-TNG100 100 Mpc 1× 106 M� Moving mesh Springel et al., 2018

Horizon-AGN 100 Mpc/h 1 kpc AMR Dubois et al., 2016

New Horizon
1 100 Mpc/h 30 pc AMR Park et al., 2019

The di�erent models used in the cosmological simulations I have used in my dissertation are

detailed in section 2.2.2, while a more technical description focused on the numerical methods is

provided in section 2.2.3.
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2.3 State-of-the-art and synopsis

Figure 2.3.1: Sketch of the approaches used in this thesis to study the formation of

dark matter halos and galaxies. The di�erent processes relevant to the formation of dark

matter halos and their galaxies are shown in gray. The two axes developed in the thesis

are shown in the green area (theoretical exploration, chapters 3 and 4) and blue area

(numerical exploration, chapters 5 and 6). Along the former, I developed extensions to

the excursion set and peak theory that explicitly include the anisotropic e�ect of the

cosmic web. This was used to predict environmental-driven e�ects on the properties

of DM halos. Along the latter, I developed numerical methods to accurately follow

the cosmic accretion of gas in simulations and applied it to understand how angular

momentum is transported by cold �ows on high-redshift galaxies.

One of the successes of the ΛCDM model is its ability to predict a signi�cant number of properties

of DM halos and their galaxies. In the classical model of galaxy formation, galaxy form out of the

condensation of the gas in the potential well of their host halo. As such, galaxy properties are

usually understood as a result of the halo mass — which sets the amount of gas available and the

internal kinematics — and the local density — which regulates gas accretion and pair interactions.

The classical analytical and semi-analytical models intrinsically suppose that halo properties,

and as a consequence, galaxy properties are only in�uenced by their local environment via the

local density, with some extensions probing also the local tidal environment. These models have

proven successful at predicting many galactic properties, such as their spatial clustering or their

mass function.

In the context of assembly bias, many extensions of the halo model have been suggested to

understand the modulation e�ects of the cosmic web in terms of local properties. In particular,

it has been suggested that the local tidal �eld may explain part of the assembly bias signal (e.g.

Hahn et al., 2009; Ludlow et al., 2014) when formulated in terms of the formation time. Tidal

forces induce a shear �ow in the vicinity of small halos that �ow along �laments of the cosmic
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web. One of the outcomes is that the accretion rate of small halos is decreased by neighbouring

structures, so that small halos growing in dense environments are not able to accrete mass. As a

consequence, these halos appear older resulting in a di�erential biasing as a function of formation

time. Similarly, Paranjape et al., 2018 suggested that the e�ect of halo concentration on the bias is

well explained by a local quanti�cation of the local tidal anisotropy. All these models are typically

extensions of the halo model with new halo-centred probes of the larger-scale environment.

Another possible approach, which is the one followed in this dissertation, is to relax the

halo-centric assumption and work in the frame that sets the large scale environment: the cosmic

web. Indeed, due to the statistical properties of the initial conditions of the Universe, the di�erent

scales involved in galaxy formation and the formation of the cosmic web are coupled statistically.

In particular, large-scale structures such as large �laments have an impact on the statistical

properties of the �eld out of which halos grow, which has the e�ect of biasing halo assembly. One

can argue that the assembly signal can be explained simply via this biasing e�ect of the cosmic

web: the cosmic web is responsible for driving the typical assembly history at �xed halo mass

and local density.

This approach has already proven successful at providing a theoretical explanation to the

spin-alignment problem (Codis et al., 2015). This framework has since been used to show that, in

hydrodynamical simulations, the cosmic web has also an e�ect on the assembly of galaxies. In

Kraljic et al., 2018; Kraljic et al., 2019 (appendices B.1 and B.2), we reported that the speci�c star

formation rate and the velocity-to-velocity-dispersion ratio both present signi�cant modulations

along the �laments, highlighting that, indeed, �lamentary structures can be used as a metric to

parametrise the assembly of dark matter halos and galaxies therein. Using an extension to the

excursion set theory (Bond et al., 1991; Lacey and Cole, 1993; Mo and S. D. M. White, 1996), I

show in chapter 3 (Musso, Cadiou et al., 2018) that the cosmic web, and in particular large scale

�laments, biases the formation of dark matter halos. In this dissertation, I also argue that the

assembly bias problem stated in these terms can also provide a valuable understanding of how

halos grow, but also how their galaxy forms.

Although a number of evidences are pointing towards an e�ect of the cosmic web on galaxy

formation, the detailed physics that couples them is still poorly understood. One of the issues

lays in the description of the cosmic web itself, so that di�erent methods may lead to di�erent

e�ects on galaxy formation. One key parameter to further study the e�ect of the cosmic web

is then the question of its description, the challenge residing in its continuous and multi-scale

nature. Many methods have been developed to tackle this issue and provide a local frame in

which galaxy properties can be studied (Bond et al., 1996; Sousbie et al., 2008 and Libeskind et al.,

2018 for a review). In chapter 4, I highlight a process entering galaxy and dark halo formation,

namely the coalescence of critical points of the cosmic web as a function of cosmic time. I present

theoretical predictions that account for it in a compact way and provide theoretical predictions of

the evolution of the cosmic web in the Lagrangian space of the initial conditions (based on the

idea of Hanami, 2001) and link them to the connectivity of the cosmic web (Codis et al., 2018). In

a broad sense, the cosmic web within the initial Lagrangian patch of dark halos now belongs to

their internal structure, and as such impacts directly the details of their assembly history.

The complex coupling of the di�erent processes involved in galaxy formation (star formation,

feedback, gas cooling, hydrodynamics) render theoretical predictions particularly complex. One

way around is to rely on numerical simulations that model these processes experimentally

to study galaxy formation. This has been shown to reproduce well the spatial clustering of

galaxies (Springel et al., 2006), but also their properties such as morphology, colour or sizes (e.g.

Vogelsberger et al., 2014; Dubois et al., 2016; Schaye et al., 2015 and Scannapieco et al., 2012; Kim

et al., 2016 for a comparison of the predictions). One of the strong predictions of the numerical

codes and their physical models is the presence of cold gas, that �ows along dark matter �laments
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that form the cosmic web (Stewart et al., 2017), so that one can now rely on hydrodynamical

numerical simulations to simulate galaxy formation in their cosmological context. These �ows

have been shown to be a main channel driving angular-momentum rich material down to the

inner regions of the galaxies (Kimm et al., 2011; Stewart et al., 2013; Danovich et al., 2015; Tillson

et al., 2015; Bullock et al., 2016), which are key to understand the emergence of the disk structure

of galaxies. One of the key to understand the dynamics of cold �ows is to understand how their

history di�ers from that of the hot-accreted gas, and how it impacts the angular momentum

acquisition of the central galaxy, by studying the Lagrangian history of the gas. Studies based

on Godunov solvers, albeit very accurate at capturing hydrodynamical shocks, only provide the

Eulerian history of the gas. In order to get the Lagrangian history of the gas, codes have been

equipped with tracer particles. In chapter 5, I present a new tracer particle implementation for

the code Ramses based on a Monte Carlo approach. This implementation signi�cantly improves

over previous implementations and enables us to study accurately the Lagrangian history of the

baryons through their hydrodynamical evolution and their recycling in stars and AGNs. Using

the new tracer particles, I present in chapter 6 an analysis of the Lagrangian evolution of the

angular momentum of the gas as it �ows into galaxies at high redshift, so as to better understand

how galaxies get their spin. The evolution of the magnitude and orientation of the angular

momentum is computed for the cold- and the hot-accreted gas. I decompose the forces between

stellar gravitational forces, dark matter gravitational forces and pressure forces to assess which

component dominates where at di�erent locations.
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3.1 Introduction

Galaxies form and evolve within a complex network, the so-called cosmic web (Bond et al., 1996,

see section 2.1.2), made of �laments embedded in sheet-like walls, surrounded by large voids and

intersecting at clusters of galaxies (Jõeveer et al., 1978). Halo masses are highly dependent on

their large-scale surrounding, as elegantly explained by the theory of biased clustering (Kaiser,

1984a; Efstathiou et al., 1988), such that high mass objects are preferentially found in over-dense

regions near nodes (Bond and Myers, 1996; Pogosyan et al., 1996). The importance of interactions

with the larger scale environment in driving their evolution has indeed recently emerged as a

central tenet of halo formation theory.

It has been established that the clustering of dark matter halos, as measured by halo bias, not

only depends on halo mass but also on other halo properties such as formation time, concentration,

spin and ellipticity (Gao et al., 2005; Wechsler et al., 2006; Gao and S. D. M. White, 2007; Hahn

et al., 2007). This e�ect, commonly referred to as “assembly bias” can be rephrased as follows:

the clustering of dark matter halos and their properties are correlated, beyond a mere mass and

density relation. Using a di�erent approach, a growing number of evidence from simulations

(Welker et al., 2014; Kraljic et al., 2018; Kraljic et al., 2019; Martizzi et al., 2019) and observations

(e.g. Porter et al., 2008; Kleiner et al., 2017; Malavasi et al., 2017) have since showed that some
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halo and galaxy properties present distinct features at di�erent locations in the cosmic web. One

striking example is spin-alignments which have been measured for DM halos (e.g. Codis et al.,

2012; Dubois et al., 2014) and galaxies (e.g. Tempel et al., 2013; Welker et al., 2014; Chisari et al.,

2017), but also the colour segregation of galaxies (Rojas et al., 2004; Martínez et al., 2016; Beygu

et al., 2016; Laigle et al., 2018; Kraljic et al., 2018; Kraljic et al., 2019, e.g. ).

As a �lament is formally the �eld line that joins two maxima of the density �eld through a

�lament-type saddle point (Pogosyan et al., 2009), studying the expected properties of galaxies

and halos in the vicinity of �lament-type saddle points is a sensible choice. Indeed, TTT (Peebles,

1969; Schäfer, 2009) was recently revisited (Codis et al., 2015, see section 2.1.6) in the context of

such anisotropic environments, biased by the presence of a �lament within a wall, which is most

e�ciently represented by this point process of �lament-type saddles. It predicts the alignment

of the angular momentum distribution of the forming galaxies with the �lament’s direction,

and perpendicular orientation for massive population. Since spin plays an important role in the

physical and morphological properties of galaxies, a signature is also expected in the properties

of galaxies as a function of the longitudinal and transverse distance to this saddle.

Most of the previous theoretical work on the impact of the anisotropy of the environment

on galactic assembly history focused on dark matter halos. At a given mass, halos that are

su�ciently far away from the potential wells grow by accreting their surrounding matter, leading

to a correlation between the instantaneous accretion rate and the density of their environment

(e.g. Zentner, 2007). On the other hand, halos close to the potential wells are expected to stall and

stop to grow earlier, as their mass in�ow is dynamically quenched by anisotropic tides generated

in their vicinity (e.g. Dalal et al., 2008; Hahn et al., 2009; Ludlow et al., 2014; Borzyszkowski

et al., 2017). Individual properties of dark matter halos, such as their mass, formation time or

accretion rate, are thus expected to be a�ected by the exact position of halos within the large-scale

anisotropic cosmic web.

These works underlined the role of the shear strength (a scalar quantity constructed out of the

traceless shear tensor which does not correlate with the local density), measured on the same scale

as the halo (Castorina et al., 2016; Paranjape et al., 2018). As tidal forces act against gravitational

collapse, the shear strength encodes the delay induced by the dynamical quenching due to the

environment. This has been justi�ed as a phenomenological explanation of the scale-dependent

scatter in the initial overdensity of proto-halos measured in simulations (Ludlow et al., 2014;

R. K. Sheth et al., 2013) or as a theoretical consequence of the coupling between the shear and the

inertia tensor which tends to slow down collapse (Bond and Myers, 1996; R. K. Sheth et al., 2001;

Del Popolo et al., 2001).

The purpose of this paper is to address the question of the environmental quenching of halos.

In particular, is the cosmic web responsible for the environmental quenching of halos? What e�ect

does it have on di�erent variables entering the assembly of dark matter halos? In collaboration

with M. Musso, we extended the excursion set theory to account for the large-scale modulations

induced by a �lament-type saddle point. From this, we computed the mass function and the

accretion rate and formation times at �xed �nal mass.

The results presented here were published in Musso, Cadiou et al., 2018.

3.2 “How does the cosmic web impact assembly bias?”
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ABSTRACT
The mass, accretion rate, and formation time of dark matter haloes near protofilaments
(identified as saddle points of the potential) are analytically predicted using a conditional
version of the excursion set approach in its so-called upcrossing approximation. The model
predicts that at fixed mass, mass accretion rate and formation time vary with orientation and
distance from the saddle, demonstrating that assembly bias is indeed influenced by the tides
imposed by the cosmic web. Starved, early-forming haloes of smaller mass lie preferentially
along the main axis of filaments, while more massive and younger haloes are found closer to
the nodes. Distinct gradients for distinct tracers such as typical mass and accretion rate occur
because the saddle condition is anisotropic, and because the statistics of these observables
depend on both the conditional means and their covariances. The theory is extended to other
critical points of the potential field. The response of the mass function to variations of the
matter density field (the so-called large-scale bias) is computed, and its trend with accretion
rate is shown to invert along the filament. The signature of this model should correspond at low
redshift to an excess of reddened galactic hosts at fixed mass along preferred directions, as re-
cently reported in spectroscopic and photometric surveys and in hydrodynamical simulations.
The anisotropy of the cosmic web emerges therefore as a significant ingredient to describe
jointly the dynamics and physics of galaxies, e.g. in the context of intrinsic alignments or
morphological diversity.

Key words: galaxies: evolution – galaxies: formation – galaxies: kinematics and dynamics –
large-scale structure of Universe – cosmology: theory.

1 IN T RO D U C T I O N

The standard paradigm of galaxy formation primarily assigns galac-
tic properties to their host halo mass. While this assumption has
proven to be very successful, more precise theoretical and observa-
tional considerations suggest other hidden variables must be taken
into account.

The mass–density relation (Oemler 1974), established observa-
tionally 40 yr ago, was explained (Kaiser 1984; Efstathiou et al.
1988) via the impact of the long-wavelength density modes of the
dark matter (DM) field, allowing the proto-halo to pass earlier the
critical threshold of collapse (Bond et al. 1991). This biases the mass
function in the vicinity of the large-scale structure: the abundance
of massive haloes is enhanced in overdense regions.

Numerical simulations have shown that denser environments dis-
play a population of smaller, older, highly concentrated ‘stalled’

� E-mail: mmusso@sas.upenn.edu (MM); cadiou@iap.fr. (CC)

haloes, which have stopped accreting and whose relationship with
the environment is in many ways the opposite of that of large-mass
actively accreting haloes that dominate their surroundings. This
is the so-called assembly bias (e.g. Sheth & Tormen 2004; Gao,
Springel & White 2005; Wechsler et al. 2006; Dalal et al. 2008;
Paranjape & Padmanabhan 2017; Lazeyras, Musso & Schmidt
2017). More recently, Alonso, Eardley & Peacock (2015), Tramonte
et al. (2017) and von Braun-Bates et al. (2017) have investigated
the differential properties of haloes with respect to loci in the cos-
mic web. As they focused their attention to variations of the mass
function, they also found them to vary mostly with the underlying
density. Paranjape, Hahn & Sheth (2017) have shown that haloes
in nodes and filaments behave as two distinct populations when a
suitable variable based on the shear strength on a scale of the order
of the halo’s turnaround radius is considered.

In observations, galactic conformity (Weinmann et al. 2006) re-
lates quenching of centrals to the quenching of their satellite galax-
ies. It has been detected for low- and high-mass satellite galaxies
up to high redshift (z ∼ 2.5, Kawinwanichakij et al. 2016) and
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fairly large separation (4 Mpc, Kauffmann et al. 2013). Recently,
colour and type gradients driven specifically by the anisotropic
geometry of the filamentary network have also been found in sim-
ulations (Laigle et al. 2017; Kraljic et al. 2018) using the Horizon-
AGN simulation (Dubois et al. 2014), and observations using SDSS
(Yan, Fan & White 2013; Martı́nez, Muriel & Coenda 2016; Poudel
et al. 2017; Chen et al. 2017), GAMA (Alpaslan et al. 2016;
Kraljic et al. 2018) and, at higher redshift, VIPERS (Malavasi et al.
2017) and COSMOS (Laigle et al. 2017). This suggests that some
galactic properties do not only depend on halo mass and density
alone: the co-evolution of conformal galaxies is likely to be con-
nected to their evolution within the same large-scale anisotropic
tidal field.

An improved model for galaxy evolution should explicitly inte-
grate the diversity of the geometry of the environment on multiple
scales and the position of galaxies within this landscape to quantify
the impact of its anisotropy on galactic mass assembly history. From
a theoretical perspective, at a given mass, if the halo is sufficiently
far from competing potential wells, it can grow by accretion from
its neighbourhood. It is therefore natural to expect, at fixed mass, a
strong correlation between the accretion rate of haloes and the den-
sity of their environment (Zentner 2007; Musso & Sheth 2014b).
Conversely, if this halo lies in the vicinity of a more massive struc-
ture, it may stop growing earlier and stall because its expected
feeding will in fact recede towards the source of anisotropic tide
(e.g. Dalal et al. 2008; Hahn et al. 2009; Ludlow, Borzyszkowski &
Porciani 2014; Wang et al. 2011).

Most of the work carried out so far has focused on the role of
the shear strength (a scalar quantity constructed out of the trace-
less shear tensor which does not correlate with the local density)
measured on the same scale of the halo: as tidal forces act against
collapse, the strength of the tide will modify the relationship of
the halo with its large-scale density environments, and induce dis-
tinct mass assembly histories by dynamically quenching mass in-
flow (Hahn et al. 2009; Castorina et al. 2016; Borzyszkowski et al.
2016). Such local shear strength should be added, possibly in the
form of a modified collapse model that accounts for tidal deforma-
tions, so as to capture e.g. the effect of a central on its satellites’
accretion rate. This modified collapse model has been motivated in
the literature on various grounds, e.g. as a phenomenological ex-
planation of the scale-dependent scatter in the initial overdensity of
proto-haloes measured in simulations (Ludlow et al. 2014; Sheth,
Chan & Scoccimarro 2013) or as a theoretical consequence of the
coupling between the shear and the inertia tensor which tends to
slow down collapse (Bond & Myers 1996; Sheth, Mo & Tormen
2001; Del Popolo, Ercan & Gambera 2001). Notwithstanding, the
position within the large-scale anisotropic cosmic web also directly
conditions the local statistics, even without a modification of the
collapse model, and affects different observables (mass, accretion
rate, etc.) differently.

The purpose of this paper is to provide a mathematical under-
standing of how assembly bias is indeed partially driven by the
anisotropy of large-scale tides imprinted in the so-called cosmic
web. To do so, the formalism of excursion sets will be adapted to
study the formation of structures in the vicinity of saddle points
as a proxy for filaments of the cosmic web. Specifically, various
tracers of galactic assembly will be computed conditional to the
presence of such anisotropic large-scale structure. This will allow
us to understand why haloes of a given mass and local density
stall near saddles or nodes, an effect which is not captured by the
density–mass relation, as it is driven solely from the traceless part
of the tide tensor. This should have a clear signature in terms of the

distinctions between contours of constant typical halo mass ver-
sus those of constant accretion rate, which may in turn explain the
distinct mass and colour gradients recently detected in the above-
mentioned surveys.

The structure of this paper is the following. Section 2 presents
a motivation for extended excursion set theory as a mean to com-
pute tracers of assembly bias. Section 3 presents the unconstrained
expectations for the mass accretion rate and half-mass. Section 4
investigates the same statistics subject to a saddle point of the po-
tential and computes the induced map of shifted mass, accretion
rate, and half-mass time. It relies on the strong symmetry between
the unconditional and conditional statistics. Section 5 provides a
compact alternative to the previous two sections for the less theo-
retically inclined reader and presents directly the joint conditional
and marginal probabilities of upcrossings explicitly as a function of
mass and accretion rate. Section 6 reframes our results in the context
of the theory of bias as the response of the mass function to varia-
tions of the matter density field. Section 7 wraps up and discusses
perspectives. Appendix A sums up the definitions and conventions
used in the text. Appendix B tests these predictions on realizations
of Gaussian random fields (GRFs). Appendix C investigates the
conditional statistics subject to the other critical points of the field.
Appendix D presents the probability distribution function (PDF) of
the eigenvalues at the saddle. Appendix E presents the covariance
matrix of the relevant variables to the PDFs. Appendix F presents
the relevant joint statistics of the field and its derivatives (spatial and
with respect to filtering) and the corresponding conditional statistics
of interest. Appendix G presents the generalization of the results
for a generic barrier. Appendix H speculates about galactic colours.

2 BA S I C S O F T H E E X C U R S I O N SE T
APPROACH

The excursion set approach, originally formulated by Press &
Schechter (1974), assumes that virialized haloes form from spher-
ical regions whose initial mean density equals some critical value.
The distribution of late-time haloes can thus be inferred from the
simpler Gaussian statistics of their Lagrangian progenitors. The ap-
proach implicitly assumes approximate spherical symmetry (but not
homogeneity), and uses spherical collapse to establish a mapping
between the initial mean density of a patch and the time at which it
recollapses under its own gravity.

According to this model, a sphere of initial radius R shrinks to
zero volume at redshift z if its initial mean overdensity δ equals
δcD(zin)/D(z), where D(z) is the growth rate of linear matter pertur-
bations, zin the initial redshift, and δc = 1.686 for an Einstein–de
Sitter universe, or equivalently, if its mean overdensity linearly
evolved to z = 0 equals δc/D(z), regardless of the initial size. If so,
thanks to mass conservation, this spherical patch will form a halo
of mass M = (4π/3)R3ρ̄ (where ρ̄ is the comoving background
density) . The redshift z is assumed to be a proxy for its virialization
time.

Bond et al. (1991) added to this framework the requirement that
the mean overdensity in all larger spheres must be lower than δc, for
outer shells to collapse at a later time. This condition ensures that the
infall of shells is hierarchical, and the selected patch is not crushed
in a bigger volume that collapses faster (the so-called cloud-in-cloud
problem). The number density of haloes of a given mass at a given
redshift is thus related to the volume contained in the largest spheres
whose mean overdensity δ ≡ δ(R) crosses δc. The dependence of
the critical value δc on departures from spherical collapse induced
by initial tides was studied by Bond & Myers (1996), and later
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by Sheth et al. (2001), who approximated it as a scale-dependent
barrier. This will be further discussed in Section 7.2.

As the variation of δ(R) with scale resembles random diffusion,
it is convenient to parametrize it with the variance

σ 2(R) ≡ Var(δ(R)) =
∫

dk
k2P (k)

2π2
W 2(kR) (1)

of the stochastic process, smoothed with a real-space Top-Hat filter
W,1 rather than with R or M. In equation (1), P(k) is the underlying
power spectrum. The three quantities σ , R, and M are in practice
interchangeable. The mass fraction in haloes of mass M at z is

M

ρ̄

dn

dM
=
∣∣∣∣

dσ

dM

∣∣∣∣ f (σ ) , (2)

where dn/dM is the number density of haloes per unit mass (i.e.
the mass function) and f(σ ) – often called the halo multiplicity – is
the probability distribution of the first-crossing scale of the random
walks, that is of the smallest σ (largest R) for which

δ(R, r) ≡
∫

d3k

(2π)3
δm(k)W (kR)eik·r = δc

D(z)
, (3)

where δm is the (unsmoothed) matter density. The first-crossing
requirement avoids double counting and guarantees that f(σ ) is a
well-behaved probability distribution, and the resulting mass frac-
tion is correctly normalized. In equation (3), the linear growth factor,
D(z), is defined as a function of redshift via

D(z) = H (a)

H0

∫ a

0

da√
�m/a + ��a2

, with a = 1

1 + z
. (4)

At early time, D(z) scales like 1/(1 + z). Here, H (a) =
H0

√
�m/a + ��a2 is the Hubble constant.

The first-crossing probability, f(σ )�σ , is the fraction of walks
that cross the threshold between σ − �σ and σ for the first time.
Considering discretized trajectories with a large number of steps
σ 1, . . . , σ N of width �σ ≡ σ i − σ i − 1 (corresponding to concentric
spheres of radii R1, . . . , RN), the first-crossing probability is the
joint probability that δN > δc and δi < δc for i < N, with δi ≡
δ(σ i) and σ N = σ = N�σ . Hence, the distribution f(σ ) is formally
defined as the limit

f (σ ) ≡ lim
�σ→0

1

�σ
〈ϑ(δN − δc)

N−1∏

i

ϑ(δc − δi)〉, (5)

where ϑ(x) is Heaviside’s step function, and the expectation value
is evaluated with the multivariate distribution p(δ1, . . . , δN). This
definition discards crossings for which δi > δc for any i < N,
since ϑ(δc − δi) = 0, assigning at most one crossing (the first)
to each trajectory. For instance, in Fig. 1, trajectory B would not
be assigned the crossing marked with (3), since the trajectory lies
above threshold between (1) and (2). Since taking the mean implies
integrating over all trajectories weighed by their probability, f(σ )
can be interpreted as a path integral over all allowed trajectories
with fixed boundary conditions δ(0) = 0 and δ(σ ) = δc (Maggiore
& Riotto 2010).

In practice, computing f(σ ) becomes difficult if the steps of the
random walks are correlated, as is the case for real-space Top-Hat
filtering with a � cold dark matter (�CDM) power spectrum, and
for most realistic filters and cosmologies. For this reason, more eas-
ily tractable but less physically motivated sharp cut-offs in Fourier

1 The window function in Fourier space is W(x) = 3j1(x)/x, j1 being the
spherical Bessel function of order 1.

Figure 1. Pictorial description of the first-crossing and upcrossing con-
ditions to infer the halo mass from the excursion set trajectory. The first-
crossing condition on σ assigns at most one halo to each trajectory, with mass
M(σ ). Upcrossing may instead assign several masses to the same trajectory
(that is, to the same spatial location), thus overcounting haloes. Trajectory
B in the figure has a first crossing (upwards) at scale σB (1), a downcrossing
(2), and second upcrossing (3), but the correct mass is only given by σB.
However, the correlation of each step with the previous ones makes turns
in small intervals of σ exponentially unlikely: at small σ most trajectories
will thus look like trajectory A. Thanks to the correlation between steps at
different scales, for small σ (large M) simply discarding downcrossings is a
very good approximation.

space have been often preferred, for which the correlation matrix
of the steps becomes diagonal, treating the correlations as pertur-
bations (Maggiore & Riotto 2010; Corasaniti & Achitouv 2011).
The upcrossing approximation described below can instead be con-
sidered as the opposite limit, in which the steps are assumed to be
strongly correlated (as is the case for a realistic power spectrum and
filter). This approximation is equivalent to constraining only the last
two steps of equation (5), marginalizing over the first N − 2.

2.1 The upcrossing approximation to f(σ ).

Indeed, Musso & Sheth (2012) noticed that for small enough σ

(i.e. for large enough masses), the first-crossing constraint may be
relaxed into the milder condition

δ′ ≡ dδ

dσ
> 0 ; (6)

that is, trajectories simply need to reach the threshold with posi-
tive slope (or with slope larger than the threshold’s if δc depends
on scale). This upcrossing condition may assign several haloes of
different masses to the same spatial location. For this reason, while
first crossing provides a well-defined probability distribution for
σ (e.g. with unit normalization), upcrossing does not. However,
since the first crossing is necessarily upwards, and downcrossings
are discarded, the error introduced in f(σ ) by this approximation
comes from trajectories with two or more turns. Musso & Sheth
(2012) showed that these trajectories are exponentially unlikely if
σ is small enough when the steps are correlated. The first-crossing
and upcrossing conditions to infer the halo mass from excursion sets
are sketched in Fig. 1: while the trajectory A would be (correctly)
assigned to a single halo, the second upcrossing of trajectory B in
the figure would be counted as a valid event by the approximation,
and the trajectory would (wrongly) be assigned to two haloes. The
probability of this event is non-negligible only if σ is large.

Returning to equation (5), expanding δN − 1 around δN gives

ϑ(δc − δN−1) 	 ϑ(δc − δN ) + δD(δc − δ)δ′�σ, (7)
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4880 M. Musso et al.

where the crossing scale σ , giving the halo’s final mass M, is de-
fined implicitly in equation (3), as the solution of the equation
δ(σ ) = δc/D.2 The assumption that this upcrossing is first crossing
allows us to marginalize over the first N − 2 variables in equation
(5) without restrictions. The first term has no common integration
support with ϑ(δN − δc), and only the second one – containing the
Jacobian (δ′ − δ′

c) – contributes to the expectation value (through-
out the text, a prime will denote the derivative d/dσ ). Adopting
for convenience the normalized walk height ν ≡ δ/σ , for which
〈ν2〉 = 1, the corresponding density of solutions in σ -space obeys
∣∣ν ′ − ν ′

c

∣∣ δD(ν − νc) = (|δ′|/σ ) δD(ν − νc) , (8)

where νc ≡ δc/(σD) is the rescaled threshold. The probability of
upcrossing at σ in equation (5) is therefore simply the expectation
value of this expression,

fup(σ ) ≡ pG(ν = νc)
∫ ∞

0
dδ′δ′pG(δ′|νc) , (9)

where the integral runs over δ′ > 0 because of the upcrossing
condition (6). Usually, one sets D = 1 at z = 0 for simplicity
so that νc = δc/σ . For Gaussian initial conditions,3 the conditional
distribution pG(δ′|νc) is a Gaussian with mean νc and variance 1/�2,
where

�2 = 1

〈δ′2〉 − 1
= γ 2

1 − γ 2
= 1

σ 2〈ν ′2〉 , (10)

and γ 2 = 〈δ′δ〉2/〈δ′2〉〈δ2〉 is the cross-correlation coefficient be-
tween the density and its slope.4 Thanks to this factorization, inte-
grating equation (9) over δ′ yields the fully analytical expression

fup(σ ) = pG(νc)
μ

σ
F (X) , (11)

where pG is a Gaussian with mean 〈ν〉 = 0 and variance Var(ν) = 1.
For a constant barrier (see Appendix G for the generalization to a
non-constant case), the parameters μ and X are defined as

μ ≡ 〈δ′|νc〉 = νc , and X ≡ μ√
Var (δ′|νc)

= �νc , (12)

with

F (x) ≡
∫ ∞

0
dy

y

x

e−(y−x)2/2

√
2π

= 1 + erf(x/
√

2)

2
+ e−x2/2

x
√

2π
, (13)

which is a function that tends to 1 very fast as x → ∞, with
correction decaying like exp ( − x2/2)/x3. It departs from one by
∼8 per cent for a typical �νc ∼ 1. Equation (11) can be written
explicitly as

fup(σ ) = νce−ν2
c /2

σ
√

2π
F (�νc) , (14)

where the first factor in the right-hand side (RHS) of equation (14)
is the result of Press & Schechter (1974), ignoring the factor of
2, they introduced by hand to fix the normalization. For correlated
steps, their non-normalized result reproduces well the large-mass
tail of f(σ ) (which is automatically normalized to unit and requires
to correcting factor), but it is too low for intermediate and small
masses. The upcrossing probability fup(σ ) also reduces to this result

2 A careful calculation shows that the step function should be asymmetric,
so that ϑ(δ − δc) = 1 when δ = δc instead of 1/2.

3 No conceptual complications arise in dealing with a non-Gaussian distri-
bution, which is none the less beyond the scope of this paper.

4 Recalling that 〈δ′δ〉 = σ so that γ 2 = 1/〈δ′2〉.

in the large-mass limit, when �νc � 1 and F(�νc) 	 1. However,
for correlated steps fup(σ ) is a very good approximation of f(σ ) on
a larger mass range. For a �CDM power spectrum, the agreement
is good for halo masses as small as 1012 M
 h−1, well below the
peak of the distribution. The deviation from the strongly correlated
regime is parametrized by �νc, which involves a combination of
mass and correlation strength: the approximation is accurate for
large masses (small σ and large νc) or strong correlations (large �).
Although � mildly depends on σ , fixing �2 ∼ 1/3 (or γ ∼ 1/2)
can be theoretically motivated (Musso & Sheth 2014c) and mimics
well its actual value for real-space Top-Hat filtering in �CDM on
galactic scales. The limit of uncorrelated steps (� = 0), whose
exact solution is twice the result of Press & Schechter (1974), is
pathological in this framework, with fup becoming infinite. More
refined approximation methods can be implemented in order to
interpolate smoothly between the two regimes (Musso & Sheth
2014a).

From equation (11), a characteristic mass M� can be defined by
requesting that the argument of the Gaussian be equal to one, i.e.
νc = 1 or σ (M�) = δc/D. This defines M� implicitly via equation
(1) for an arbitrary cosmology. This quantity is particularly useful
because fup(σ ) does not have well-defined moments (in fact, even
its integral over σ diverges). This is a common feature of first
passage problems (Redner 2001), not a problem of the upcrossing
approximation: even when the first-crossing condition can be treated
exactly, and f(σ ) is normalized – it is a distribution function –,
its moments still diverge. Therefore, given that the mean 〈M〉 of
the resulting mass distribution cannot be computed, M� provides a
useful estimate of a characteristic halo mass.

2.2 Joint and conditional upcrossing probability

The purpose of this paper is to recompute excursion set predictions
such as equation (11) in the presence of additional conditions im-
posed on the excursions. Adding conditions (like the presence of a
saddle at some finite distance) will have an impact not only on the
mass function of DM haloes, but also on other quantities such as
their assembly time and accretion rate.

Let us present in full generality how the upcrossing probabil-
ity is modified by such supplementary conditions. When, besides
δ(σ ) = δc and the upcrossing condition, a set of N linear5 functional
constraints {F1[δ], . . . ,FN [δ]} = {v1, . . . , vN } on the density field
is enforced, the additional constraints modify the joint distribution
of ν and ν ′. The conditional upcrossing probability may be obtained
by replacing p(ν, ν ′) with p(ν, ν ′|{v}) in equation (9). For a Gaus-
sian process, when the functional constraints do not involve δ′, this
replacement yields after integration over the slope

fup(σ, {v}) = pG(νc, {v})μv

σ
F (Xv) , (15)

where pG(νc|{v}) is a Gaussian with mean 〈ν|{v}〉 and variance
Var (ν|{v}), while μv and Xv are defined as

μv ≡ 〈δ′|νc, {v}〉 , Xv ≡ μv√
Var (δ′|νc, {v}) , (16)

and 〈δ′|νc, {v}〉 and Var
(
δ′|νc, {v}) are the mean and variance of

the conditional distribution, pG(δ′|νc, {v}) given by equations (F10)
and (F11) and evaluated at δ = δc, while F is given by equation (13).
Equation (15) is formally the conditional counterpart to equation

5 Indeed the saddle condition below imposes linear constraints on the con-
trast and the potential, since the saddle’s height and curvature are fixed.
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How does the cosmic web impact assembly bias? 4881

Table 1. List of variables for the three different probabilities studied in the
text (upcrossing, accretion rate given upcrossing, and formation time given
upcrossing), conditioned or not to the presence of the saddle point, split by
whether they relate to the height of the excursion set trajectory or its slope.
Variables like μ and X always appear as μF(X) and describe the mean slope
of the upcrossing trajectories given the different conditions (presence of the
saddle and/or height νf of the trajectory at formation). The unconditional
case has μ = νc and X = �νc. The remaining variables appear as arguments
of a Gaussian, and are used to define the typical values σ�, α�, and D� of the
excursion set variables σ , α, and Df. The height-related variables describe
the probability of reaching the collapse threshold νc (unconditional or given
the saddle), or the formation threshold νf given νc (with or without saddle).
The slope-related ones describe the probability of having at upcrossing the
slope corresponding to a given accretion rate. See also Table A1.

Without saddle With saddle
Height Slope Height Slope

Upcrossing (σ ) νc μ, X νc,S μS , XS
Accretion (α) Yα Yα,S
Formation (Df) νf, c μf, Xf νf,c,S μf,S , Xf,S

(11), while incorporating extra constraints corresponding to e.g. the
large-scale Fourier modes of the cosmic web.

The brute force calculation of the conditional means and vari-
ances entering equation (15) can rapidly become tedious. To speed
up the process, and gain further insight, one can write the condi-
tional statistics of δ′ in terms of those of δ and their derivatives.
This is done explicitly in Appendix F1, which allows us to write
explicitly the conditional probability of upcrossing at σ given {v},
obtained by dividing equation (15) by p({v}), as

fup(σ |{v}) = −ν ′
c,v

e−ν2
c,v/2

√
2π

F

⎛
⎝− ν ′

c,v√
Var

(
ν ′

v

)

⎞
⎠ , (17)

given

νc,v ≡ δc − 〈δ|{v}〉√
Var (δ|{v}) , and ν ′

c,v ≡ dνc,v

dσ
, (18)

where these conditionals and variances can be expressed explic-
itly in terms of the constraint via equations (F8)–(F11). Equation
(17) is therefore also formally equivalent to equation (14), upon
replacing νc → νc, v and 〈ν ′2〉 → 〈ν ′2

v 〉 to account for the constraint.
Remarkably, the conditional probability fup(σ |{v}) is thus simply
expressed as an unconditional upcrossing probability for the effec-
tive unit variance process obtained from the conditional density.

The above-sketched formal procedure will be applied to practical
constraints in the next section. For convenience and consistency,
Table 1 lists all the variables that are introduced in the following
sections, for the combinations of the various constraints (on the
slope at crossing, on the height of the trajectory at σ (M/2), and on
the presence of a saddle) that will be imposed.

3 AC C R E T I O N R AT E A N D F O R M ATI O N T I M E

Let us first present the tracers of galactic assembly when there is
no large-scale saddle. Specifically, this section will consider the
DM mass accretion rate and formation redshift. It will compute
the joint PDFs, the corresponding marginals, typical scales, and
expectations. Its main results are the derivation of the conditional
probability of the accretion rate – equation (25) – and formation
time – equation (36) – for haloes of a given mass. The emphasis
will be on derivation in the language of excursion set. The reader

Figure 2. Pictorial representation of the procedure to infer accretion rates
from excursion sets. As the redshift z grows, the barrier δc/D(z) becomes
higher and the first-crossing scale σ (z) moves to the right, towards smaller
masses. This procedure reconstructs the entire mass accretion history M(z)
from the first-crossing history σ (D). As the two redshifts z1 and z2 in figure
get close to each other, the difference between σ (z1) and σ (z2) is completely
fixed by the slope of the trajectory. This deterministic relation connects the
excursion set slope to the halo’s instantaneous mass accretion rate. Finite
jumps of the first-crossing σ after a downturn [where the inverse function
σ (δ) becomes multivalued, as in (1)] cannot describe smooth accretion and
are traditionally associated with large mergers.

only concerned with statistical predictions in terms of quantities of
direct astrophysical interest may skip to Section 5.

Following Lacey & Cole (1993), the entire mass accretion history
of the halo is encoded in the portion of the excursion set trajectory
after the first crossing: solving the implicit equation (3) at all z
enables to reconstruct M(z). As the barrier δc/D(z) decreases with
time (since D(z) grows as z decreases), the first-crossing scale moves
towards smaller values (larger masses), thereby describing the ac-
cretion of mass on to the halo. Clearly, since δ(σ ) is not monotonic,
M(z) is not a continuous function. Finite jumps of the first-crossing
scale, corresponding to portions for which σ is not a global max-
imum of the interval [0, σ ], can be interpreted as mergers (see
trajectory B in Fig. 1, or the portion marked with (1) in Fig. 2). In
the upcrossing approximation, the constraint δ′(σ ) > 0 discards the
downward part of each jump.

3.1 Accretion rate

In the language of excursion sets, finding the mass accretion history
is equivalent to reconstructing the function σ (D) [where D was
defined in equation (4)]: because the barrier grows as D decreases
with z, the crossing scale σ moves towards larger values (smaller
masses). Differentiating both sides of equation (3) with respect to z
gives

α ≡ −D

σ

dσ

dD
= δc

σδ′ = νc

σ (ν ′ − ν ′
c)

, (19)

where α measures the fractional change of the first-crossing scale
σ (M) with D(z), and is related to the instantaneous relative mass
accretion rate by

1

M

dM

dz
≡ Ṁ

M
= α

d log D

dz

(
−d log M

d log σ

)
. (20)

The upcrossing condition implies that α > 0: excursion set haloes
can only increase their mass, since dlog M/dlog σ < 0.

A pictorial representation of this procedure is given in Fig. 2.
Equation (19) gives a relation between the accretion rate of the final
haloes and the Lagrangian slope of the excursion set trajectories,
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4882 M. Musso et al.

which is statistically meaningful in the framework of excursion sets
with correlated steps (because the slope then has finite variance).
Note that α scales both like the inverse of the slope δ′ and the
logarithmic rate of change of σ with D. It also essentially scales like
the relative accretion rate, Ṁ/M since in equation (20) dlog D/dz is
simply a time-dependent scaling, while on galactic scales, (n ∼ 2),
dlog M/dlog σ ∼ −6 (see also Section 5 and Appendix E for the
generic formula).

Fixing the accretion rate establishes a local bidimensional map-
ping between {ν, ν ′}, or {δ, δ′}, and {σ , α}, defined as the solutions
of the bidimensional constraint

C ≡ {ν(σ ) − νc, ν
′(σ ) − ν ′

c − νc/σα} = 0 . (21)

The density of points in the (σ , α) space satisfying the constraint is

| det (∂C/∂{σ, α}) | δ(2)
D (C) . (22)

Since ∂(ν − νc)/∂α = 0, the determinant in equation (22) is sim-
ply |(ν ′ − ν ′

c)(νc/σα2)| = ν2
c /σ

2α3, and is no longer a stochastic
variable. Taking the expectation value of equation (22) gives

fup(σ, α) = ν2
c

σ 2α3
pG(νc, ν

′
c + νc/σα),

= �ν2
c

σα3

e−ν2
c /2

√
2π

e−Y 2
α /2

√
2π

, (23)

with [using the conditional mean μ = νc from equation (12)]

Yα ≡ νc/α − μ√
Var (δ′|νc)

= �(σν ′
c + νc/α) , (24)

which is the joint probability of upcrossing at σ with accretion rate
α.6 This can be formally recovered setting 〈δ′|νc, α〉 = νc/α and
Var

(
δ′|νc, α

) → 0 in equation (16) (because the constraint fixes δ′

completely), which gives F(Xα) = 1 as needed.
The conditional probability of having accretion rate α given up-

crossing at σ can be obtained taking the ratio of equations (23) and
(14), which gives

fup(α|σ ) = �νc

α3

e−Y 2
α /2

√
2π F (�νc)

, (25)

and represents the main result of this subsection. The exact form of
fup(α|σ ) from equation (25), as σ changes is shown in Fig. 3. This
conditional probability has a well-defined mean value, which reads

〈α|σ 〉 =
∫ ∞

0
dα αfup(α|σ ) = 1 + erf(�νc/

√
2)

2F (�νc)
; (26)

however, the second moment 〈α2|σ 〉 and all higher order statistics
are ill defined. The nth moment is in fact proportional to the ex-
pectation value of (1/δ′)n − 1 (over positive slopes and given νc),
which is divergent. Equation (25) shows that very small values of
α (corresponding to very steep slopes) are exponentially unlikely,
and very large ones (shallow slopes) are suppressed as a power law.
Unlike fup(σ ), the conditional distribution fup(α|σ ) is a well-defined
normalized PDF. However, it is still an approximation to the exact
PDF, as it assumes that the distribution of the slopes at first cross-
ing is a (conditional) Gaussian. This assumption is accurate for
steep slopes, but overestimates the shallow-slope tail, for which the
exact first-crossing condition would impose a boundary condition
pG(δ′ = 0|δc) = 0. The higher moments of the exact conditional

6 As expected, marginalizing equation (23) over α > 0 gives back equation
(11), upon setting �νc/α = x.

Figure 3. Plot of the conditional PDF fup(α|σ ) of the accretion rate for
values of σ corresponding to �νc = 10, 5, and1. As the mass gets smaller,
so does �νc and the conditional PDF moves towards smaller accretion rates
α. Therefore, haloes of smaller mass tend to accrete less.

distribution of accretion rates should be convergent. However, even
if this was not the case, let us stress that these divergences would
not represent a pathology of excursion sets, but are instead a rather
common feature of first-passage statistics in a cosmological context.

Regardless of convergence issues, it remains true that the estimate
(26) of the mean 〈α|σ 〉 gets a significant contribution from the less
accurate side of the distribution. One may therefore look for other
more informative quantities. In analogy with M�, defined as the
value of M for which νc = 1, one can define the characteristic
accretion rate α� as the value for which Yα , the argument of the
Gaussian in equation (25), equals one

α�(σ ) = �νc

1 + �νc
. (27)

For the above-mentioned typical value, it follows that α�(M�) =(√
3 − 1

)
/2 ≈ 1/3. Another useful quantity is the most likely

value of the accretion rate, corresponding to the maximum αmax of
fup(α|σ ). Requesting the derivative of the PDF to vanish, one gets

αmax(σ ) = (�νc)2

6

[√
1 + 12

(�νc)2
− 1

]
. (28)

All three quantities 〈α|σ 〉, α�, and αmax tend to 1 in the large-mass
limit, and decrease for smaller masses. They thus contain some
equivalent information on the position of the bulk of the conditional
PDF of α at given mass. Hence, haloes of smaller mass accrete less
on average.

3.2 Halo formation time

The formation time is conventionally defined as the redshift zf at
which a halo has assembled half of its mass. It is thus related to the
height of the excursion set trajectory at the scale σ 1/2 ≡ σ (M/2)
corresponding to the radius R1/2 = R/21/3. As the barrier δc/D(z)
grows with z, and the first-crossing scale moves to the right towards
higher values of σ , zf is the redshift at which σ 1/2 becomes the first-
crossing scale for that trajectory, if it exists. That is, neglecting for
the time being the presence of finite jumps in the first-crossing scale
(interpreted as mergers), one simply needs to solve for zf the implicit
relation δ(σ 1/2) = δc/D(zf), which makes zf a stochastic variable.
As described in Fig. 4, trajectories with the same upcrossing scale
σ but different heights at σ 1/2 describe different formation times: a
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How does the cosmic web impact assembly bias? 4883

Figure 4. Pictorial representation of the interplay between accretion rate
and formation time as inferred from excursion sets. Two haloes A and B
upcross the threshold δc/D(z1) at the same scale σ . At redshift z1, they have
therefore the same mass. Halo A has a steeper slope than halo B, and has
thus a lower accretion rate. At a slightly larger redshift z2, halo A crosses the
higher threshold δc/D(z2) at a lower σ , and its mass is thus larger than halo
B’s: halo A assembles its mass earlier, consistent with its lower accretion
at z1. At the half-mass scale σ 1/2 = σ (M/2), the trajectory of halo A is
higher: its threshold δc/Df has a value of Df lower than halo B’s at the same
σ 1/2. Halo A has thus assembled half of its mass at a redshift zf higher than
halo B.

higher δ1/2 corresponds to a smaller D(zf) and thus to a halo with
larger zf, which assembled half of its mass earlier.

In the language of excursion sets, it is convenient to work with
Df ≡ D(zf) rather than with zf. In terms of unit variance variables,
haloes with formation time Df correspond to trajectories satisfying

ν1/2 ≡ δ(σ1/2)

σ1/2
= δc

σ1/2Df
≡ νf , (29)

where ν1/2 is the Gaussian variable at σ 1/2 and νf is the threshold
at Df. This constraint at σ 1/2 imposes a second condition on the
trajectory after ν = νc, which selected the crossing scale σ . One
then needs to transform the bidimensional constraint

C̃ ≡ {ν − νc, ν1/2 − νf} = 0 (30)

on {ν, ν1/2} into one for {σ , Df}, which gives

∣∣det
(
∂C̃/∂{σ,Df}

)∣∣ δ
(2)
D (C̃) = ∣∣ν ′ − ν ′

c

∣∣ νf

Df
δ

(2)
D (C̃) , (31)

thanks to the fact that ∂(νc − ν)/∂Df = 0.
The joint probability of upcrossing at σ having formation time Df,

denoted fup(σ , Df), is defined as the expectation value of equation
(31) with the condition ν ′ > ν ′

c. That is,

fup(σ,Df ) ≡ νf

Df

∫ ∞

ν′
c

dν ′(ν ′ − ν ′
c) pG(νc, ν

′, νf ) ,

= νf

Df
pG(νc, νf )

μf

σ
F (Xf ) , (32)

where the second equality follows from setting {v} = νf in the
general expression (15), while μf and Xf are given by

μf (Df ) ≡ 〈δ′|νc, νf〉 , Xf (Df ) ≡ μf (Df )√
Var (δ′|νc, νf )

, (33)

as specified by equation (16). The conditional mean 〈δ′|νc, νf〉 and
variance Var

(
δ′|νc, νf

)
are computed in equations (F21) and (F22),

which give

μf (Df ) = ω′δc

σ1/2Df
+ σ − ω′ω

σ 2 − ω2

(
δc − ωδc

σ1/2Df

)
, (34)

Xf (Df ) = μf (Df )

/[
〈δ′2〉 − ω′2 − (σ − ω′ω)2

σ 2 − ω2

]1/2

, (35)

where ω = 〈δν1/2〉 and ω′ = 〈δ′ν1/2〉 are given by equations (E14)
and (E15), respectively.

The conditional probability of Df given upcrossing at σ – the
main result of this subsection – is obtained dividing equation (32)
by equation (11)

fup(Df |σ ) = νf

Df
pG(νf |νc)

μfF (Xf )

νcF (X)
,

=
(
δc/σ1/2D

2
f

)
e−ν2

f,c/2

√
2π(1 − 〈νν1/2〉2)

μfF (Xf )

νcF (X)
, (36)

where (νf/Df)pG(νf|νc) = p(Df|νc), not surprisingly, is the condi-
tional probability of the (non-Gaussian) variable Df given νc, and

νf,c ≡ νf − 〈νν1/2〉νc√
1 − 〈νν1/2〉2

= δc

σ1/2

1/Df − 〈δδ1/2〉/σ 2

√
1 − 〈νν1/2〉2

. (37)

Recall also that X = �νc. The conditional probability fup(Df|σ )
depends on Df directly, through νf, c and through μf (which appears
also in Xf). As both νf, c and μf are proportional to 1/Df in the small-

Df limit, equation (36) scales like e−ν2
f,c/2/D3

f . Hence, fup(Df|σ ) is
exponentially suppressed for small Df, that is for large formation
redshift zf: it is exponentially unlikely for a halo to assemble half
of its mass at very high redshift.

Like in the previous section, the Gaussian cut-off in equation (36)
enables to define a characteristic value D�(σ ) of the formation time,
below which fup(Df|σ ) is exponentially suppressed, by requesting
that νf, c = 1. This definition corresponds to

D�(σ ) = δc/σ1/2

〈νν1/2〉νc +√
1 − 〈νν1/2〉2

, (38)

which can then be solved for the typical formation redshift z�.
Similarly, one may define the most likely formation time Dmax by
finding the value of Df that maximizes equation (36). Because its
expression is rather involved and not much more informative than
D�, it is not reported here.

Expanding D� in powers of �σ 1/2 ≡ σ 1/2 − σ (even though
�σ 1/2/σ 	 −(1/2)dlog σ/dlog M may not be small, in which case
this expansion may just give a qualitative indication), one gets

D� 	 1 − �σ1/2

σ

(
1 +

√
〈δ′2〉 − 1

νc

)
	 1 − 1

α�

�σ1/2

σ
, (39)

confirming the intuitive relation between accretion rate and for-
mation time. Haloes with smaller accretion rates today must have
formed earlier, in order for their final mass to be the same. To derive
this expression, 〈δδ1/2〉 was expanded up to second order in �σ , us-
ing 〈δδ′〉 = σ and 〈δδ′′〉 = 1 − 〈δ′2〉 = �−2. Let us stress that, strictly
speaking, the conditional probability fup(Df|σ ) is not a well-defined
probability distribution. For instance, just like fup(σ ), equation (36)
is not normalized to unity when integrated over 0 < Df < D. This
is an artefact introduced by the upcrossing approximation to the
first-crossing problem, because equation (29) does not require tra-
jectories to reach δc/Df for the first time. As Df gets close to D,
most trajectories reaching δc/Df do so with negative slope, or after
one or more crossings, which leads to overcounting. For Df = D,
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4884 M. Musso et al.

trajectories that first crossed δc/Df at σ cannot first cross again at
σ 1/2, since σ 1/2 − σ remains finite: the true distribution should then
have f(Df|σ ) = 0. This is clearly not the case for fup(Df|σ ). In spite
of these shortcomings, equation (36) approximates well the true
conditional PDF for Df � D�, and the characteristic time D� still
provides a useful parametrization of the height of the tail.

A better approximation than equation (36) may be obtained by
imposing an upcrossing condition at σ 1/2 as well

δc

D2
f

∫ ∞

0
dδ′ δ′

∫ ∞

0
dδ′

1/2 pG(δc, δ
′, δc/Df, δ

′
1/2) . (40)

Notice the absence in this expression of the Jacobian factor δ′
1/2: this

is because the constraint at σ 1/2 is not differentiated with respect
to σ 1/2, but only with respect to Df. This reformulation, which
unfortunately does not admit a simple analytical expression, would
improve the approximation for values of Df closer to D�, but it
would still not yield a formally well-defined PDF. Furthermore, the
mean 〈Df|σ 〉 and all higher moments would still be infinite: these
divergences are in fact a common feature of first passage statistics,
which typically involve the inverse of Gaussian variables. For all
these reasons, this calculation is not pursued further.

This section has formalized analytical predictions for accretion
rates and formation times from the excursion set approach with
correlated steps. It confirmed the tight correlation between the
two quantities, according to which at fixed mass, early-forming
haloes must have small accretion rates today. Because the focus is
here on accounting for the presence of a saddle of the potential at
finite distance, for simplicity and in order to isolate this effect we
have restricted our analysis to the case of a constant threshold δc.
More sophisticated models (e.g. scale-dependent barriers involving
other stochastic variables that account for deviations from spherical
collapse) could however be accommodated without extra concep-
tual effort (see Appendix G).

4 H ALO STATISTI C S N EAR SADDLE S

Let us now quantify how the presence of a saddle of the large-scale
gravitational potential affects the formation of haloes in its prox-
imity. To do so, let us study the tracers introduced in the previous
section (the distributions of upcrossing scale, accretion rate, and
formation time) using conditional probabilities. The condition we
enforce is that the upcrossing point (the centre of the excursion set
trajectories) lies at a finite distance r from the saddle point. The fo-
cus will be on (filament-type) saddles of the potential that describe
local configurations of the peculiar acceleration with two spatial
directions of inflow (increasing potential) and one of outflow (de-
creasing potential). See Appendix C for other critical points. These
initial regions will evolve into filaments (at least in the Zel’dovich
approximation), where particles accumulate out of the neighbouring
voids from two directions, and the saddle points filament centres,
where the gravitational attraction of the two nodes balances out. A
schematic representation of this configuration is given in Fig. 5.

The saddles are identified as points with null gradient of the
gravitational potential, smoothed on a sphere of radius RS (which
is assumed to be larger than the halo’s scale R). This condition
guarantees that the mean peculiar acceleration of the sphere, which
at first order is also the acceleration of its centre of mass, vanishes.
That is, the null condition (for i = 1, . . . , 3)

gi ≡ 1

R�

∫
d3k

(2π)3

iki

k2
δm(k)

W (kRS )

σS
= 0, (41)

Figure 5. Illustration of the conditional excursion set smoothing on a few
infinitesimally close scales around R (in green) at finite distance r from
a saddle point of the gravitational potential smoothed on scale RS � R

(in red). The eigenvectors ex and ez of the tidal tensor at the saddle give the
directions of steepest increase and decrease of the potential, corresponding
to maximum inflow and outflow, respectively. The region is compressed
along ex and ey and stretched along ez, thus creating a filament. The solid
lines are isocontours of the mean density, the thickest the densest. The dotted
line indicates a ridge of mean density (the filament), parallel to ez near the
saddle.

where σS ≡ σ (RS ), is imposed on the mean gradient of the potential
smoothed with a Top-Hat filter on scale RS . This mean acceleration
is normalized in such a way that 〈gigj〉 = δij/3 by introducing the
characteristic length-scale7

R2
� ≡

∫
dk

P (k)

2π2

W 2(kRS )

σ 2
S

. (42)

Having null peculiar acceleration, the patch sits at the equilibrium
point of the attractions of what will become the two nodes at the
end of the filament.8

The configuration of the large-scale potential is locally described
by the rank 2 tensor

qij ≡ 1

σS

∫
d3k

(2π)3

kikj

k2
δm(k)W (kRS ) , (43)

which represents the Hessian of the perturbed potential smoothed
on scale RS , normalized so that 〈tr2(q)〉 = 1. This tensor is the
opposite of the so-called strain or deformation tensor. The pecu-
liar gravitational acceleration at the surface of the sphere is pro-
portional to −qijrj. Thus, the trace tr(q) = νS of qij describes the

7 This scale is similar, but not equivalent, to the scale often defined in peak
theory. Calling σ 2

i the variance of the density field filtered with k2iW(kR),
the R∗ defined here is σ−1/σ 0, while the peak theory scale is

√
3σ1/σ2.

8 The mean gravitational acceleration gi includes an unobservable infinite
wavelength mode, which should in principle be removed. A way to circum-
vent the problem would be to multiply W (kRS ) by a high-pass filter on some
large-scale R0 to remove modes with k �1/R0. Because gi is set to 0, it does
not introduce any anisotropy, but simply affects the radial dependence of
the conditional statistics through its covariance 〈gigj〉, which however is not
very sensitive to long wavelengths. For this reason, this minor complication
is ignored.
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How does the cosmic web impact assembly bias? 4885

average infall (or expansion, if negative) acceleration of the three
axes with respect to the background, while the anisotropic shear is
given by the traceless part q̄ij ≡ qij − δij νS/3, which deforms the
region by slowing down or accelerating each axis. By construction,
〈νS q̄ij 〉 = 0.

For the initial spherical patch to evolve into a filament, the eigen-
values qi of qij must obey q1 < 0 < q2 < q3 (see also Fig. D1). In this
configuration, the Zel’dovich flow of the patch has one expanding
direction and two infalling ones. The non-linear evolution is un-
likely to revert this behaviour, and the spherical region will end up
in a filament (Zel’dovich 1970; Bond, Kofman & Pogosyan 1996).
There is no clear consensus on what the initial density of a protofila-
ment should be for the structure to form at z = 0 (see however Shen
et al. 2006). The value νS = 1.2 was chosen here, corresponding to
a mean density of 0.8 within a sphere of RS = 10 Mpch−1, which
is about one standard deviation higher than the mean value for
saddle points of this type (see Appendix D for details), and thus
corresponds to a filament slightly more massive than the average
(or to an average filament that has not completely collapsed yet).
The qualitative results presented in this paper do not depend on the
exact value of νS (even though they obviously do at the quantitative
level).

4.1 Expected impact of saddle tides

The mean and covariance of δ and δ′ at r are modified by the
presence of the saddle at the origin. The zero mean density field is
replaced by δ − 〈δ|S〉, where (using Einstein’s convention as usual)

〈δ|S〉 = 〈δ|S〉〈δνS〉νS + 3〈δgi〉gi + 15

2
〈δq̄ij 〉q̄ij , (44)

where the correlation functions are evaluated at finite separation.
Here, S stands for a filament-type saddle condition of zero gradient
and two positive eigenvalues of the tidal tensor, see Fig. 5. The
slope δ′ is replaced by the derivative of this whole expression with
respect to σ , which gives δ′ − 〈δ′|S〉, since the correlation functions
of δ′ with the saddle quantities correspond to the derivatives of the
δ correlations. These modified height and slope no longer correlate
with any saddle quantity. Thus, the abundance of the various tracers
at r can be inferred from standard excursion sets of this effective
density field. The building blocks of this effective excursion set
problem – the variance of the field and of its slope, height, and
slope of the effective barrier – are derived in full in Appendix F.
The main text of this section discusses how the saddle condition
affects the upcrossing statistics, and the excursion set proxies for
accretion rate and formation time.

For geometrical reasons, since statistical isotropy is broken only
by the separation vector, any angular dependence of the correlation
functions may arise only as ri or rirj. Let us thus write equation (44)
as

〈δ|S〉 = ξ00νS + 3ξ11
r

R�

r̂igi − 5ξ20
3r̂i q̄ij r̂j

2
, (45)

where r̂i ≡ ri/r and the correlation functions ξαβ (r, R, RS ) – whose
exact form is given in equation (E11) – depend only on the radial
separation r = |r| and the two smoothing scales, and have positive
sign. Notice the presence of a minus sign in the shear term. In the
frame of the saddle, oriented with the ẑ-axis in the direction of
outflow,

Q ≡ r̂i q̄ij r̂j = q̄3 sin2 θ cos2 φ + q̄2 sin2 θ sin2 φ + q̄1 cos2 θ , (46)

where θ and φ are the usual cylindrical coordinates in the frame of
the eigenvectors (e3, e2, e1) of q̄ij with eigenvalues q̄3 > q̄2 > q̄1.

Figure 6. Pictorial representation of the effect of the presence of saddle
point on the excursion set trajectories at a finite distance from it. Haloes
A and B lie in the direction of the filament (Q ≡ r̂i q̄ij r̂j < 0), where the
mean density is higher than the average density. Halo C lies in the direction
orthogonal to it (Q > 0), where the mean density is lower. Haloes in the
filament are likely to cross the collapsing threshold earlier, like halo A, than
haloes in the voids. They thus tend to have larger mass. At fixed crossing scale
σB = σC, haloes in the filament are likely to cross with shallower slopes,
like halo B, than halo in the voids. At their half-mass scale σ 1/2 > σA, their
trajectories tend to be lower. Hence, at fixed mass, haloes in the filaments
tend to have larger accretion rates and to assemble half of their mass later.
Conversely, haloes in the voids assemble their mass earlier, and then stop
accreting.

When setting gi = 0, an angular dependence can only appear as
a functional dependence on Q(r̂) = r̂i q̄ij r̂j . That is, a dependence
on the direction r̂ with respect to the eigenvectors of the shear q̄ij .
As shown by equation (45), a negative value of Q corresponds to
a higher mean density, which makes it easier for δ to reach δc and
for haloes to form. At fixed distance from the saddle point, halo
formation is thus enhanced in the outflow direction with respect
to the inflow direction: haloes are naturally more clustered in the
filament than in the voids. Moreover, excursion set trajectories with
a lower mean will tend to cross the barrier with steeper slopes than
those crossing at the same scale but with a higher mean, and will
reach higher densities at smaller scales. Hence, haloes of the same
mass that form in the voids will form earlier and have a lower
accretion rates. These trends are shown in Fig. 6.

To understand the radial dependence, one may expand equation
(45) for small r away from the saddle, obtaining

〈δ|S〉 	 〈δνS〉r=0νS + 〈δ∇2νS〉r=0
r2

2
r̂iqij r̂j ; (47)

whether the mean density increases or decreases with r depends
on the sign of the eigenvalues, i.e. the curvatures of the saddle, of
the full q defined in equation (43). Since 〈δ∇2νS〉 < 0, the mean
density grows quadratically with r if r̂iqij r̂j < 0, and decreases
otherwise. One thus expects the saddle point to be a maximum
of halo number density, accretion rate, and formation time in the
two directions perpendicular to the filament, and a minimum in the
direction parallel to it (corresponding to the negative eigenvalue q1).

4.2 Conditional halo counts

The conditional distribution of the upcrossing scale σ at finite dis-
tance r from a saddle point of the potential can be evaluated fol-
lowing the generic procedure described in Section 2.2, fixing

{vI } = {νS , 0, −
√

5(3Q/2)} ≡ S(r) (48)
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4886 M. Musso et al.

as the constraint. With this replacement, equation (15) divided by
pG(S) gives

fup(σ ; r) = e−ν2
c,S/2

√
2πVar (δ|S)

μSF (XS ) , (49)

which is the sought conditional distribution, with

μS (r) ≡ 〈δ′|νc,S〉 , XS (r) ≡ μS (r)√
Var (δ′|νc,S)

, (50)

as in equation (16). The effective threshold νc,S given the saddle
condition is obtained replacing the generic constraint v with S in
equation (18).

The explicit calculation of the conditional quantities needed to
compute νc,S , μS , and XS is carried out in Appendix F. The results
of Appendix F2 [namely, equation (F13)] give

νc,S (r) ≡ δc − 〈δ|S〉√
Var (δ|S)

= δc − ξ00νS + 15
2 ξ20Q(r̂)√

σ 2 − ξ 2
, (51)

consistently with equation (45), where

ξ 2(r) ≡ ξ 2
00(r) + 3ξ 2

11(r)r2/R2
� + 5ξ 2

20(r) . (52)

The effective slope parameters, obtained by replacing equations
(F10) and (F11) into equation (50), are

μS (r) = ξ ′
ISI + σ − ξ ′

I ξI√
σ 2 − ξ 2

νc,S (r) , (53)

XS (r) = μS (r)

/[
〈δ′2〉 − ξ ′2 − (σ − ξ ′

I ξI )2

σ 2 − ξ 2

]1/2

, (54)

in terms of the vectors

ξ (r) ≡ {ξ00(r),
√

3ξ11(r)r/R�,
√

5ξ20(r)} , (55)

ξ ′(r) ≡ {ξ ′
00(r),

√
3ξ ′

11(r)r/R�,
√

5ξ ′
20(r)} . (56)

The correlation functions ξαβ (r, R, RS ) and their derivatives ξ ′
αβ =

dξαβ/dσ are given in equations (E11) and (E12), respectively. Note
that throughout the text, ξαβ or ξαβ (r) will be used as a shorthand
for ξαβ (r, R, RS ).

Equation (49), the main result of this subsection, is the conditional
counterpart of equation (11), and is formally identical to it upon re-
placing νc, ν ′

c, and X with νc,S (r), ν ′
c,S (r) = −μS (r)/

√
σ 2 − ξ 2

and XS (r). The position-dependent threshold νc,S (r) and the slope
parameter μS (r), given by equations (51) and (53), respectively,
contain anisotropic terms proportional toQThese terms account for
all the angular dependence of fup(σ ; r). In the large-mass regime,
as {ξ ′

I } 	 0, XS 	 νc,S/(1 − ξ 2) � 1 and F (XS ) 	 1. The most
relevant anisotropic contribution is thus the angular modulation of
νc,S , which raises or lowers the exponential tail of fup(σ ; r) along
or perpendicular to the filament. Upcrossing, and hence halo for-
mation, will be most likely in the direction that makes the threshold
νc,S smallest, as this makes it easier for the stochastic process to
reach it.

In analogy to the unconditional case, when a characteristic mass
scale could be defined for which σ = δc, equation (49) suggests
to define the characteristic mass scale σ � = σ (M�) for haloes near
the saddle as the one for which νc,S = 1 in equation (51). In the
language of excursion sets, this request naturally sets the scale

σ 2
� (r) ≡

(
δc − ξ00νS + 15

2
ξ20Q

)2

+ ξ 2(r) . (57)

This is now an implicit equation for σ �, because the RHS has a
residual dependence on σ � through ξαβ (r, R(σ�), RS ), as shown in

Figure 7. Isocontours in the x–z plane of the typical upcrossing scale σ�

around a saddle point [at (0, 0)]. The saddle point is defined using the values
of Table D1. The profiles in the direction of the filament (z-direction) and
of the void (x-direction) are plotted on the sides. The smoothing scale is
R = 1 Mpc h−1. They are obtained by solving equation (57) for σ� at each
point, with a �CDM power spectrum, and normalized to the value at the
saddle point. In the filament, haloes form at a smaller σ (higher mass) and
conversely in the void.

Appendix E. This equation can be solved numerically for σ � and
then for M�.

The angular dependence of σ�(r) is entirely due to ξ20Q. Since
the pre-factor ofQ ≡ r̂iqij r̂j is positive, σ�(r) will be smallest when
r aligns with the eigenvector with the smallest eigenvalue, and Q
is most negative. This happens when θ = 0 in equation (46): that
is, in the direction of positive outflow, along which a filament will
form. Thus, in filaments haloes tend to be more massive than field
haloes. The full radial and angular dependence of the characteristic
mass scale σ � is shown in Fig. 7.

4.3 Conditional accretion rate

The abundance of haloes of given mass and accretion rate at distance
r from a saddle is obtained by replacing the probability distribution
pG(νc, ν

′
c + νc/σα) in equation (23) with its conditional counter-

part given the saddle constraint. As shown by equation (F12), this
conditional distribution is equal to the distribution of the effective in-
dependent variables ν̃ and δ′ − 〈δ′|νc,S〉 introduced in Section 2.2,
times a Jacobian factor of σ/(1 − ξ 2/σ 2). Furthermore, the relation
(19) giving the excursion set slope in terms of the accretion rate
reads in these new variables

δ′ − 〈δ′|νc,S〉 = νc

α
− μS . (58)

Putting these two ingredients together, equation (23) becomes

fup(σ, α; r) = ν2
c

σ 2α3
pG(νc, ν

′
c + νc/σα|S) ,

= ν2
c

α3

e
−
(

ν2
c,S+Y 2

α,S
)

/2

2π
√

(σ 2 − ξ 2)Var (δ′|νc,S)
, (59)
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where Var
(
δ′|νc,S

)
is given by equation (F17) and

Yα,S (r) ≡ νc/α − μS (r)√
Var (δ′|νc,S)

, (60)

with μS (r) given by equation (53). Again, like equation (23), this
result could be obtained by taking 〈δ′|νc, α,S〉 = νc/α and the
limit Var

(
δ′|νc, α,S

) → 0 in equation (16), which would give
F (Xα,S ) = 1.

To investigate the anisotropy of the accretion rate for haloes of
the same mass, one needs the conditional probability of α given
upcrossing at σ , that is the ratio of equations (59) and (49). This
conditional probability reads

fup(α|σ ; r) = νce−Y 2
α,S/2

α3
√

2πVar (δ′|νc,S)

νc

μSF (XS )
, (61)

with μS (r) and XS (r) given by equations (53) and (54), respec-
tively. The second fraction in this expression is thus a normalization
factor that does not depend on α, and which tends to 1 when νc �
1 in the large-mass limit. Equation (61) is the main result of this
subsection. It depends on the angular position r̂ through the terms
ξ ′

20Q and ξ20Q contained in μS (r), and thus also in YαS and XS .
The angular dependence is now weighted by two different functions
ξ 20(r) and ξ ′

20(r), whose relative amplitude matters to determine the
overall effect.

To understand the angular variation of the exponential tail of
this distribution, let us focus on how Yα(r) depends on r̂ . That is,
on the anisotropic part of −μS (r). In the large-mass limit, when
σξ ′

αβ (r) � ξαβ (r), equation (53) tells us that the anisotropic part
of Yα(r) is proportional to −ξ20Q, with a proportionality factor
that is always positive and O(1). Thus, the modulation has the
opposite sign of the anisotropic part of νc,S , given in equation
(51): for trajectories with the same upcrossing scale, the probability
of having a given accretion rate is lowest in the direction of the
eigenvector of q̄ij with the lowest (most negative) eigenvalue, for
which Yα is largest. That is, for haloes with the same mass, the
probability of having a given accretion rate is lowest along the ridge
of the potential saddle, which will become the filament.

The typical accretion rate α� of the excursion set haloes described
by the distribution (61) corresponds to the condition Yα�,S = 1. This
definition transforms equation (27) into

α�(σ, r) ≡ νc√
Var (δ′|νc,S) + μS (r)

, (62)

where Var
(
δ′|νc,S

)
and μS (r) are given by equations (F17) and

(53). In the limit of small anisotropy, the angular variation of the
typical accretion rate is

�α�(σ, r) = α2
� |q̄=0

νc

15

2

[
ξ ′

20 − σ − ξ ′
I ξI

σ 2 − ξ 2
ξ20

]
r̂i q̄ij r̂j , (63)

where α�|q̄=0 – the value of α�(σ, r) when q̄ij = 0 – is function of
r but not of the angles. Therefore, at a fixed distance r from the
saddle, haloes that form in the direction of the filament tend to have
higher accretion rates than haloes with the same mass that form in
the orthogonal direction. The full dependence of the characteristic
accretion rate α� for haloes of the same mass on the position with
respect to the saddle point of the potential is shown in Fig. 8. The
figure shows that the saddle point is a local minimum of the accretion
rate along the direction connecting two regions with high density of
final objects, which is two peaks of the final halo density field. This
is consistent with the result that the accretion of haloes in filaments
is suppressed by the effect of the tidal forces (as shown by, e.g.

Hahn et al. 2009; Borzyszkowski et al. 2016). The threshold δ �
δc is reached at smaller σ in filaments than in void, hence the slope
is smaller at upcrossing. It is shown schematically in the top panel
of Fig. B3. A verification with a constrained random field is shown
in the bottom panel of Fig. B3. The details of the method used are
given in Appendix B.

One can also evaluate the mean of the conditional distribution (61)
following equation (26), integrating αfup(α|σ,S) over the range of
positive α. This conditional mean value is

〈α|σ 〉(r) = νc

μS (r)

1 + erf(XS (r)/
√

2)

2F (XS (r))
; (64)

in the large-mass regime, where XS � 1 and the whole second frac-
tion tends to 1, the position-dependent conditional mean 〈α|σ 〉(r)
is essentially the same as α�(r) defined in equation (62). As for
fup(α|σ ), all higher order moments are ill defined. One can also find
useful information in the most likely accretion rate

αmax(σ, r) = ν2
c

6Var (δ′|νc,S)

[√
1 + 12

X2
S (r)

− 1

]
, (65)

which generalizes equation (28) to the presence of a saddle point
at distance r . The same conclusion holds here namely the most
likely accretion rate increases from voids to saddles and saddles
to nodes. The following only considers maps of α�(σ, r), since
the information encoded in αmax(σ, r) and 〈α|σ 〉(r) is somewhat
redundant.

4.4 Conditional formation time

The formation time in the vicinity of a saddle is obtained by fixing
the saddle parameters S = {νS , r̂igi , r̂i q̄ij r̂j }, with gi = 0, besides
ν = νc and ν1/2 = νf. A five-dimensional constraint on the Gaussian
variables must now be dealt with, and mapped into {σ,Df,S}. Since
the mapping of the saddle parameters is the identity, the Jacobian
of the transformation still gives |ν ′ − ν ′

c|νf/Df , like in Section 3.2
(where there was no saddle constraint). The formalism outlined in
Section 2.2 still applies: the joint probability of upcrossing at σ

with formation time Df given the saddle is obtained replacing {v}
with {νf,S} in equation (16), multiplying by the Jacobian νf/Df and
dividing by the probability pG(S) of the saddle. The result is

fup(σ, Df ; r) = νf

Df
pG(νc, νf |S)

μf,S
σ

F (Xf,S ) (66)

which extends equation (32) by including the presence of a saddle
point of the potential at distance r , with

μf,S ≡ 〈δ′|νf, νc,S〉 , Xf,S ≡ μf,S√
Var (δ′|νf, νc,S)

. (67)

The conditional mean and variance of δ′ given {νf, νc,S} are ex-
plicitly computed in Appendix F4, equations (F30) and (F31).

The conditional probability of the formation time Df given σ

at a distance r from the saddle follows dividing equation (66) by
fup(σ |r), given by equation (49). This ratio – which is the main
result of this section – gives

fup(Df |σ ; r) = νf

Df
pG(νf |νc,S)

μf,S
μS

F (Xf,S )

F (XS )
,

= (δc/D
2
f )e−ν2

f,c,S/2

√
2πVar

(
δ1/2|νc,S

)
μf,S
μS

F (Xf,S )

F (XS )
. (68)
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4888 M. Musso et al.

Figure 8. Isocontours in the x–z plane of the typical accretion rate α� (upper left) and formation time D� (upper right) around a saddle point [at (0, 0)] and
in the x–y plane of the characteristic upcrossing scale σ� (lower left) and typical accretion rate ( lower right). The saddle point is defined using the values of
Table D1. The profiles going through the saddle point in the x–z (upper panels) and x–y (lower panels) planes are plotted on the sides. The smoothing scale
is R = 1 Mpc h−1. They were obtained with a �CDM power spectrum, and normalized to the value at the saddle point. Since the filament has higher mean
density, excursion set trajectories upcrossing at a given σ have shallower slopes. Hence, typical haloes are more massive in filaments and at fixed mass, haloes
forming in the filament have larger accretion rates at z = 0 and form later. The same hierarchy exists between the two perpendicular directions.

Equation (68) provides the counterpart of equation (36) near a saddle
point, in terms of the effective threshold

νf,c,S (Df, r) ≡ δc/Df − 〈δ1/2|νc,S〉√
Var

(
δ1/2|νc,S

) , (69)

with

〈δ1/2|νc,S〉 = ξ1/2 · S + 〈δδ1/2〉 − ξ · ξ1/2

σ 2 − ξ 2
(δc − ξ · S) , (70)

Var
(
δ1/2|νc,S

) = σ 2
1/2 − ξ 2

1/2 − (〈δδ1/2〉 − ξ · ξ1/2)2

σ 2 − ξ 2
. (71)

It also depends on the effective upcrossing parameters μS (r) and
XS (r), given in equations (50)–(53). The explicit forms of the func-
tions μf,S (Df, r) and Xf,S (Df, r) are reported in Appendix F4 for
convenience [equations (F33) and (F34)].

Note that in equation (68), fup(Df |σ ; r) depends on Df also
through νf,c,S and μf,S . For early formation times (Df � 1), the
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conditional mean 〈δ′|νf, νc,S〉 becomes large, since the trajectory
must reach a very high value at σ 1/2. Hence, μf,S (Df, r) ∝ 1/Df .
In this limit, the last ratio in equation (68) above tends to 1, and
fup(Df |σ ; r) ∝ (1/D3

f ) exp(−ν2
f,c,S/2), with a proportionality con-

stant that does not depend on the angle. Then, the probability decays
exponentially for small Df as νf,c,S grows. The typical formation
time D� = D(z�) can be defined as that value for which νf,c,S = 1
and this exponential cut-off stops being effective, that is

D�(r, σ ) ≡ δc√
Var

(
δ1/2|νc,S

) + 〈δ1/2|νc,S〉
, (72)

which provides the anisotropic generalization of the expression
given in equation (38). The explicit expression for the conditional
mean 〈δ1/2|νc,S〉 and variance Var

(
δ1/2|νc,S

)
are given by equa-

tions (70) and (71), respectively.
As the angular variation of 〈δ1/2|νc,S〉 is approximately

15

2
�σ1/2ξ20(r)Q(r̂) , (73)

where Q(r̂) ≡ r̂i q̄ij r̂j , �σ 1/2 = σ 1/2 − σ > 0, the formation time
D� is larger when r is aligned with the eigenvector with the most
negative eigenvalue, corresponding to the direction of the filament.
One has in fact

�D�(r, σ ) = −D2
� |q̄=0

δc

15

2
�σ1/2ξ20(r)Q(r̂) , (74)

where D� depends only on the radial distance r, which shows that
at a fixed distance from the saddle point, haloes in the direction
of the filament tend to form later (larger D�). The saddle point is
thus a minimum of the half-mass time D� along the direction of the
filament, that is a maximum of z�: haloes that form at the saddle
point assemble most of their mass the earliest. Fig. 8 displays a
cross-section of a map of D� in the frame of the saddle.

5 A S T RO P H Y S I C A L R E F O R M U L ATI O N

The joint and conditional PDFs derived in Sections 2–4 were ex-
pressed in terms of variables (σ , α, and Df) that are best suited for
the excursion set theory. Now, for the sake of connecting to obser-
vations and gathering a wider audience, let us write explicitly what
the main results of those sections – equations (14), (25), and (36),
and their constrained counterparts (49), (61), and (68) – imply in
terms of astrophysically relevant quantities like the distribution of
mass, accretion rate, and formation time of DM haloes.

5.1 Unconditional halo statistics

The upcrossing approximation provides an accurate analytical so-
lution of the random walk problem formulated in the Extended
Press–Schechter model, for a Top-Hat filter in real space and a real-
istic power spectrum. In this framework, the mass fraction in haloes
of mass M is

M

ρ̄

dn

dM
=
∣∣∣∣

dσ

dM

∣∣∣∣ fup(σ (M)) , (75)

with fup(σ ) given by equation (14) and is a function of mass via
equation (1). For instance, for a power-law power spectrum P(k)
∝ k−n with index n = 2 one has M/M� = (σ/σ �)−6. The general
power-law result M ∝ σ 6/(n − 3) follows from equation (E17).

The excursion set approach also establishes a natural relation
between the accretion rate of the halo and the slope of the trajectory
at barrier crossing. One can thus predict the joint statistics of σ and

of the excursion set proxy α ≡ νc/[d(δ − δc)/dσ ] for the accretion
rate. In order to get the joint mass fraction in haloes of mass M
and accretion rate Ṁ , one needs to introduce the Jacobian of the
mapping from (σ , α) to (M, Ṁ). Since σ (M) does not depend on
α, this Jacobian has the simple factorized form |dσ/dM||dα/dṀ|.
Since dα/dṀ = α/Ṁ from equation (20), one can write the joint
analogue of equation (75) as

MṀ

ρ̄

d2n

dMdṀ
=
∣∣∣∣
d log σ

dM

∣∣∣∣ σαfup(σ, α) , (76)

where fup(σ , α) is now given by equation (23), whereas σ (M) and
α(M, Ṁ) are functions of M and Ṁ via equations (1) and (20),
respectively. From the ratio of equations (76) and (75), the expected
mean density of haloes of given mass and accretion rate can be
reformulated as

Ṁ
d2n

dMdṀ
= αfup(α|σ )

dn

dM
, (77)

where fup(α|σ ) is given by equation (25). This expression relates
analytically the number density of haloes binned by mass and ac-
cretion rate to the usual mass function.

Similarly, the joint mass fraction of haloes of mass M and forma-
tion time zf (defined as the redshift at which the halo has assembled
half of its mass) can be inferred from the joint statistics of σ and Df

≡ δc/δ(σ 1/2), where σ 1/2 ≡ σ (M/2) is the scale containing half of
the initial volume. The redshift dependence of the growth function
D(z) is defined by equation (4). Hence, the mass fraction in haloes
of given mass M and formation time zf is

M

ρ̄

d2n

dMdzf
= dσ

dM

dDf

dzf
fup(σ,Df ) , (78)

and its conditional is

d2n

dMdzf
= dDf

dzf
fup(Df |σ )

dn

dM
, (79)

where the joint and conditional distributions of Df and σ are given
by equations (32) and (36), respectively.

Interestingly, while the excursion set mass function is subject
to the limitation of upcrossing theory, the conditional statistics of
accretion rate, or formation redshift, at given mass should be con-
siderably more accurate. This is because the main shortcoming of
excursion sets is the lack of a prescription for where to centre
in space each set of concentric spheres giving a trajectory. These
spheres are placed at random locations, whereas they should insist
on the centre of the protohalo. However, choosing a better theoret-
ical model (e.g. the theory of peaks) to set correctly the location
of the excursion set trajectories would not dramatically modify the
conditional statistics. Changing the model would modify the func-
tion F(x), defined in equation (13), that modulates each PDF. In
conditional statistics, only ratios of this function appear, which are
rather model independent, whereas the probability of the constraint
does not appear. The relevant part for our analysis – the exponential
cut-off of each conditional distribution given the constraint – would
not change. Hence, even though equation (75) does not provide a
good mass function dn/dM, one may argue that the relations (77)
and (79) are still accurate in providing the joint abundance statistics
of mass and accretion rate, or mass and formation redshift, once a
better model – or even a numerical fit – is used to infer dn/dM.

5.2 Halo statistics in filamentary environments

In the tide of a saddle of given height and curvature, equations
(75), (76), and (78) remain formally unchanged, except for the
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4890 M. Musso et al.

Figure 9. PDF of σ at upcrossing given the saddle point in the x (void, in
red) and z (filament, in blue) directions at distance r = 10 Mpc h−1 (solid
lines) and r = 5 Mpc h−1 (dashed lines). The saddle point is defined using
the values of Table D1. The PDF without the saddle point is shown in black
and at the saddle point in dashed black. The value of σ� at the saddle point
is shown by the vertical dashed line. In the filament, the PDF is boosted
for small values of σ : there are more massive haloes in the filament. The
opposite trend is seen in the void.

replacement of fup(σ ), fup(σ , α), and fup(σ , Df) by their position-
dependent counterparts fup(σ ; r), fup(σ, α; r), and fup(σ, Df ; r)
conditioned to the presence of a saddle, given by equations
(49), (59), and (66), respectively. Similarly, in equations (77) and
(79), one should substitute the distribution fup(α|σ ) and fup(Df|σ )
by their conditional counterparts fup(α|σ ; r) and fup(Df |σ ; r)
of accretion rate and formation time at fixed halo mass, given
by equations (61) and (68).

These functions depend on the mass M, accretion rate Ṁ , and
formation time zf of the halo through σ (M), α(M, Ṁ), and Df(zf), as
before. However, conditioning onS introduces a further dependence
on the geometry of the environment (the height νS of the saddle
and its anisotropic shear q̄ij ) and on the position r of the halo
with respect to the saddle point. This dependence arises because
the saddle-point condition modifies the mean and variance of the
stochastic process (δ, δ′) – the height and slope of the excursion set
trajectories – in a position-dependent way, making it more or less
likely to form haloes of given mass and assembly history within
the environment set by S. The mean becomes anisotropic through
Q = r̂i q̄ij r̂j , and both mean and variance acquire radial dependence
through the correlation functions ξαβ and ξ ′

αβ , defined in equation
(E12), which depend on r, RS , and R [the variance remains isotropic
because the variance of q̄ij is still isotropic, see e.g. equation (71)
and Appendix E].

The relevant conditional distributions are displayed in Figs 9–11.
The plots show that haloes in the outflowing direction (in which
the filament will form) tend to be more massive, with larger ac-
cretion rates and forming later than haloes at the same distance
from the saddle point, but located in the infalling direction (which
will become a void). This trend strengthens as the distance from
the centre increases. The saddle point is thus a minimum of the
expected mass and accretion rate of haloes, and a maximum of for-
mation redshift, as one moves along the filament. The opposite is
true as one moves perpendicularly to it. This behaviour is consis-
tent with the expectation that filamentary haloes have on average
lower mass and accretion rate, and tend to form earlier, than haloes
in peaks.

Figure 10. PDF of α at upcrossing given the smoothing scale and the
saddle point in the x (void, in red) and z (filament, in blue) directions at
distance r = 10 Mpc h−1 (solid lines) and r = 5 Mpc h−1 (dashed lines)
(upper panel) compared to the PDF without the saddle point (lower panel).
The saddle point is defined using the values of Table D1. The PDF with
no saddle point is shown in solid black and the PDF at the saddle point in
dashed black. In the filament, the PDF is boosted at its high end: haloes
accrete more. The opposite trend is seen in the void.

Figure 11. PDF of Df at upcrossing given the smoothing scale and the
saddle point in the x (void, in red) and z (filament, in blue) directions at
distance r = 10 Mpc h−1 (solid lines) and r = 5 Mpc h−1 (dashed lines) and
without saddle point (black) compared to the PDF at the saddle point. The
saddle point is defined using the values of Table D1. In the filament, the
PDF is boosted at the late formation end: haloes form later. The opposite
trend is seen in the void.
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How does the cosmic web impact assembly bias? 4891

Figure 12. Top: plot of the typical mass M�, middle: the typical specific accretion rates Ṁ/M , and bottom: the formation redshifts z� for different masses as
a function of the distance to the saddle point, left: in the direction of the void and right: in the direction of the filament. The colour of each line encodes the
smoothing scale (hence the mass), from dark to light M = 1011 M
 h−1 (R = 0.8 Mpc h−1) to M = 1013 M
 h−1 (R = 3.7 Mpc h−1) logarithmically spaced;
the dashed line is evaluated at M = M�. Labels are given in unit of 1011 M
 h−1. The saddle point has been defined using the values given in Table D1. More
massive haloes accrete more and form later than less massive ones. At the typical mass, the space variation of the specific accretion rate and the formation
redshift is smaller in the direction of the filament than in the direction of the void.

To better quantify these trends let us define the tidally modified
characteristic quantities

M�(r) = M(σ�(r)) , (80)

Ṁ�(r, M) = −d log D

dz

dM

d log σ
α�(r, σ ) , (81)

z�(r, M) = z(D�(r)) 	 1/D�(r, σ ) − 1 , (82)

giving the typical mass and the accretion rate and formation time at
given mass as a function of the position with respect to the centre
of the saddle.

The last approximation holds for haloes that assemble half of their
mass before z ∼ 2, since at early times D 	 (1 + z)−1. These typical
quantities are known functions of the position-dependent typical
values of the excursion set parameters σ�(r), α�(r, σ ), and D�(r, σ )
given by equations (57), (62), and (72), respectively. They gener-
alize the corresponding characteristic quantities obtained without
conditioning on the saddle, given by σ � = δc, and by the functions
α�(σ ) and D�(σ ) defined in equations (27) and (38).

Taylor expanding equation (57) in the anisotropy gives the first-
order angular variation of M� at fixed distance r from the saddle

�M�(r) = −15

2

δc ξ20(r)

|(dσ/dM)M� |
Q(r̂) , (83)

where ξ 20(r) is the radial part of the shear-height correlation function
at finite separation. Since ξ 20 is positive, this variation is largest
when r is parallel to the eigenvector with the smallest eigenvalue.
That is, in the direction of positive outflow (with negative Q =
r̂i q̄ij r̂j ), along which a filament will form. Thus, in filaments haloes
tend to be more massive, and haloes of large mass are more likely.

The full dependence of the characteristic mass M� as a function
of the position with respect to the saddle point of the potential is
shown in Fig. 12.

Similarly, like equations (63) and (74) for α� and D�, the first-
order angular variations of Ṁ� and z� are

�Ṁ�(r, M) = −d log D

dz

dM

d log σ

α2
� |q̄=0

νc

×15

2

[
ξ ′

20 − σ − ξ ′
I ξI

σ 2 − ξ 2
ξ20

]
Q(r̂) , (84)

�z�(r, M) =
∣∣∣∣∣

dz

dD

∣∣∣∣∣
D2

� |q̄=0

δc

15

2

∣∣∣∣∣
dσ

dM

∣∣∣∣∣
M

2
ξ20(r)Q(r̂) . (85)

These results confirm that in the direction of the filament, haloes
have on average larger mass accretion rates and smaller formation
redshifts than haloes of the same mass that form at the same distance
from the saddle point, but in the direction perpendicular to it. The
space variation becomes larger with growing halo mass and fixed
RS , as shown in Fig. 12, because the correlations become stronger
as the difference between the two scales gets smaller. Conversely,
for smaller masses haloes have on average smaller accretion rates
(like in the unconditional case, see Fig. 3) and later formation times,
but also less prominent space variations.

Note that two estimators of delayed mass assembly, �Ṁ� and �z�

do not rely on the same property of the excursion set trajectory and
do not lead to the same physical interpretation. In particular, when
extending the implication of delayed mass assembly to galaxies
and their induced feedback, one should distinguish between the
instantaneous accretion rate, and the integrated half-mass time as

MNRAS 476, 4877–4906 (2018)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/476/4/4877/4826040 by C
N

R
S user on 08 M

arch 2019
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they trace different components of the excursion hence different
epochs.

5.3 Expected differences between the isocontours

In order to investigate whether the assembly bias generated by the
cosmic web and described in this work is purely an effect due to
the local density (itself driven by the presence of the filament),
this section studies the difference between the isocontours of the
local density field and any other statistics (mass accretion rate for
instance). The latter will be shown not to follow exactly the isoden-
sity surfaces, but to intersect each other. This misalignment may
only appear if spherical symmetry is broken (all isocontours would
otherwise be spherical). However, it also shows that halo properties
do not depend only on the local density, indicating that the role of
the anisotropy of the nearby filament in the formation of structures
goes beyond the simple creation of an anisotropic density field.

The normals to the level surfaces of Ṁ�(r,M), M�(r), z�(r,M),
and 〈ρ〉(r) ≡ ρ̄(1 + 〈δ|S〉) scale like the gradients of these func-
tions. First note that any mixed product (or determinant) such as
∇Ṁ� · (∇M� × ∇〈ρ〉) will be null by symmetry; i.e. all gradients
are coplanar. This happens because the present theory focuses on
scalar quantities (mediated, in our case, by the excursion set density
and slope). In this context, all fields vary as a function of only two
variables, r and Q = r̂i q̄ij r̂j , hence the gradients of the fields will
all lie in the plane of the gradients of r and Q.9 Ultimately, if one
focuses on a given spherically symmetric peak, then Q vanishes, so
all gradients are proportional to each other and radial. Let us now
quantify the misalignments between two normals within that plane.
In spherical coordinates, the Nabla operator reads

∇ =
(

∂

∂r
,

1

r

∂

∂θ
,

1

r sin θ

∂

∂φ

)
≡
(

∂

∂r
,

1

r
∇̃
)

, (86)

so that for instance

∇Ṁ� ∝
(

∂Ṁ�

∂r
,

1

r

∂Ṁ�

∂Q ∇̃Q
)

,

where equation (46) implies that

∇̃Q =
(

sin 2θ
(
q̄3 cos2 φ + q̄2 sin2 φ − q̄1

)

sin θ (q̄2 − q̄3) sin 2φ

)
. (87)

Hence, for instance the cross product ∇M� × ∇Ṁ� reads
(

∂Ṁ�

∂r

∂M�

∂Q − ∂Ṁ�

∂Q
∂M�

∂r

)
∇̃Q . (88)

It follows that the two normals are not aligned, since the pre-factor
in equation (88) does not vanish: the fields are explicit distinct
and independent functions of both r and Q. The origin of the mis-
alignment lies in the relative amplitude of the radial and ‘polar’
derivatives (with respect to Q) of the field. For instance, even at
linear order in the anisotropy, since �Ṁ� in equation (84) has a
radial dependence in ξ ′

20 as a pre-factor to Q, whereas M� has only
ξ 20 as a pre-factor in equation (83), the bracket in equation (88) will
involve the Wronskian ξ ′

20∂ξ20/∂r − ξ20∂ξ ′
20/∂r which is non-zero

9 In order to break this degeneracy, one would need to look at the statistics
of higher spin quantities. For instance, the angular momentum of the halo
would depend on the spin-one coupling εijk r̂j q̄kl r̂l , with εijk the totally anti-
symmetric tensor (see e.g. Codis, Pichon & Pogosyan 2015), or to consider a
barrier that depends on the local shear at r filtered on scale R (e.g. Castorina
et al. 2016), like e.g. δc + βσ q̄ij (r, R)q̄ij (r, R) with some constant β.

because ξ 20 and its derivative with respect to filtering are linearly
independent. This misalignment does not hold for M� and 〈ρ〉 at
linear order, since �M� (equation 83) and 〈ρ〉 (equation 45) are
proportional in this limit. Yet it does arises when accounting for
the fact that the contribution to the conditional variance in M� also
depends additively on ξ 2(r) in equation (57) [with ξ 2(r) given by
equation (52) as a function of the finite separation correlation func-
tions ξαβ computed in equation (E12) for a given underlying power
spectrum]. Indeed, one should keep in mind that the saddle condi-
tion not only shifts the mean of the observables but also changes
their variances. Since the critical ‘star’ observables (M�, z�, etc.)
involve rarity, hence ratio of the shifted means to their variances
(e.g. entering equation 60), both impact the corresponding normals.
It is therefore a clear specific prediction of conditional excursion
set theory relying on upcrossing that the level sets of density, mass
density, and accretion rates are distinct.

Physically, the distinct contours could correspond to an excess
of bluer or reddened galactic hosts at fixed mass along preferred
directions depending on how feedback translate inflow into colour
as a function of redshift. Indeed feedback from active galactic nu-
clei (AGNs), triggered during merger events, regulates gas inflows
(Dubois et al. 2016), which in turn impacts star formation: when
it is active, at intermediate and low redshift, it may reverse the
naive expectation (see Appendix H). This would be in agreement
with the recent excess transverse gradients (at fixed mass and den-
sity) measured both in cosmological hydrodynamical simulation
Horizon-AGN (Dubois et al. 2014) and those observed in spectro-
scopic (e.g. VIPERS or GAMA, Malavasi et al. 2017; Kraljic et al.
2018) and photometric (e.g. COSMOS, Laigle et al. 2017) surveys:
bluer central galaxies at high redshifts when AGN feedback is not
efficient and redder central galaxies at lower redshift.

Our predictions are formulated in the initial conditions. How-
ever, one should take into account a Zel’dovich boost to get the
observable contours of the quantities derived in the paper. Regions
that will collapse into a filament are expected to have a convergent
Zel’dovich flow in the plane perpendicular to the filament and a
diverging flow in the filament’s direction. As such, the contours of
the different quantities will be advected along with the flow and will
become more and more parallel along the filament. This effect is
clearly seen in Fig. 13 which shows the contours of both the typical
density and the accretion rate10 (bottom panel) after the Zel’dovich
boost (having chosen the amplitude of the boost corresponding to
the formation of the filamentary structure). The contours are com-
pressed towards the filament and become more and more parallel.
Hence, the stronger the non-linearity, the more parallel the con-
tours. This is consistent with the findings of Kraljic et al. (2018),
whose colour and (stellar) mass gradients follow the underlying
mean density, when the density is averaged on sufficiently small
scales.

6 A SSEMBLY BIAS

The bias of DM haloes (see Desjacques, Jeong & Schmidt 2016,
for a recent review) encodes the response of the mass function to
variations of the matter density field. In particular, the Lagrangian
bias function b1 describes the linear response to variations of the
initial matter density field. For Gaussian initial conditions, the

10 Interactive versions can be found online https://cphyc.github.io/
research/assembly/with boost.html and https://cphyc.github.io/research/
assembly/no boost.html.
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Figure 13. Level surfaces of the typical density ρ� (light to dark blue) and
of the accretion rate α� (light to dark red) with no Zel’dovich boost (upper
panel and with a Zel’dovich boost (lower panel). The saddle is represented
by a ball. Once boosted, the structure of the filament in the z-direction is
clearly seen and the isocontours align one with each other.

correlation of the halo overdensity with an infinite wavelength mat-
ter overdensity δ0 is then (Fry & Gaztanaga 1993),

〈δ0δh(r, M)〉 =
∫

dr1〈δ0δm(r1)〉b1(r, r1, M) , (89)

where formally b1(r, r1, M) ≡ 〈∂[δh(r, M)]/∂[δm(r1)]〉 is the ex-
pectation value of the functional derivative of the local halo over-
density with respect to the (unsmoothed) matter density field δm(r)
(Bernardeau, Crocce & Scoccimarro 2008). In the standard setup,
because of translational invariance (which does not hold here), it is
only a function of the separation |r − r1|.

The dependence of the halo field on the matter density field
can be parametrized with a potentially infinite number of variables

constructed in terms of the matter density field, evaluated at the same
point. With a simple chain rule applied to the functional derivative,
equation (89) can be written as the sum of the cross-correlation of
δ0 with each variable, times the expectation value of the ordinary
partial derivative of the halo point process with respect to the same
variable. The latter are the so-called bias coefficients, and are math-
ematically equivalent to ordinary partial derivatives of the mass
function with respect to the expectation value of each variable.

The most important of these variables is usually assumed to be
the density δ(r, R) filtered on the mass scale of the haloes, which
mediates the response to the variation of an infinite wavelength
mode of the density field, the so-called large-scale bias. Because
the smoothed density correlates with the k = 0 mode of the density
field, this returns the peak-background split bias. Its bias coefficient
is also equal to (minus) the derivative with respect to δc.

Excursion sets make the ansatz that the next variable that mat-
ters is the slope δ′(r, R) (Musso, Paranjape & Sheth 2012). In the
simplest excursion set models with correlated steps and a constant
density threshold, trajectories crossing δc with steeper slopes have
a lower mean density on larger scales (Zentner 2007). They are thus
unavoidably associated with less strongly clustered haloes. This
prediction is in agreement with N-body simulations for large-mass
haloes, but the trend is known to invert for smaller masses (Sheth
& Tormen 2004; Gao et al. 2005; Wechsler et al. 2006; Dalal et al.
2008). Although more sophisticated models are certainly needed in
order to account for the dynamics of gravitational collapse, we will
see that the presence of a saddle point contributes to explaining this
inversion.

None of the concepts outlined above changes in the presence of
a saddle point: the bias coefficients are derivatives of dn/dM, that
is of the upcrossing probability through equation (75). Because we
are interested in the bias of the joint saddle-halo system, we must
differentiate the joint probability fup(σ ; r)p(S), rather than just
fup(σ ; r), and divide by the same afterwards. Of course, the result
picks up a dependence on the position within the frame of the saddle.
The relevant uncorrelated variables are δ − 〈δ|S〉, δ′ − 〈δ′|ν,S〉,
νS , r̂igi = 0, and Q = r̂i q̄ij r̂j . Differentiating equation (49), the
bias coefficients of the halo are

b10(M; r) ≡ ∂ log
[
fup(σ ; r)

]

∂〈δ|S〉 = δc − ξISI

σ 2 − ξ 2
, (90)

b01(M; r) ≡ ∂ log
[
fup(σ ; r)

]

∂〈δ′|νc,S〉 = 1 + erf(XS (r)/
√

2)

2μS (r)F (XS (r))
, (91)

which without saddle reduce to (a linear combination of) those
defined by Musso et al. (2012). The coefficients of the saddle are

b
(S)
100 ≡ − ∂

∂δs
log pG(S) = νS

σS
, (92)

b
(S)
010 ≡ − ∂

∂(r̂igi)
log pG(S)

∣∣∣∣∣
gi=0

= 0 , (93)

b
(S)
001 ≡ − ∂

∂Q log pG(S) = 15

2

3Q
2

. (94)

A constant δ0 does not correlate with q̄ij , since there is no zero
mode of the anisotropy. One can see this explicitly by noting that
ξ20(R0, RS , r) → 0 as R0 → ∞. The only coefficients that survive
in the cross-correlation with δ0 are thus b10, b01 and b

(S)
100, so that

equation (89) becomes

〈δ0δh(r, M)〉 = b
(S)
100〈δ0δs〉 + b10Cov (δ0, δ|S)

+ b01Cov
(
δ0, δ

′|νc,S
)
. (95)
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Similarly, in this limit δ0 does not correlate with gi either, while
〈δ0δ〉 becomes independent of R. Thus, 〈δ0δ〉 	 〈δ0δs〉 and 〈δ0δ

′〉 	
0. Hence,

〈δ0δh〉
〈δ0νS〉 	 νS + δc − ξISI

σ 2 − ξ 2
(σs − ξ00)

−b01

[
ξ ′

00 + σ − ξ ′
I ξI

σ 2 − ξ 2
(σs − ξ00)

]
. (96)

Setting νS = ξαβ = ξ ′
αβ = 0 recovers Musso et al.’s (2012) results.

The anisotropic effect of the saddle is easier to understand looking
at the sign of the terms in the round and square brackets, correspond-
ing to Cov (δ0, δ|S) and −Cov

(
δ0, δ

′|νc,S
)

respectively. One can
check that for R = 1 Mpc h−1 and RS = 10˜Mpc h−1 both terms
are negative near r = 0, but become positive at r 	 0.75RS . This
separation marks an inversion of the trend of the bias with νc,S ,
the parameter measuring how rare haloes are given the saddle en-
vironment. Far from the saddle, haloes with higher νc,S are more
biased, which recovers the standard behaviour since νc,S → νc as r
→ ∞. However, as r/RS � 0.75, the trend inverts and haloes with
higher νc,S become less biased. Therefore, one expects that at fixed
mass and distance from the saddle-point haloes in the direction of
the filament are less biased far from the saddle, but become more
biased near the saddle point. The upper panel of Fig. 14, displaying
the exact result of equation (96), confirms these trends and their
inversion at r 	 0.75RS . The height of the curves at r = 0 depends
on the chosen value for νS , but the inversion at r 	 0.75RS and the
behaviour at large r do not. Fig. 14 also shows that a saddle point
of the potential need not be a saddle point of the bias (in the present
case, it is in fact a maximum).

The inversion can be interpreted in terms of excursion sets. Near
the saddle, fixing νS at r = 0 puts a constraint on the trajectories
at r that becomes more and more stringent as the separation gets
small. At r = 0, the value of the trajectory at RS is completely
fixed. Therefore, trajectories constrained to have the same height
at both RS and R, but lower 〈δ|S〉 at R, will tend to drift towards
lower values between RS and R, and thus towards higher values for
R0 � RS . This effect vanishes far enough from the saddle point,
since the constraint on the density at RS becomes looser as the
conditional variance grows. Hence, trajectories with lower 〈δ|S〉
at R will remain lower all the way to R0. Note however that inter-
preting these trends in terms of clustering is not straightforward,
because the variations happen on a scale RS � R0 (they are thus
an explicit source of scale-dependent bias). The most appropriate
way to understand the variations of clustering strength is looking
at the position dependence of dn/dM, which is predicted explicitly
through fup(σ ; r) in equation (49).

When one bins haloes also by mass and accretion rate, the bias is
given by the response of the mass function at fixed accretion rate.
That is, to get the bias coefficients one should now differentiate the
joint probability fup(σ, α; r)pG(S) with respect to mean values of
the different variables, with fup(σ, α; r) given by equation (59). The
only bias coefficient that changes is b01, the derivative with respect
to 〈δ′|νc,S〉, which becomes

b01(M, Ṁ, r) ≡ ∂ log
[
fup(σ, α; r)

]

∂〈δ′|νc,S〉 = νc/α − μS (r)

Var (δ′|νc,S)
, (97)

with α defined by equation (20). Inserting this expression in equa-
tion (96), returns the predicted large-scale bias at fixed accretion
rate. Notice that in this simple model, the coefficient multiplying
the 1/α term is purely radial. The asymptotic behaviour of the bias
at small accretion rates will then always be divergent and isotropic,

Figure 14. Upper panel: large-scale Lagrangian bias as a function of the
distance from the saddle point, along the filament and perpendicularly to it,
for haloes of mass M = 2.0 × 1011 M
 h−1 (R = 1 Mpc h−1). Haloes in
the perpendicular direction are less biased at small separation, but the trend
inverts at r/RS 	 0.75. Lower panel: bias as a function of accretion rate,
for different values of the separation r/RS in the direction of the filament.
For haloes closer to the centre, bias decreases with accretion rate, but the
trend inverts at r/RS 	 0.75. In the perpendicular direction, the effect is
30 per cent smaller, but the relative amplitudes and the inversion point do not
change appreciably. As discussed in the main text, both inversions depend
on the fact that δ − 〈δ|S〉 and δ0 correlate at large distance from the saddle,
but they anticorrelate at small separation.

with a sign depending on that of the square bracket in equation (96).
If this term is positive, the bias decreases as α gets smaller, and vice
versa. Clearly, the value of α for which the divergent behaviour
becomes dominant depends on the size of all the other terms, and
is therefore anisotropic.

As one can see from Fig. 14, the sign of the small-α divergence
depends on the distance from the saddle point. It is negative for
r � 0.75RS , but it reverses closer to the centre. This effect is again
a consequence of the constraint on the excursion set trajectories at
RS . Trajectories with steeper slopes at R will sink to lower values
between RS and R, then turn upwards to pass through δ(RS ), and
reach higher values for R0 � RS . The haloes they are associated
with are thus more biased. This trend is represented in Fig. 15. This
inversion effect is lost as the separation increases, and the constraint
on the density at RS becomes loose, and trajectories that reach R
with steeper slopes are likely to have low (or even negative) values
at very large scales. These haloes are thus less biased, or even
antibiased.
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How does the cosmic web impact assembly bias? 4895

Figure 15. Plot of the mean of density given the saddle point, the upcrossing
condition and the slope at R for different slopes. The saddle point was defined
using the values of Table D1. The details of the calculation are provided in
Appendix B. For steep slopes (small accretion rate), the mean of the density
overshoots at small σ , resulting in a larger bias.

It follows that the bias of haloes far from structures grows with
accretion rate (the usual behaviour expected from excursion sets),
while the trend inverts for haloes near the centre of the filament.
Because typical mass of haloes also depends on the position along
the filament, with haloes towards the nodes being more massive, the
different curves of Fig. 14 correlate with haloes of different mass.
This effect explains why low-mass haloes with small accretion rate
(or early formation time, or high concentration) are more biased,
when measuring halo bias as a function of mass and accretion rate
(or formation time or concentration, which strictly correlate with
accretion rate), without knowledge of the position in the cosmic web.
Conversely, the high-mass ones are less biased (Sheth & Tormen
2004; Gao et al. 2005; Wechsler et al. 2006; Dalal et al. 2008;
Faltenbacher & White 2010; Paranjape & Padmanabhan 2017). It
is also intriguing to compare this result with the measurements by
Lazeyras et al. (2017, , namely their fig. 7) which show the same
trends (although their masses are not small enough to clearly see
the inversion).

Note in closing that the conditional bias theory presented here
does not capture changes in accretion rate and formation time pre-
sented in Sections 4.3 and 4.4.

7 C O N C L U S I O N A N D D I S C U S S I O N

7.1 Conclusion

With the advent of modern surveys, assembly bias has become the
focus of renewed interest as a process which could explain some of
the diversity of galactic morphology and clustering at fixed mass.
It is also investigated as a mean to mitigate intrinsic alignments in
weak-lensing survey such as Euclid or LSST. Both observations and
simulations have hinted that the large-scale anisotropy of the cosmic
web could be responsible for stalling and quenching. This paper
investigated this aspect in Lagrangian space within the framework of
excursion set theory. As a measure of infall, we computed quantities
related to the slope of the contrast conditioned to the relative position
of the collapsing halo with respect to a critical point of the large-
scale field. We focused here on mass accretion rate and half-mass
redshift and found that their expectation vary with the orientation
and distance from saddle points, demonstrating that assembly bias

is indeed influenced by the geometry of the tides imposed by the
cosmic web.

More specifically, we derived the Press–Schechter typical mass,
typical accretion rate, and formation time of dark haloes in the
vicinity of cosmic saddles by means of an extension of excursion
set theory accounting for the effect of their large-scale tides. Our
principal findings are the following: we have computed the (i) up-
crossing PDF for halo mass, accretion rate, and formation time; they
are given by equations (14), (23), and (32), and their constrained-
by-saddles counterparts equations (49), (61), and (68). These PDFs
allowed us to identify the (ii) typical halo mass, and typical ac-
cretion rate and formation time at given mass as functions of the
position within the frame of the saddle via equations (83)–(85).
All quantities are expressed as a function of the geometry of the
saddle for an arbitrary cosmology encoded in the underlying power
spectrum via the correlations ξαβ and ξ ′

αβ given by equations (E11)
and (E12). In turn, this has allowed us to compute and explain the
corresponding (iii) distinct gradients for the three typical quanti-
ties and for the local mean density (Section 5.3). The misalignment
of the gradients, defined as the normals to the their isosurfaces,
arises because the saddle condition is anisotropic and because it
does not only shift the local mean density and the mean density
profile (the excursion set slope) but also their variances, affecting
different observables in different way. Finally, we have presented
(iv) an extension of classical large-scale bias theory to account for
the saddle (Section 6).

Our simple conditional excursion set model subject to filamentary
tides makes intuitive predictions in agreement with the trends found
in N-body simulations: haloes in filaments are less massive than
haloes in nodes, and at equal mass they have earlier formation
times and smaller accretion rates today. The same hierarchy exists
for haloes in walls with respect to filaments. For the configuration
we examined, the effect is stronger as one moves perpendicularly
to the filament. The typical mass changes by a factor of 5 along
the filament, and by two orders of magnitude perpendicularly. The
relative variation of accretion rates and formation times is of about
5–10 per cent along the filament, and of about 20–30 per cent in the
perpendicular direction, for haloes of 1011 M
 h−1. Furthermore,
our model predicts that at fixed halo mass, the trend of the large-scale
bias with accretion rate depends on the distance from the centre of
the filament. Far from the centre, the large-scale bias grows with
accretion rate (which is the naive expectation from excursion sets),
while near the centre the trend inverts and haloes with smaller
accretion rates become more biased. Since haloes near the centre
are also on average less massive, this effect should contribute to
explaining why the trend of bias with accretion rate (or formation
time) inverts at masses much smaller than the typical mass.

These findings conflict with the simplistic assumption that the
properties of galaxies of a given mass are uniquely determined by
the density of the environment. The presence of distinct space gradi-
ents for the different typical quantities is also part and parcel of the
conditional excursion set theory, simply because the statistics of the
excursion set proxies for halo mass, accretion rate, and formation
time (the first-crossing scale and slope, and the height at the scale
corresponding to M/2) are different functions of the position with
respect to the saddle point. They have thus different level surfaces.
At the technical level, the contours depend on the presence of the
conditional variance of δ(r), besides its conditional mean, and of
the correlation functions of δ′(r). At finite separation, the traceless
shear of the large-scale environment modifies in an anisotropic way
the statistics of the local mean density δ(r) (and of its derivative δ′(r)
with respect to scale). The variations are modulated by Q = r̂i q̄ij r̂j ,
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Figure 16. Scheme of the intensity of the accretion rate at different locations
near a filament-type saddle for different final halo masses. The darkness
of the colour encodes the intensity of the accretion rate (darker is more
accretion). At fixed mass, the accretion rate increases from voids to saddle
points and from saddle points to nodes (along dotted line which marks the
filament’s direction). At a given location, the accretion rate increases with
mass.

i.e. the relative orientation of the separation vector in the frame set
by the tidal tensor of the saddle. This angular modulation enters
different quantities with different radial weights, which results in
different angular variations of the local statistics of density, mass,
and accretion rate/formation time. It provides a supplementary vec-
tor space, ∇̃Q, beyond the radial direction over which to project
the gradients, whose statistical weight depend on each specific ob-
servable. These quantities have thus different isosurfaces from each
other and from the local mean density, a genuine signature of the
traceless part of the tidal tensor. The qualitative differences in terms
of mass accretion rate and galactic colour is sketched in Fig. 16.

7.2 Discussion and perspectives

In contrast to the findings of Alonso et al. (2015), Tramonte et al.
(2017), and von Braun-Bates et al. (2017), we focused our attention
on variations of mass accretion rates with respect to the cosmic web
rather than mass functions. We have found that, even in a very simple
model like excursion sets, halo properties are indeed affected by the
anisotropic tides of the environment (involving the traceless part of
the tidal tensor), and not just by its density (involving the trace of the
tidal tensor). This effect cannot be explained by a simple rescaling
of the local mean density (the average density in a sphere of radius
of the order of the Lagrangian radius, centred around the halo).
Our predictions are in qualitative agreement with the observational
results of Kraljic et al. (2018), who detect a misalignment between
the isocontours of mass, secondary halo property (type/colour in
their case), and local mean density averaged on sufficiently large
scales. This misalignment tends to disappear as the scale of the
smoothing becomes small, and the signal is increasingly driven by
the density alone: this can be interpreted as a consequence of the
dynamical stretching of all contours as the filament forms.

Although the excursion set approach is rather crude, and addi-
tional constraints (e.g. peaks) would be needed to pinpoint the exact
location of halo formation in the initial conditions, we argued that

the effect we are investigating does not strongly depend on the
presence of these additional constraints. The underlying reason is
that the extra constraints usually involve vector or tensor quantities
evaluated at the same location r as the excursion set sphere, which
do not directly correlate with the scalars considered here (they only
do so through their correlation with the saddle point). They may
add polynomial corrections to the conditional distributions, but will
not strongly affect the exponential cut-offs on which we built our
analysis. Our formalism may thus not predict exactly whether a
halo will form (hence, the mass function), but it can soundly de-
scribe the secondary properties and the assembly bias of haloes that
actually form. A more careful treatment would change our results
only at the quantitative level. For this reason, we chose to prefer
the simplicity of the simple excursion set approach. Furthermore,
in order to describe the cosmic web, we focused on saddle points of
the initial gravitational potential, rather than of the density field, as
these are more suitable to trace the dynamical impact of filamentary
structures in connection to the spherical collapse model.

The present Lagrangian formalism only aims at describing the be-
haviour of the central galaxy: it cannot claim to capture the strongly
non-linear process of dynamical friction of subclumps within dark
haloes, nor strong deviations from spherical collapse. We refer to
Hahn et al. (2009) which captures the effect on satellite galaxies, and
to Ludlow et al. (2014), Castorina et al. (2016), and Borzyszkowski
et al. (2016) which study the effect of the local shear on haloes
forming in filamentary structures. Incorporating these effects would
require adopting a threshold for collapse that depends on the local
shear, as discussed in the Introduction. Such a barrier would not
pose a conceptual problem to our treatment;11 technically, however
it requires two extra integrations (over the amplitude of the local
shear and its derivative with respect to scale), and cannot be done
analytically. The shear-dependent part of the critical density (and
its derivative) would correlate with the shear of the saddle at r = 0,
and introduce an additional anisotropic effect on top of the change
of mean values and variances of density and slope we accounted
for. Evaluating this effect will be the topic of future investigation.

Our analysis demonstrated that the large-scale tidal field alone
can induce specific accretion gradients, distinct from mass and den-
sity ones. One would now like to translate those distinct DM gradi-
ents into colour and specific star formation rate (SFR) gradients. At
high redshift, the stronger the accretion, the bluer the central galaxy.
Conversely at low redshift, one can expect that the stronger the ac-
cretion, the stronger the AGN feedback, the stronger the quenching
of the central. Should this scaling hold true, the net effect in terms
of gradients would be that colour gradients differ from mass and
density ones. The transition between these two regimes (and in gen-
eral, the inclusion of baryonic effects) is beyond the scope of this
paper, but see Appendix H for a brief discussion.

Beyond the DM-driven processes described in this paper, differ-
ent explanations have been recently put forward to explain filamen-
tary colour gradients. On the one hand, it has been argued (Aragon-
Calvo, Neyrinck & Silk 2016) that the large-scale turbulent flow
within filaments may explain the environment dependence in ob-
served physical properties. Conversely, the vorticity of gas inflow
within filaments (Laigle et al. 2015) may be prevalent in feeding
galactic discs coherently (Pichon et al. 2011; Stewart et al. 2011).
Both processes will have distinct signatures in terms of the effi-
ciency and stochasticity of star formation. A mixture of both may

11 The details of the impact on the present derivation are given in
Appendix G.
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in fact be taking place, given that the kinematic of the large-scale
flow is neither strictly coherent nor fully turbulent. Yet, even if
ram-pressure stripping in filaments operate as efficiently as in clus-
ters, it will remain that the anisotropy of the tides will also impact
the consistency of angular momentum advection, which is deemed
important at least for early-type galaxies. The amplitude of thermo-
dynamical processes depends on the equation of state of the gas and
on the amplitude of feedback which are not fully calibrated today.
Recall that shock heating, AGN and stellar feedback are driven by
cold gas infall, which in turn is set by gravity (as the dominant
dynamical force). Since gravity has a direct effect through its tides,
unless one can convincingly argue that its direct impact is negligible
on galactic scales, it should be taken into account.

Codis et al. (2015), following a formally related route, investi-
gated the orientation of the spin of dark haloes in relation to their
position with respect to the saddle points of the (density) cosmic web
(see also Wang & Kang 2018, for a slightly different approach). To-
gether with their predictions on spin orientation, this work could be
extended to model galaxy colours based on both spin and mass ac-
cretion. It could also guide models aiming at mitigating the effect of
intrinsic alignments (Joachimi et al. 2011) impacting weak-lensing
studies, while relying on colour gradients. More generally, galactic
evolution as captured by semi-analytical models will undoubtedly
gain from a joint description of involving both mass and spin acqui-
sition as relevant dynamical ingredients. Indeed, it has been recently
shown in hydrodynamical simulation (e.g. Zavala et al. 2016) that
the assembly of the inner DM halo and its history of specific angular
momentum loss is correlated to the morphology of galaxies today.
One should attempt to explain the observed diversity at a given
mass driven by anisotropic large-scale tides, which will impact gas
inflow towards galaxies, hence their properties. An improved model
for galaxy properties should eventually explicitly integrate the ge-
ometry of the large environment (following, e.g. Hanami 2001) and
quantify the impact of its anisotropy on galactic mass assembly
history.

Thanks to significant observational, numerical, and theoretical
advances, the subtle connection between the cosmic web and galac-
tic evolution is on the verge of being understood.
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A P P E N D I X A : D E F I N I T I O N S A N D N OTAT I O N S

Table A1 presents all the definitions introduced in the paper.
Table 1 gives also the motivation behind the choice of variables.
The following conventions is used throughout:

(i) unless stated otherwise, all the quantities evaluated at (halo)
scale R have their dependence on R omitted (e.g. σ = σ (R));

(ii) the quantities that have a radial dependence are evaluated at
a distance r when the radius is omitted. Sometimes, the full form is
used to emphasize the dependence on this variable;

(iii) unless stated otherwise, the quantities are evaluated at z = 0
and D(z) = 1 (e.g. δc = 1.686);

(iv) a prime denotes a derivative with respect to σ of the excursion
set (e.g. δ′ = dδ/dσ );

(v) variables carrying a hat have unit norm (e.g. |r̂| = 1), matrices
carrying an overbar are traceless (e.g. tr(q̄ij ) = 0);

(vi) the Einstein’s convention on repeated indexes is used
throughout, except in Appendix F2.

APPENDI X B: VALI DATION W I TH G RFS

Let us first compare the prediction of Section 4 to statistics derived
from realization of GRF, while imposing a saddle-point condition.
The values used at the saddle point are reported in Table D1. We
further imposed the saddle point’s eigenframe to coincide with the
x, y, z frame, which in practice has been done by imposing q̄ij to
be diagonal. We have used two different methods to validate our
results, by generating random density cubes (Appendix B1) and by
computing the statistics of a constrained field (Appendix B2).

B1 Validation for σ�

The procedure is the following: (i) 4000 cubes of size (128)3 and
width Lbox = 200 Mpc h−1 centred on a saddle point were gen-
erated following a �CDM power spectrum; (ii) each cube has
been smoothed using a Top-Hat filter at 25 different scales rang-
ing from 0.5 to 20 Mpc h−1; (iii) for each point of each cube, the
first-crossing point σ first was computed; and (iv) the 4000 realiza-
tions were stacked to get a distribution of σ first and to compute
the median value. It is worth noting that the value of �(σ (R)) in
the GRF is not the same as in theory. This is a well-known effect
(see e.g. Sousbie et al. 2008) that arise on small scales due to the
finite resolution of the grid and on large scale because of the finite
size of the box. The � measured in a GRF is correct at scales ver-
ifying �L � R � Lbox, where �L is the grid spacing. In our case,
the largest smoothing scale is 20 Mpc h−1 = Lbox/10. However,
the smallest scale is comparable to the grid spacing. To attenuate
the effect of finite resolution, we have measured �(σ (R)) in the
GRF and used its value to compute the theoretical cumulative dis-
tribution function (CDF). The results of the measured CDF Ffirst and

Table A1. Summary of the variables used throughout the paper.

Variable Definition Comment

ρ̄m (2.8 × 1011 h2M
/Mpc3) × �M Uniform matter background density
R, M, M� M = 4/3πR3ρ̄m Smoothing scale, mass, and typical mass
δm (ρm − ρ̄m)/ρ̄m Linear matter overdensity
W(x) 3j1(x)/x Real-space Top-Hat filter (Fourier representation)

δ

∫
d3k

(2π)3
δm(k)W (kR)eik·r Linear matter overdensity smoothed at scale R, position r

σ 2 Var(δ) Variance of the overdensity at scale R
ν δ/σ Rescaled overdensity
δc, νc 1.68, δc/σ Critical overdensity
δ′, ν′ dδ/dσ , dν/dσ Slope of the E.S. trajectories
�−2 Var(δ′) − 1 = 〈(σν′)2〉 = Var

(
δ′|ν) Conditional variance of δ′ at fixed ν

RS , σS σS = σ (RS ) Smoothing scale used at the saddle point

R2
� (42)

∫
dk

P (k)

2π2

W 2(kRS )

σ 2
S

. Characteristic length-scale of the saddle (squared)

gi , qij , νS (41) and (43) Mean acceleration, tidal tensor, and overdensity at saddle (see Table D1 for their value)
q̄ij ,Q q̄ij = qij − νSδij /3, r̂i q̄ij r̂j Traceless tidal tensor and anisotropy ellipsoidal-hyperbolic coordinate
ξαβ , ξ ′

αβ (E11) and (E12); ξ ′
αβ = dξαβ/dσ Two-point correlation functions at separation r and scales R, RS

α, α� νc/[σ (ν′ − ν′
c)]; (27) and (62) Accretion rate and typical accretion rate

R1/2, σ 1/2 R/21/3, σ (R1/2) Half-mass radius and variance
δ1/2, ν1/2 δ(σ 1/2), δ1/2/σ 1/2 Overdensity at half-mass
Df, D� δc/δ1/2; (38) and (72) Formation time and typical formation time
νf δc/(σ 1/2Df) Density threshold at formation time
ω, ω′ (E14) and (E15); ω′ = dω/dσ Zero-distance correlation functions between scales R and R1/2

�, �′ (F27) and (F32); �′ = d�/dσ Zero-distance conditional covariance between scales R and R1/2 given the saddle point

δ0 δ(R0 � R) Large-scale overdensity
δh Local halo number density contrast
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Figure B1. Theoretical CDF of σ at upcrossing (bold lines) and numerical
CDF (steps) at first-crossing at four locations around the saddle point (the
distances are in Mpc h−1 in the x (void) and z (filament) directions). The CDF
have been normalized to share the same 50˜ per cent quantile (the horizontal
line). See the text for the details of the normalization.

Figure B2. Mean value of α using a numerical method (purple to yellow)
versus its theoretical value (grey contours). Both are normalized by the
theoretical value at the saddle point.

theoretical CDF Fup (with the measured �) at four different positions
are shown on Fig. B1. The measured CDFs have been normalized
so that F−1

first(0.5) = F−1
up (0.5): we impose that the CDF match at the

‘median’ (defined as the σ such that F(σ ) = 0.512). As shown on
Fig. B2, the abscissa of the peak of the PDF in the direction of
the void is around σ ≈ 2.7. As σ (Rmin) ≈ 3, it means that in the
direction of the void, the PDF is only sampled up to its peak. The
experimental CDF at such location is hence only probing less than
50˜ per cent of the distribution and the median is not reached. In this
case, we are normalizing the experimental CDF to have the same

12 This definition matches the classical one for distributions that have a
normalized CDF, which is not true for Fup.

value at the largest σ as the theoretical CDF. As shown on Fig. B1,
the experimental and theoretical CDFs start diverging at F � 0.5.
At larger σ , the upcrossing approximation used in the theory breaks
as more and more trajectories cross multiple time the barrier (they
are counted once for the first crossing and multiple times for up-
crossing). The orange and blue lines, in the direction of the filament
show this clearly as they diverge one from each other at large σ . As
σ � is a measure of the location of the peak of the PDF (which is
where the CDF is the steepest), it is sufficient that the experimental
and theoretical CDF match up to their flat end to have the same σ �

values.

B2 Validation for α� using constrained fields

A second check was implemented on the accretion rate as follows:
(i) for each location, the covariance matrix of ν, δ′, νS , q̄ij , gi was
computed at finite distance. These quantities all have a null mean;
(ii) the covariance matrix and the mean of ν, δ′ conditioned to the
value at the saddle point was computed using the values of Table D1;
(iii) the variance and mean of ν, δ′ were computed given ν = νc

and the saddle point; and (iv) a sample of 106 points were then
drawn from the distribution of δ′ > 0 (upcrossing). (v) The values
of α ∝ 1/δ′ were computed to obtain a sample of α. Each draw
was weighted by 1/α (the Jacobian of the transform from δ′ to α).
Finally, the numerical value of 〈α|σ,S〉 was estimated from the
samples and compared with the theoretical value. The results are
shown on Fig. B2 and are found to be in very good agreement.

We computed Fig. B3 by following steps (i)–(iii) at 10 Mpc h−1

in the direction of the filament (blue) and of the void (orange) and
plotting the mean and standard deviation of δ given the saddle and
the threshold. Fig. 15 was computed by following steps (i)–(iii) at
the saddle point (r = 0). An extra constrain on the value of δ′ was
then added to compute the different curves.

A P P E N D I X C : OT H E R C R I T I C A L P O I N T S

For the sake of generality, let us discuss here the conditional excur-
sion set expectations in the vicinity of other critical points of the
potential. At the technical level, all the formulae we derived in Sec-
tion 4 depend on the eigenvalues of qij with no a priori assumption on
their sign. The expressions will thus remain formally the same, with
all information about the environment being channelled through the
values of νS and r̂i q̄ij r̂j . For instance, the typical quantities M�, Ṁ�,
and z� parametrizing the PDFs of interest will be defined in exactly
the same way as in equations (80)–(82). However, their level curves
will have different profiles in different environments.

As physical intuition suggests, and equation (47) explicitly
shows, the dependence of the various halo statistics on the dis-
tance from the stationary point (whether the probability of a given
halo property increases or decreases with separation) is encoded
in the signs of the eigenvalues qi of qij. Besides filaments (hav-
ing two positive eigenvalues), one may thus be interested in wall-
type saddles (one positive eigenvalue), maxima (all negative), and
minima (all positive), corresponding to voids and nodes, respec-
tively. In general, q1 + q2 + q3 = νS parametrizes the mean varia-
tion with distance (averaged over the angles), whereas the trace-
less shear q̄ij is responsible for the angular variation at fixed
distance.

In all cases, however, for a given direction M�, Ṁ�, and −z� will
either all increase (if riqijrj < 0) or all decrease (if riqijrj > 0).
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Figure B3. Top: scheme of the mean value of the density in the direction
of a filament (red) and void (blue) close to a saddle point smoothed at
σ = σS with the constrain that δ(σ (R)) = δc. (1) The value of the density
imposed at the saddle point forces both mean densities to increase. (2) In
the direction of the filament, a large-scale overdensity, the mean density at
a given point increases quickly, but (3) the constrain δ(σ ) = δc prevents any
further increase at σ � σ (R), hence the slope δ′ is small at upcrossing. (4)
In the direction of the void, a large-scale underdensity, the mean density
at a given point cannot increase with σ . (5) At σ � σ (R), the upcrossing
constrain forces a sharp increase of the density to reach δ(R) = δc, hence
the slope is high at upcrossing. Bottom: a validation using constrained GRF
at a distance of 10 Mpc h−1 in the direction of the filament (blue) and of the
void (orange). See the text for the details.

Their increase will be fastest (or their decrease slowest) in the di-
rection of q̄3, the least negative eigenvalue, and slowest in that of
q̄1. The rationale of this behaviour will always be that an increase
of the conditional mean density will make it easier for excursion set
trajectories to reach the threshold. Upcrossing will happen prefer-
entially at smaller σ , corresponding to the formation of haloes of
bigger mass. At fixed mass (fixed crossing scale σ ), the crossing
will happen preferentially with shallower slopes, corresponding to
higher accretion rates and more recent formation (i.e. assembly of
half-mass).

C1 Walls

A wall will form in correspondence of a saddle point of the potential
filtered on scale RS , for which q1 < q2 < 0 < q3. This combina-
tion of eigenvalue signs generates collapse in one spatial direction
and expansion in the other two. As argued, a saddle point of the
potential induces a saddle point of the opposite type in M�, Ṁ�,
and −z�, which will increase along two space directions following
the increase of the mean density, and decrease along one. Since for
walls (like for filaments), the value of νS is likely to be smaller
than

√
tr(q̄2), they will tend to have an angular modulation larger

Figure C1. Isocontours in the x–z plane of the typical accretion rate α�

around a wall-type saddle point [at (0, 0)]. The saddle point is defined
using the values of Table D1. The profiles in the main direction of the
wall (z-direction) and of the void (x-direction) are plotted on the sides. The
smoothing scale is R = 1 Mpc h−1. The typical accretion rate is computed
using a �CDM power spectrum. Similarly to what happens in filaments,
haloes accrete more in the direction of the wall than in the direction of the
void.

than the radial angle-averaged variation. Walls are thus likely to be
highly anisotropic configurations also of the accretion rate and of
the formation time. This is illustrated for example in Fig. C1 for the
accretion rate. On average, νS will be smaller for a wall-type saddle
(which has two negative eigenvalues) than for a filament-type one.
Thus, haloes in walls tend to be less massive, and at fixed mass, they
tend to have smaller accretion rates and earlier assembly times.

C2 Voids

A void will eventually form (although not necessarily by z = 0)
when r = 0 is a local maximum of the potential filtered on scale
RS (from which matter flows away), for which q1 < q2 < q3 < 0.
The centre of the void is a minimum of M�, Ṁ�, and −z�. All
these quantities will gradually increase with the separation. As |νS |
may be large (in particular for a large, early-forming void), halo
statistics in voids may not show a large anisotropy relative to their
radial variation. However, because voids have the most negative νS ,
they are the environment with the least massive haloes, the smallest
accretion rates and the earliest formation times (at fixed mass).

C3 Nodes

Nodes form out of local minima of the gravitational potential, for
which 0 < q1 < q2 < q3 (corresponding to three directions of infall).
The centre of the node is thus a maximum of M�, Ṁ�, and −z�, all
of which decrease with radial separation. Like voids, large early-
forming nodes (whose density νS must reach νc when σS is very
small) are relatively less anisotropic, since the relative amplitude of
the angular variation induced by q̄ij is likely to be small compared
to the radial variation. Since νS is the largest for nodes, they host
the most massive haloes, and at fixed mass, those with the largest
accretion rates and the latest formation times.
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A P P E N D I X D : PD F O F S A D D L E S

This section presents the distribution of the eigenvalues of the
anisotropic (i.e traceless) part of the tidal tensor at critical points of
the potential field. By definition, a critical point is such that gi = 0
and its kind is given by the signature (the signs of the eigenvalues
of the hessian of the potential, qij): + + + for a peak, − + + for
a filament-type saddle point, − − + for a wall-type saddle point,
and − − − for a void. Because the anisotropic tidal tensor reads
q̄ij = qij − δij νS/3, the type of the critical point is then given by
the number of eigenvalues of q̄ij above −νS/3.

The distribution of the eigenvalues of the (normalized) tidal tensor
denoted q1 < q2 < q3 is described by the Doroshkevich formula
(Doroshkevich 1970; Pogosyan et al. 1998)

p(qi) = 675
√

5

8π
exp

[
15

2
I2 − 3I 2

1

]
(q3 − q1)(q3 − q2)(q2 − q1),

(D1)

where {In} denotes the rotational invariants which define the char-
acteristic polynomial of qij, namely its trace I1 = q1 + q2 + q3,
trace of the comatrix I2 = q1q2 + q2q3 + q1q3, and determinant
I3 = q1q2q3. Subject to a filament-type saddle-point constraint, this
PDF becomes

p(qi | − + +) = 540
√

5π

29
√

2 + 12
√

3
q1q2q3ϑ(q2)ϑ(−q1)p(qi), (D2)

after imposing the condition of a saddle | det qij |δD(gi)ϑ(q2)
ϑ( − q1) for which as the acceleration is decoupled from the tidal
tensor, only the condition on the sign of the eigenvalues and the
determinant contribute. From this PDF, it is straightforward to com-
pute the distribution of saddles of heights νS = q1 + q2 + q3

p(νS | − + +) = p+(νS )ϑ(νS ) + p−(νS )ϑ(−νS ), (D3)

with

p+(νS )

=
5
√

10πe− ν2
S
2
(
3νS − ν3

s

)
Erfc

(√
5νS

2
√

2

)
+ e− 9ν2

s
8
(
32 + 155ν2

s

)
(

29
√

2 + 12
√

3
)√

π
,

p−(νS )

=
5
√

10πe− ν2
S
2
(
3νS − ν3

s

)
Erfc

(
−√

5νS√
2

)
+ e−3ν2

s
(
32 − 10ν2

S
)

(29
√

2 + 12
√

3)
√

π
.

In particular, the height of filament-type saddles has mean and
standard deviation given by

〈νS |−++〉 = 250
(

3(29
√

2 + 12
√

3)
√

π
)−1

≈ 0.76,

Std (νS |−++) =
√

696
√

6 + 75π(10 − 3
√

6) − 2114

15
√

π
≈ 0.55.

For other types of critical points, a similar calculation can be
done. As expected, the heights of wall-type saddle points fol-
low the same distribution as −νS . Peak and void heights have

mean ±
√

2114 + 696
√

6/15
√

π ≈ ±2.3 and standard deviation√
75π(10 + 3

√
6) − (2114 + 696

√
6)/15

√
π ≈ 0.62.

This work picks a typical value for the filament-type saddle at
roughly 1σ from the mean νS = 1.2. For wall-type saddles, νS = 0
is chosen. The distribution of eigenvalues of the anisotropic tidal

tensor q̄i for a filament-type saddle point with a given positive13

height can then be easily obtained from equation (D2)

p(q̄1|νS ) =
15(3q̄1 + νS )

[
a1e− 4ν2

S
3 + 5

2 q̄1νS− 15q̄2
1

2 − a2e− ν2
S
2 − 45q̄2

1
8

]

16(29
√

2 + 12
√

3)
√

πP+(νS )
,

where q̄1 < −νS/3 and a1 and a2 are two polynomials of q̄1 and νS
given by

a1(q̄1, νS ) = 32 [5|νS − 6q̄1|(3q̄1 + νS ) + 12] ,

and

a2 = 6075q̄4
1 − 8100q̄3

1 νS + 900q̄2
1

(
3ν2

S − 4
) + 480q̄1νS

−160ν2
S + 384.

Similarly, the PDF of the intermediate and major eigenvalues are,
respectively, given by

p(q̄2|νS ) = 15(3q̄2 + νS )a1e− 11
12 ν2

S+ 5
4 q̄2νS−15q̄2

2 − 5
12 (νS+3q̄2)|νS−6q̄2|

16(29
√

2 + 12
√

3)
√

πP+(νS )

where q̄2 > −νS/3 and a1 = a1(q̄2, νS ), and

p(q̄3|νS ) =
15(3q̄3 + νS )

[
a1e− ν2

S
2 − 45q̄2

3
2 + ā1e− 4ν2

S
3 + 5

2 q̄3νS− 15q̄2
3

2

]

16(29
√

2 + 12
√

3)
√

πP+(νS )

where q̄3 > νS/6, having defined a1 = a1(q̄3, νS ) and ā1(q̄3, νS )
= −a1(−q̄3, −νS ). Similar expressions can be obtained for wall-
type saddles (together with peaks and voids). The top panel of
Fig. D1 shows the distribution of eigenvalues for a filament-type
saddle point of height νS = 1.2 and the bottom panel shows the
distribution for a wall-type saddle point of height νS = 0. Typical
values of q̄ij were selected to correspond roughly to the maximum
of the above-mentioned distributions of q̄1, q̄2, q̄3 and are reported
in Table D1. Note that all the results obtained in this section are
independent of the power spectrum. The only assumption is that the
density is a GRF.

A P P E N D I X E : C OVA R I A N C E M AT R I C E S

Let us present here the covariance matrix of all variables introduced
in the main text. The density δ and slope δ′ are evaluated at position r
and smoothed on the halo scale R, the half-mass density δ1/2 is also
evaluated at the halo position r but smoothed on R1/2 = 2−1/3R,
while the saddle rareness νS , acceleration gi, and detraced tidal
tensor q̄ij are evaluated at the origin and smoothed on a scale RS �
R. The correlation matrix of X ≡ {

δ, δ′, ν1/2, νS , gi, q̄ij

}
, a vector

with 12 Gaussian components, is

C =

⎛
⎜⎜⎜⎜⎜⎜⎝

σ 2 σ ω C14 C15 C16

σ 〈δ′2〉 ω′ C24 C25 C26

ω ω′ σ 2
1/2 C34 C35 C36

C14 C24 C34 1 0 0
CT

15 CT
25 CT

35 0 C55 0
CT

16 CT
26 CT

36 0 0 C66

⎞
⎟⎟⎟⎟⎟⎟⎠

, (E1)

with ω = 〈δν1/2〉, ω′ = 〈δ′ν1/2〉, and

C14 = 〈δνS〉 = ξ00, C15 = 〈δgi〉 = ri

R�

ξ11, (E2)

C16 = 〈δq̄ij 〉 =
(

δij

3
− r̂i r̂j

)
ξ20, (E3)

13 A similar expression can be obtained for negative heights.
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4902 M. Musso et al.

Figure D1. Top panel: distribution of heights of critical points of various
signatures (peaks, filament-type saddles, wall-type saddles, and voids) for
GRF with any power spectrum. Middle panel: PDF of the eigenvalues, q̄1

(blue), q̄2 (yellow), and q̄3 (green), of the anisotropic tidal tensor given a
filament-type constraint at νS = 1.2. Bottom panel: same as middle panel
for a wall-type constraint at νS = 0.

Table D1. Eigenvalues q̄i = qi − νS/3 of the traceless tidal tensor q̄ij ,
height νS , and smoothing scale used to define the saddle points. See Ap-
pendix D for details.

Traceless tide Height Scale Saddle type

Quantity q̄1 q̄2 q̄3 νS RS
Value −0.7 0.1 0.6 1.2 10 Mpc h−1 Filament-type
Value −0.6 −0.2 0.8 0 10 Mpc h−1 Wall-type

C24 = 〈δ′νS〉 = ξ ′
00, C25 = 〈δ′gi〉 = ri

R�

ξ ′
11, (E4)

C26 = 〈δ′q̄ij 〉 =
(

δij

3
− r̂i r̂j

)
ξ ′

20, (E5)

C34 = 〈ν1/2νS〉 = ξ
(1/2)
00

σ1/2
, C35 = 〈δ1/2gi〉 = ri

R�

ξ
(1/2)
11

σ1/2
, (E6)

C36 = 〈δ1/2q̄ij 〉 =
(

δij

3
− r̂i r̂j

)
ξ

(1/2)
20

σ1/2
, (E7)

C55 = 〈gigj 〉 = δij

3
, C66 = 〈q̄ij q̄kl〉 = 2Pij,kl

15
. (E8)

Hence, C14, C24, and C34 are scalars, C15, C25, and C35 are three
vectors, C16, C26, and C36 are 3 × 3 traceless matrices (or five
vectors in the space of symmetric traceless matrices), C55 is a 3 × 3
matrix, and C66 is a 5 × 5 matrix. The matrix C66 involves

Pij,kl ≡ δikδjl + δilδjk

2
− δij δkl

3
, (E9)

a projector that removes the trace and the antisymmetric part from a
matrix. Since Pij, abPab, mn = Pij, mn and so P −1

ij ,mn = Pij,mn, it acts as
the identity in the space of symmetric traceless matrices. Pij, kl can
be written in its matrix form by numbering the pairs {(1, 1), (2, 2),
(1, 2), (1, 3), (2, 3)} from 1 to 5, the dimensionality of the space,
resulting in a 5 × 5 matrix. The element (3, 3) has been dropped
because it is linearly linked to (1, 1) and (2, 2). The explicit value
of C66 is therefore

C66 = 1

45

⎛
⎜⎜⎜⎜⎝

4 −2 0 0 0
−2 4 0 0 0
0 0 3 0 0
0 0 0 3 0
0 0 0 0 3

⎞
⎟⎟⎟⎟⎠

. (E10)

The finite separation correlation functions ξαβ (r, R, RS ) and
ξ ′
αβ (r, R, RS ) are defined as

ξαβ ≡
∫

dk
k2P (k)

2π2
W (kR)

W (kRS )

σS

jα(kr)

(kr)β
, (E11)

ξ ′
αβ ≡

∫
dk

k2P (k)

2π2
W ′(kR)

W (kRS )

σS

jα(kr)

(kr)β
, (E12)

where W′(kR) = [dW(kR)/dR]/(dσ/dR). Similarly, the correlation
functions at the two different mass scales M and M/2 are

ξ
(1/2)
αβ ≡ ξαβ (r, R1/2, RS ) , (E13)

where R1/2 ≡ R/21/3. At null separation (r = 0), it yields

ω = 〈δδ1/2〉
σ1/2

=
∫

dk
k2P (k)

2π2
W (kR)

W (kR1/2)

σ1/2
, (E14)

ω′ = 〈δ′δ1/2〉
σ1/2

=
∫

dk
k2P (k)

2π2
W ′(kR)

W (kR1/2)

σ1/2
. (E15)

Recall that for a Top-Hat filter, one has

W (kR) = 3j1(kR)

kR
and W ′(kR) = 3j2(kR)

R|dσ/dR| , (E16)

and notice that W′(kR) is suppressed by a factor of k2R2 with
respect to W(kR)/σ when k � 1/R. In fact, in this limit
jn(kR) ∼ (kR)n/(2n + 1)!!. Hence, the action of d/dσ is proportional
to that of R2∇2, and σξ ′

αβ ∝ R2∇2ξαβ ∼ (R/RS )2ξαβ . It follows that
for R � RS one has σξ ′

αβ � ξαβ . In presence of a strong hierarchy
of scales, the terms containing ξ ′

αβ are negligible (see Fig. E1).

MNRAS 476, 4877–4906 (2018)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/476/4/4877/4826040 by C
N

R
S user on 08 M

arch 2019



How does the cosmic web impact assembly bias? 4903

Figure E1. Plot as a function of r of the correlation functions defined in equation (E12). From left to right on the top row ξ00, ξ11, and ξ20. The bottom row
shows the same quantities derived with respect to σ . The correlation functions are evaluated at RS = 10˜Mpc h−1 for different values of R logarithmically
spaced between 10−1 Mpc h−1 (light colour) and 10 Mpc h−1 (dark colours) with a �CDM power spectrum and plotted as a function of the distance r.

For a scale invariant power spectrum P(k) = A(k/k0)−n, ξαβ and
ξ ′
αβ have an analytical expression that depends on the relation be-

tween r, RS , and R. For example, when RS > r + R:

ξαβ (r, R, RS )

σS

= BF4

(
α − β − n

2
,

3 + α − β − n

2
;

5

2
, α + 3

2
;
R2

R2
S

,
r2

R2
S

)

and

ξ ′
αβ (r, R, RS ) = 2(α − β − n + 3)(n − α + β)

5(n − 3)

(
R

RS

) 7−n
2

B

×F4

(
2 + α − β − n

2
,

5 + α − β − n

2
;

7

2
, α + 3

2
;
R2

R2
S

,
r2

R2
S

)
,

where F4 is the Appell Hypergeometric function of the fourth kind
(Gradshteyn & Ryzhik 2007, p. 677),14 while

B = −
(

r

RS

)α−β

× π(n + 3) csc
(

nπ
2

)
�
( 3+α−β−n

2

)

2β+2n+23(n − 1)�
(

3+2α
2

)
�(−n − 1)�

(
n−α+β+2

2

)

and

σ 2(R) = σ 2
8

(
R

R8

)n−3

,
d log σ 2

d log R
= n − 3, (E17)

where R8 = 8 Mpc h−1 and σ 8 = σ (R8) are normalization factors.
For the same power-law power spectrum, setting α = 1 + n and
β = R1/2/R = 2−1/3, ω and ω′ defined in equations (E14) and (E15)
have the analytical expressions

ω

σ
= (1 + β)α

(
β2 − αβ + 1

) − (1 − β)α
(
β2 + αβ + 1

)

2α(2 − α)β
α+2

2

, (E18)

and

ω′ =
(
3β3 + βn2 + 3β2n + n

)
(1 − β)n

2nβ
n+3

2 (n − 3)(n − 1)

+
(
3β3 + βn2 − 3β2n − n

)
(1 + β)n

2nβ
n+3

2 (n − 3)(n − 1)
. (E19)

14 http://mathworld.wolfram.com/AppellHypergeometricFunction.html

APPENDI X F: C ONDI TI ONAL STATI STI CS

The goal of this section is to derive explicitly the conditional statis-
tics needed in the paper. Assuming that the underlying density
field obeys Gaussian statistics, the PDF of the 12-dimensional
vector X ≡ {

δ(r), δ′(r), ν1/2(r), νS , gi, q̄ij

}
already defined in

Appendix E involves inverting the 12 × 12 covariance matrix
C ≡ 〈X · XT〉, given by equation (E1). Since however the focus
here is on conditioning heights and slopes, which are scalar quan-
tities, their correlation with the saddle is the correlation with the
three unit-variance Gaussian components

S(r̂) ≡ {νS ,
√

3r̂igir/R�, −
√

5(3r̂i q̄ij r̂j /2)} . (F1)

Hence, the six-dimensional vector X̃ ≡ {δ(r), δ′(r), ν1/2(r),S} is
sufficient, and has a 6×6 covariance matrix given by

C̃(r) =

⎛
⎜⎜⎝

σ 2 σ ω ξ (r)
σ 〈δ′2〉 ω′ ξ ′(r)
ω ω′ σ 2

1/2 ξ1/2(r)
ξT (r) ξ ′T (r) ξT

1/2(r) 13×3

⎞
⎟⎟⎠, (F2)

where

ξ (r) ≡
{

ξ00,
√

3ξ11r/R�,
√

5ξ20

}
,

ξ ′(r) ≡
{

ξ ′
00,

√
3ξ ′

11r/R�,
√

5ξ ′
20

}
,

ξ1/2(r) ≡
{

ξ
(1/2)
00 ,

√
3r/R�ξ

(1/2)
10 ,

√
5ξ

(1/2)
20

}
/σ1/2 . (F3)

The PDF of X̃ is the six-variate Gaussian

pG(X̃) = 1

(2π)3
√

detC̃
exp

(
−1

2
X̃ · C̃

−1 · X̃
)

, (F4)

so that in each case, the task is to invert the appropriate section of the

covariance matrix C̃ ≡ 〈X̃ · X̃
T〉, marginalizing over the variables

that are not involved.

F1 The general conditional case

To speed up the computation of conditional statistics, rather than
doing a brute force block inversion of C̃, it is best to use the decor-
related variables

νv ≡ δ − 〈δ|{v}〉√
Var (δ|{v}) , and ν ′

v ≡ dνv

dσ
, (F5)

where the possible {v} considered in this work are ν1/2, S or
{ν1/2,S}. By construction, νv and ν ′

v are uncorrelated, because νv

has unit variance. Furthermore, if each vI is independent of σ (as
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it will be the case in the following), ν ′
v does not correlate with the

constraint either, since 〈ν ′
vvI 〉 = 〈νvvI 〉′ = 0. Then, being a linear

combination of δ′, ν, and {v} that does not correlate with ν nor vI,
ν ′

v must be proportional to δ′ − 〈δ′|ν, {v}〉 (the only such linear
combination by definition), and 〈ν ′2

v 〉 to Var
(
δ′|ν, {v}). That is,

〈δ′|ν, {v}〉 = δ′ −
√

Var (δ|{v}) ν ′
v ,

= 〈δ′|{v}〉 + [Var (δ|{v})]′
2Var (δ|{v}) (δ − 〈δ|{v}〉) , (F6)

Var
(
δ′|ν, {v}) = Var (δ|{v}) 〈ν ′2

v 〉 ,

= Var
(
δ′|{v}) − [Var (δ|{v})]′2

4Var (δ|{v}) , (F7)

providing the conditional statistics of δ′ given ν and {v} in
terms of those of δ and δ′ given {v} alone. Since [Var (δ|{v})]′ =
2Cov

(
δ, δ′|{v}), these formulae reduce to the standard results for

constrained Gaussian variables, but taking derivatives makes their
calculation easier.

To compute νv and ν ′
v explicitly, one needs to insert (using Ein-

stein’s convention on repeated indices)

〈δ|{v}〉 = ψIC
−1
IJ vJ , (F8)

Var (δ|{v}) = σ 2 − ψIC
−1
IJ ψJ , (F9)

in equation (F5), where CIJ ≡ 〈vIvJ〉 is the covariance matrix of the
constraint, and ψ I ≡ 〈δvI〉 is the mixed covariance. The conditional
statistics obtained from equations (F6) and (F7) are then

〈δ′|ν, {v}〉 = ψ ′
IC

−1
IJ vJ + σ − ψ ′

IC
−1
IJ ψJ√

σ 2 − ψIC
−1
IJ ψJ

νv, (F10)

Var
(
δ′|ν, {v}) = 〈δ′2〉 − ψ ′

IC
−1
IJ ψ ′

J − (σ − ψ ′
IC

−1
IJ ψJ )2

σ 2 − ψIC
−1
IJ ψJ

, (F11)

[where νv is given by equation (F5)] from which one can evaluate
equations (15) and (16), after setting δ = δc. Since 〈δ′|νc〉 = νc and
Var

(
δ′|νc

) = 1/�2, equation (11) is recovered in the unconstrained
case. For later convenience, let us also note that the conditional
probability of ν and ν ′ given the constraint {v} is

pG(ν, ν ′|{v}) = σ
pG(νv) pG(δ′ − 〈δ′|νc, {v}〉)√

1 − ψIC
−1
IJ ψJ /σ 2

, (F12)

since by construction νv and δ′ − 〈δ′|νc, {v}〉 ∝ ν ′
v are independent.

F2 Conditioning to the saddle

Equation (F8) and its derivative guarantee that conditioning on the
values of S (that is, fixing the geometry of the saddle) returns

〈δ|S〉 = ξ · S , Var (δ|S) = σ 2 − ξ 2 ,

〈δ′|S〉 = ξ ′ · S , Var
(
δ′|S) = 〈δ′2〉 − ξ ′2 ,

〈ν1/2|S〉 = ξ1/2 · S , Var
(
ν1/2|S

) = 1 − ξ 2
1/2. (F13)

To make the equations less cluttered, here and in the following,
scalar products of these vectors are denoted with a dot, rather than in
Einstein’s notation. Equation (F13) effectively amounts to replacing
in all unconditional expressions

δ → δ − ξ · S,

δ′ → δ′ − ξ ′ · S,

ν1/2 → ν1/2 − ξ1/2 · S, (F14)

reducing the problem to three zero-mean variables that no longer
correlate with S (but still do with each other!). The covariance of
δ, δ′ and ν1/2 at fixed S reads

Cov
(
δ, δ′|S) = σ − ξ · ξ ′,

Cov
(
δ, ν1/2|S

) = ω − ξ · ξ1/2,

Cov
(
δ′, ν1/2|S

) = ω′ − ξ ′ · ξ1/2, (F15)

with ω and its derivative ω′ given by equations (E14) and (E15).
The first equation in (F15) is one half the derivative of Var (δ|S)
with respect to σ from equation (F13), consistently with taking the
conditional expectation value of the relation δδ′ = (1/2)dδ2/dσ .
The third is the derivative of the second, since ξ 1/2 depends on
σ 1/2 and not on σ (the relation between the two scales arising since
σ 1/2 = σ (M/2) should be imposed after taking the derivative).

F3 Slope given height at distance r from the saddle

The saddle point being fixed, it can now be assumed that the excur-
sion set point is at the critical overdensity ν = νc. The conditional
mean and variance of the slope are then

〈δ′|νc,S〉 = 〈δ′|S〉 + Cov
(
δ′, δ|S)

Var (δ|S)
(δc − 〈δ|S〉)

= ξ ′ · S + σ − ξ · ξ ′

σ 2 − ξ 2
(δc − ξ · S) , (F16)

after using equations (F13) and (F15), and

Var
(
δ′|νc,S

) = Var
(
δ′|S) − Cov

(
δ′, ν|S)2

Var (ν|S)
,

= 〈δ′2〉 − ξ ′2 − (σ − ξ · ξ ′)2

σ 2 − ξ 2
, (F17)

respectively. This result is equivalent to decorrelating the effective
variables δ − ξ · S and δ′ − ξ ′ · S introduced in equation (F14),
whose covariance is in fact σ − ξ ′ · ξ .

Equation (F16) contains an angle-dependent offset r̂i q̄ij r̂j ξ20 and
a density dependent one ξ00νS , entering through S. On the contrary,
the conditional variance does not depend on the angle nor the height
of the saddle. At large distance from the saddle, when ξ = ξ ′ = 0,
equations (F16) and (F17) tend as expected to the unconditional
mean νc and variance 1/�2 = 〈δ′2〉 − 1.

From equations (F16) and (F17), one can compute the effective
upcrossing parameters presented in the main text

μS (r) = ξ ′ · S + σ − ξ ′ · ξ

σ 2 − ξ 2
(δc − ξ · S) , (F18)

XS (r) = μS(r)/
√

Var (δ′|νc,S) . (F19)

F4 Upcrossing at σ with given formation time but no saddle

Recalling that ω = 〈δδ1/2〉/σ 1/2 and ω′ = 〈δ′δ1/2〉/σ 1/2, as defined
by equations (E14) and (E15), the conditional statistics of δ and δ′

given that ν1/2 = νf are

〈δ|νf〉 = ωνf , Var (δ|νf ) = σ 2 − ω2 ,

〈δ′|νf〉 = ω′νf , Var
(
δ′|νf

) = 〈δ′2〉 − ω′2 ,

Cov
(
δ, δ′|νf

) = σ − ωω′ . (F20)

Hence, the conditional mean and variance of δ′ given νc = δc/σ

and νf are

〈δ′|νc, νf〉 = ω′νf + σ − ω′ω
σ 2 − ω2

(δc − ωνf ) , (F21)
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Var
(
δ′|νc, νf

) = 〈δ′2〉 − ω′2 − (σ − ω′ω)2

σ 2 − ω2
. (F22)

which is equivalent to decorrelating the zero-mean effective vari-
ables δ − ωνf and δ′ − ω′νf, whose covariance is σ − ω′ω. From
equations (F21) and (F22), one can compute the parameters of the
effective upcrossing problem

μf (Df ) = 〈δ′|νc, νf〉 , (F23)

Xf (Df ) = μf (Df )/
√

Var (δ′|νc, νf ) , (F24)

introduced in Section 2.2.

F5 Upcrossing at σ given formation time and the saddle

Similarly, thanks to equations (F13) and (F15), the mean and co-
variance of pG(ν|νf,S) are

〈δ|νf,S〉 = 〈δ|S〉 + Cov
(
δ, ν1/2|S

)

Var
(
ν1/2|S

) (
νf − 〈ν1/2|S〉) ,

= ξ · S + � νf,S , (F25)

Var (δ|νc,S) = Var (δ|S) − Cov
(
δ, ν1/2|S

)2

Var
(
ν1/2|S

) ,

= σ 2 − ξ 2 − �2 , (F26)

where [recalling that ξ has the dimensions of δ but ξ 1/2 has those
of ν, see equation (F3)]

νf,S ≡ (νf − ξ1/2 · S)√
1 − ξ 2

1/2

, � ≡ ω − ξ · ξ1/2√
1 − ξ 2

1/2

. (F27)

As discussed in Appendix F1, the statistics of pG(δ′|νc, νf,S) can
be derived from those of pG(δ|νf,S) as follows:

〈δ′|νc, νf,S〉 = 〈δ|νf,S〉′ + Var (δ|νf,S)′

2Var (δ|νf,S)
(δc − 〈δ|νf,S〉) (F28)

thanks to the relations 〈δ|νf,S〉′ = 〈δ′|νf,S〉 and Var (δ|νf,S)′ =
2Cov

(
δδ′|νf,S

)
, and

Var
(
δ′|νc, νf,S

) = Var
(
δ′|νf,S

) − [Var (δ|νf,S)′]2

4Var (δ|νf,S)
. (F29)

Hence, taking derivatives of equations (F25) and (F26) give

〈δ′|νc, νf,S〉 = ξ ′ · S + �′νf,S

+σ − ξ ′ · ξ − �′�
σ 2 − ξ 2 − �2

(δc − ξ · S − � νf,S ) , (F30)

and

Var
(
δ′|νc, νf,S

) = 〈δ′2〉 − ξ ′2 − �′2

− (σ − ξ ′ · ξ − �′�)2

σ 2 − ξ 2 − �2
, (F31)

where

�′ = ω′ − ξ ′ · ξ1/2√
1 − ξ 2

1/2

, (F32)

which can finally be used to compute the effective slope parameters

μf,S (Df, r) = 〈δ′|νc, νf,S〉 , (F33)

Xf,S (Df, r) = μf,S (Df, r)/
√

Var (δ′|νc, νf,S) . (F34)

A P P E N D I X G : G E N E R I C A N D M OV I N G
BA R R I E R

The results presented hereby hold for a constant barrier, however,
one can easily recover the results for a non-constant one – where
the upcrossing conditions becomes δc > δ′

c – by replacing μv by
μv − δ′

c in the general formula of equations (15) and (16), yielding

μv ≡ 〈δ′|νc, {v}〉 − δ′
c , (G1)

and by taking into account contributions from δ′
c in ν ′

c

ν ′
c = δ′

c

σ
− δc

σ 2
, (G2)

and in the definition of accretion rate

α = δc

σ (δ′ − δ′
c)

(G3)

in equation (19). In practical terms, dealing with a moving barrier
simply amounts to replacing

μ → 〈δ′|νc〉 − δ′
c , (G4)

μf → 〈δ′|νc, νf〉 − δ′
c , (G5)

μS → 〈δ′|νc,S〉 − δ′
c , (G6)

μf,S → 〈δ′|νc, νf,S〉 − δ′
c , (G7)

in equations (12), (33), (50), and (67), which automatically affects
also the corresponding X, Xf, XS , and Xf,S , as well as Yα and Yα,S
in equations (24) and (60).

For instance, for a barrier of the type δc + βσ q̄ij,Rq̄ij ,R (Castorina
et al. 2016), where q̄ij ,R is the traceless tidal tensor smoothed on
scale R, and β is some constant, one would use

δ′
c → β(q̄ij ,Rq̄ij ,R + 2σ q̄ ′

ij ,Rq̄ij ,R) . (G8)

More generally, barriers should involve {In}, the rotationally invari-
ants of q̄ij ,R defined in Appendix D.

A P P E N D I X H : IM P L I E D G A L AC T I C C O L O U R S

Let us in closing attempt to convert the position-dependent accretion
rates, computed in the main text, in terms of colour modulo some
reasonable assumption on the respective role of AGN and how star
formation proceeds at low and high redshifts. Galaxy colours are
proportional to the amount of recent star formation, which in turn is
driven by the recently accreted gas from cosmic infall. One compli-
cation comes from the impact of feedback on heating the gas to be
accreted on to galaxies. Cosmological hydrodynamical simulations,
which include the feedback of supermassive black holes, suggest
that, at intermediate and low redshift, mass accretion through merg-
ers triggers AGN feedback in massive galaxies. This in turn heats up
the circumgalactic medium and prevents subsequent smooth gas ac-
cretion from feeding central galaxies efficiently (e.g. Dubois et al.
2010), quenching star formation and reddening massive galaxies
(hosted in haloes with mass of 1012 M
 h−1 or more). Conversely,
at higher redshift, cold flows are less impacted by galactic feedback
and reach the centre of dark haloes unimpaired, so that matter in-
fall translates into bluer galaxies (though it has been suggested that
in massive haloes, the disruption of cold flows can be significant,
Dubois et al. 2013). Fig. H1 sketches these ideas, while distin-
guishing low- and high-mass haloes. As argued in the main text,
this
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Figure H1. Scheme of the intensity of expected colour/SFR at different
location near a filament-type saddle for different final halo mass. The dis-
played colour encodes galactic colour (or equivalently sSFR from high blue
to low red). Massive galaxies in the filament (respectively, nodes) are ex-
pected to accrete more cold baryonic matter at high redshift and be bluer
than less massive ones and than their counterparts in voids (respectively,
filaments). At lower redshifts, AGN feedback is expected to quench cold
gas accretion, thus reddening the massive ones – they are more likely to be
central ones. The impact on lower mass satellite galaxies may also depend
on the efficiency of processes such as starvation or ram-pressure stripping.

scenario remains speculative, if only because the impact of AGN
feedback is still a fairly debated topic. For instance ram-pressure
stripping on satellites plunging into clusters is known to induce
reddening, but its efficiency within filaments is unclear. Fig. 16
encodes the robust result of the present investigation.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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Figure 3.3.1: Isocontours of constant typical redshift z = 0 mean density (�lled con-

tours), mass (dotted lines) and accretion rate (dashed lines) in the frame of a �lament

(along the Oz axis) in Lagrangian space (initial conditions) from low (light colours) to

high values (dark colours). The saddle is at coordinate (0, 0) while the induced peak

and void are at coordinates (0,±7) and (±8, 0)Mpc/h , respectively. The gradients of

the three �elds, are not parallel (the contours cross). The choice of scale sets the units

on the x- and z-axis (chosen here to be 5 Mpc/h , while the mass and accretion rates

are computed for a local smoothing of 0.5 Mpc/h). At lower redshift/smaller scales,

one expects the non-linear convergence of the �ow towards the �lament to bring those

contours together, as shown on �gure 3.3.2.

3.3 Conclusion

Let me complement the conclusions of this article in the context of this dissertation and of

subsequent works.

We have shown that the excursion set theory can be extended to take into account anisotropic

e�ects induced by the cosmic web. This can be done by constraining the statistics entering the

excursion to the presence of a proto-�lament at a given location, which in turn spatially modulates

the mean and the variance of the �eld, resulting in a biasing of the excursion. From this, one can

show that di�erent quantities derived from the properties of the excursion under the anisotropic

constrain, such as the halo mass function and the accretion rate and formation time at �xed

�nal mass, become distinct functions of the local mean and variance of the �eld, so that their

modulation by the cosmic web is di�erent.

The di�erential e�ect induced by the cosmic web can be illustrated by computing the isocon-

tours of the di�erent assembly variables, which can be shown to explicitly cross, as illustrated on

�gure 3.3.1. The �gure shows that, for example, isodensity contours cross isocontours of accretion

rate at �xed �nal mass. As a consequence, while most of the spatial variation of the accretion rate

can be attributed to the modulation due to the local density surrounding a given halo, part of the

variation is due to the tidal e�ect of the large-scale �lamentary structure. The same conclusion

can be drawn for the formation time and lead to the conclusion that the structure of the cosmic

web, as encoded by the �lament-type saddle point, drives part of the assembly bias signal. More
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Figure 3.3.2: Typical mass measured in the Horizon-AGN simulation (left panel, from

Kraljic et al., 2019) and predictions from constrained excursion set theory (right) along

the axis of �laments (vertical axis). Compared to the prediction without Zel’dovich

boost (dashed lines), the isomass contour lines after the boost are compressed in the

direction of �lament.

massive halos are found in the �lament compared to the surrounding void and wall, while the

most massive halos are found in nodes of the cosmic web. At �xed �nal mass, halos forming

close to the saddle are stalled and formed early, whereas those forming close to the nodes formed

later and accrete more. The same hierarchy is found between wall and �laments. Similar trends

have been measured for galaxies in the GAMA spectroscopic survey (Driver et al., 2011) and

the Horizon-AGN simulation in a paper I contributed to (Kraljic et al., 2018, see appendix B.1).

Namely, it was shown that galaxies in �laments are more massive than their wall counterparts.

In addition, galaxies also segregate by colour, with an excess of red passive galaxies close to the

�lament core than in the wall.

In a follow-up work (Kraljic et al., 2019, see appendix B.2), we measured the properties of

virtual galaxies in the Horizon-AGN simulation in the frame of the cosmic web, reproducing the

same maps as Musso, Cadiou et al., 2018, �gure 8. In this work, I have shown that the results from

the constrained excursion set theory can be qualitatively reproduced if one takes into account

the mean Zel’dovich displacement (following the idea of Bond and Myers, 1996), which has the

e�ect of squeezing the isocontour lines in the direction perpendicular to the �lament and stretch

them in the direction parallel to the �lament. This is for example illustrated on �gure 3.3.2, which

shows typical mass isocontours in the Horizon-AGN simulation (left panel) and the prediction

from the constrained excursion set theory (right panel).

The constrained excursion set theory presented in this chapter enabled us to study the impact

of the cosmic web on the formation of dark matter halos, yet more work is required to understand

its impact on galaxy formation, as was presented in appendices B.1 and B.2. In chapter 4, I propose

a new theoretical model that can be used to quantify the e�ect of the cosmic web on galaxy

formation, by looking at special events that drive the evolution of galaxies, namely halo mergers

and �lament disconnections, as these events impact galactic infall, which then impacts galaxy

formation, and in particular disk formation. This is further studied chapters 5 and 6, where I
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study the transport of angular momentum from the large scales down to the disk in a suite of

high-resolution hydrodynamical simulations.
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4.1 Introduction

To what extent can today’s properties of galaxies be predicted from the initial Gaussian random

�eld from which they emerge? Within the paradigm of the spherical collapse, one can draw a

relationship between the time of collapse of a given proto-halo given its over density, and between

its mass and the scale at which its initial patch must be smoothed to pass a given threshold. As

the halo grows in mass, it will explore larger and larger radii. In the extended Press-Schechter

theory, this excursion is usually described in terms of the mean overdensity found at increasing

radii, recovering the result that large overdensities collapse earlier in cosmic time and can be

further re�ned to take into account non-spherical collapse (e.g. R. K. Sheth et al., 2001; Hahn

et al., 2009), or the e�ect of gravitational clustering (Bond and Myers, 1996). In this sense, the fate

of a given region is encoded in its initial conditions and is captured by the multi-scale properties

of the corresponding Gaussian random �eld. Most of the aforementioned works have typically

described proto-halos as peaks in the primordial �eld, e�ectively compressing the continuous

density �eld into a set of points (peaks). In a more general way, the topology of the �eld can

be described by the set of its critical points (peaks, saddle points and voids). In Hanami, 2001

it was suggested that the drift of these critical points, which draws the so-called skeleton tree,

bears physical meaning, as it captures the variation of this topology with scale, hence cosmic

time. In Manrique and Salvador-Sole, 1995; Manrique and Salvador-Sole, 1995; Hanami, 2001 the

focus was on the coalescence of �lament saddles with maxima which the authors called slopping

saddles (as they are vanishing saddle points on the slope of peaks), and are proxy for halo merging

events.

More generally here I will consider the coalescence of minima with wall-saddles and wall-

saddles with �lament-saddles corresponding respectively to the disappearance of a wall and a

�lament. It is the sequence and geometry of these special events in the Lagrangian patch and

its vicinity that will later form a halo which will shape the fate of its host galaxy. Indeed, these

coalescences impact the geometry of the cosmic web (in particular the �laments) which in turn

de�nes preferred directions along which galaxies are fed with cold gas and acquire their spin.

Merger events are also known to play an important role in triggering AGN feedback, which in

turn impacts gas in�ow and therefore galactic morphology. Hence, I will extend Hanami, 2001 by

studying the clustering of these other merger events in the multi-scale landscape. The aim is to

provide a compact description of the cosmic web in the initial conditions that is able to capture

important events in the life of a galaxy, which includes its merger history, but also the merger
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Figure 4.1.1: Snapshot and zooms of a hydrodynamical simulation showing �laments

(in red) walls (in shades of blue to green) and peaks (at the nodes of the �lamentary

network) as traced by Disperse (Sousbie et al., 2011). The cosmic evolution of these

large scale structures impacts the geometry of infall. As this simulation forms galaxies

their properties re�ect partially the corresponding tides and the funnelling of cold gas

along the �lamentary structure. Understanding when and how the topology of this

network changes is therefore of great interest in this context.

history of the �laments feeding it and the merger history of the walls feeding its �laments. My

motivations are many-fold:

i) Study the generalised history of accretion: what mergers happen when, at what frequency?

ii) Study the relation between di�erent merger events, and their clustering in space and time,

iii) quantify the merger rates in a larger scale �lamentary structure to study assembly bias.

In order to achieve these goals, I will present the general theory of the merger events, which I

will refer to as “critical events”. Section 4.2 provides a mathematical description of these events

in the initial conditions and computes their one-point statistics (number counts). Section 4.3

predicts the clustering properties of these special events. Section 4.4 compares the predictions

to realisations of Gaussian random �elds and validates the theoretical formulas. Section 4.5

presents applications of the theory in the context of galaxy formation. Finally section 4.6 wraps

up. Section 4.A presents the counts in arbitrary dimensions and illustrates them in up to 6D.

Section 4.B explains how the critical events are measured in random �eld maps and cubes.

Section 4.C presents the joint PDF of a Gaussian random �eld up to the third derivative of the �eld.

Throughout the chapter, sections where the third form is used (we, us) were done in collaboration

with S. Codis and C. Pichon.

4.2 Theory: one-point statistics
Let me consider the overdensity �eld δ = (ρ− ρ̄)/ρ̄ to be a homogeneous and isotropic Gaussian

random �eld of zero mean, described by its power spectrum P (k), as de�ned in section 2.1.1.2.

In this section, I will focus on one-point statistics associated with merger rates. In section 4.2.1,

I de�ne the concept of critical events. In section 4.2.2, I present the number counts of critical

events, counted together and by type (peak, �lament and wall mergers). In section 4.2.3, I present

the number counts as a function of the events’ height. Section 4.2.4 sketches the corresponding
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theory in two-dimensions, while section 4.2.5 presents its extension to non-Gaussian �elds.

4.2.1 Critical events definition
When studying the time evolution of the density �eld, the spherical collapse model has shown that

one can establish a mapping between collapse time and overdensity – high overdensity regions

collapse earlier in the history of the Universe than underdense ones. At the same time, larger

overdensities enclose more mass and will hence give birth to more massive structures. These

relations mathematically read

νc(R) =
δc

σ(R)D(z)
, M =

4π

3
ρ̄R3, (4.1)

where R is the smoothing scale of the Top-Hat �lter, σ(R) is the variance of the �eld at that

scale, D(z) is the linear matter growth function at redshift z (see section 2.1.2.1), δc = 1.69 is

the spherical collapse critical overdensity (see section 2.1.2.2) and ρ̄ is the mean matter density

of the Universe. Here I have introduced the density contrast ν ≡ δ/σ(R), which is a zero-mean

unit-variance Gaussian random �eld. The spherical collapse threshold can also be adapted to

study the formation of voids (R. K. Sheth and van de Weygaert, 2004; Jennings et al., 2013) with

δv = −2.7. From a theoretical perspective, the action of smoothing the density �eld δ enables to

probe the time-evolution of spherical proto-halos by following the density evolution of peaks as

smoothing scale increases. One caveat of using a Top-Hat �ltering lays in the fact that the second

derivative of the smoothed �eld has an in�nite variance, so that one cannot study the statistics of

its peaks and extrema. In the following of the work, I will make use of a Gaussian �ltering instead,

as it provides smooth �elds
1
. In order to match the results of equation (4.1) with a Gaussian �lter,

one needs to establish a mapping of the smoothing scales between Top-Hat �ltering and Gaussian

�ltering. This is usually achieved by matching the variance of the �eld σG(R/α) = σTH(R). At

scales of a few Mpc/h , the scale ratio is of the order of α ≈ 2.1 for a ΛCDM power spectrum

(see section 2.1.7.2) so that equation (4.1) becomes

M =
4π

3
ρ̄(αR)3

(4.2)

for a �eld smoothed by a Gaussian �lter of radius R. This translates the fact that the variance

of the �eld smoothed with a Gaussian �lter at scale R is the same as the �eld smoothed with a

Top-Hat �lter at scale αR, so that at �xed smoothing scale, one can assign a larger mass to a peak

found using Gaussian �ltering compared to a region smoothed with a Top-Hat �ltering.

Let me now de�ne critical events associated to mergers. These events are de�ned in smoothing-

position space and correspond to mergers of critical points (peaks, saddle points and minima). The

slopping saddles de�ned in Hanami, 2001 are particular critical events that correspond to mergers

between a peak and a saddle point. In this chapter, I will instead focus on all critical events as

they are of interest to study the evolution of the geometry of the cosmic web. The formation

and location of critical events is illustrated for a 1D �eld on �gure 4.2.1: critical events are found

at the tip of critical point lines and represent the disappearance of a critical point into a critical

point of another kind (e.g. a maximum and a minimum in 1D, a maximum and a saddle point in 2

or 3D). They encode locations where the topology of the �eld is changed by removing a pair of

critical points.

Let me emphasise here that critical points are a compact encoding of the proto-structures:

each proto-�lament has at its centre a �lament-type saddle-point, while proto-walls have at their

centre a wall-type saddle-point. Using an analogy with a mountainous landscape, one can describe

a given mountain range by giving the set of its peaks and passes. In practice, this procedure has

1

In practice, all the derivatives of the �eld have a well-behaving variance.
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compressed the continuous information about the height of the mountains into a discrete set of

critical points. A similar approach can be used to describe the skeleton of the cosmic web as a set

of its critical points.

Let me illustrate the concept of critical events using the same analogy, the latter being

restricted to 2D space, see �gures 4.2.2 and 4.2.3. A mountainous landscape is made of peaks

analogous to proto-halos. Each pair of neighbouring peaks is linked via a pass, analogous to a

proto-�lamentary structure. Following the ridge from one peak to another one is analogous to

following a �lamentary structure between two proto-halos. On each downhill side of a pass there

are two valleys whose faces are analogous to proto-walls in the cosmic web while their depth

(hence their geometry) is described by their lowest point. With the action of time, the mountains

will erode until eventually no peak will subsist – this is analogous to the smoothing operation.

In the process, a disappearing peak will see its height (the density) decrease with time. If the

peak is not prominent enough, it will eventually be smoothed to the point where it no longer is a

peak but a shoulder on another peak’s slope. Just before the peak disappears, it is still linked to

its neighbour via a pass. When the peak disappears so does the pass – indeed a pass is always

located between two peaks ; when one disappears, so does the pass. This particular event is what

I de�ne as a critical event. It encodes the moment when two critical points (here a peak and a

saddle point) annihilate. This can also be interpreted as the moment a peak disappears on the

slope of its nearest neighbour – the two peaks merged and the most prominent subsisted. Critical

events have hence a dual interpretation: in the initial Lagrangian space, critical points are found

at the location where a critical event merges into a critical event of another kind (e.g. a peak with

a �lament saddle-point). In the Eulerian physical space, critical points spot the merger of two

similar structures, for example two halos merging into a single one (squashing the �lament in

between them).

Since the primordial density �eld is a 3D �eld, the density landscape is made of peaks (proto-

halos), saddle-points (proto-�laments and proto-walls) and minima (proto-voids). Critical events

record the merger of peaks into proto-�laments (PF critical events), of proto-�laments into

proto-walls (FW critical events) and of proto-walls into proto-voids (WV critical events).

Using the duality discussed above, they also encode halo mergers (PF critical events), �l-

ament mergers (FW critical events) and wall mergers (WV critical events). This is illustrated

on �gure 4.2.4. PF critical events (top panel) encode the merger of two halos separated by a

�lament. After the merger, the most prominent peak subsists, while the other proto-halo and

the proto-�lament have annihilated. FW critical events (centre panel) encode the merger of two

�laments separated by a wall. After the merger, the most prominent �lament subsists, while

the other proto-�lament and the proto-wall have annihilated. WV critical events (bottom panel)

encode the merger of two walls separated by a void. After the merger, the most prominent wall

subsists, while the other proto-wall and the proto-void have annihilated.

4.2.2 3D critical events number counts
In this section, I will present the derivation of the number count of critical events in smoothing-

position space in 3D. In section 4.2.2.1, I present how one can express the critical event constraint

as a function of the local properties of the �eld and its derivatives. I then express the condition

in the frame of the Hessian of the �eld in section 4.2.2.2 where it takes a simpler expression. In

section 4.2.2.3, I extend the previous formula to distinguish between di�erent critical event types

(halo mergers, �lament mergers, wall mergers). In the following of the section, I will use the

quantities de�ned in section 2.1.7.1, namely σi, γ, γ̃ which were de�ned as

σ2
i (R) =

1

2π2

∫
dk k2P (k)k2iW 2(kR), γ =

σ2
1

σ0σ2
, γ̃ =

σ2
2

σ1σ3
. (4.3)

Here W is a Gaussian �lter W (x) = exp
(
−k2R2/2

)
.
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x

R

Figure 4.2.1: 2D “landscape” of a 1D �eld smoothed at a scale R in smoothing-position

space. Here R is the smoothing scale, while δ is the density smoothed at the given scale.

Solid lines indicate maxima (red) and minima (blue). Critical point lines end at critical

events (black dots). The projections of the critical point lines are shown as red and blue

dashed lines, while vertical dotted purple lines indicate the projection of critical events

to illustrate that critical events are found at the location where two critical points merge.

4.2.2.1 General formulation

Following Hanami, 2001, the number density of critical events in smoothing-position space is

given by

∂4N
∂r3∂R

≡ 〈δ(3)
D (r − r0) δD(R−R0)〉 , (4.4)

where r0 is the position of a critical event (i.e. a critical point with a degenerate direction) in real

space and R0 its associated smoothing scale. Following the de�nition of section 4.2.1, critical

events are found at the smoothing-position location where two critical points of di�erent types

(maximum, saddle points or minimum) merge. The nature of a critical point (occurring where

∇δ = 0) is characterised by its index, that is to say the number of negative eigenvalues of the

density Hessian matrix at this point. Critical events can then be de�ned as critical points for which

one of the eigenvalues vanishes, which is also equivalent to having a vanishing determinant. By

de�nition, only critical points whose indices di�er by one can merge (peak–�lament type saddle

point, �lament–wall type saddles, wall type saddle–void) so that only one eigenvalue vanishes
2
.

Let me therefore �rst de�ne the determinant of the Hessian d(δ) ≡ det(∇∇δ) = λ1λ2λ3,

λ1 ≤ λ2 ≤ λ3 being the ordered eigenvalues of the Hessian matrix ∇∇δ. In the following,

I will use ∂R to denote derivatives with respect to scale R. Since critical events are found

where d = 0 and∇δ = 0, let me rewrite equation (4.4) in terms of the properties of the �eld,

using the coordinate transformation from r, R to∇δ, d. This involves the 4D Jacobian of the

2

The event where two eigenvalues vanish has a null probability.
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xy

R

Figure 4.2.2: 3D “landscape” of a 2D �eld smoothed at a scale R in smoothing-position

space. The density �eld (blue to red map) is smoothed at increasing R. For each scale,

the critical points (red lines: peaks, green lines: saddle points, blue lines: minima) are

found. At the tip of each branch a critical event is found ( : peak-saddle critical events,

×: saddle-minima). Lines near the boundaries have been hidden for the sake of clarity.

transformation
3

J(d,∇δ) =

∣∣∣∣
∂Rd ∇d

∂R∇δT ∇∇δ

∣∣∣∣ =

∣∣∣∣
∂Rd ∇d

−R∇∇2δT ∇∇δ

∣∣∣∣ , (4.5)

using the fact that for a Gaussian �lter (see Table 2.2)

∂Rδ = −R∇2δ, (4.6)

with ∇2
the Laplacian operator. The fully covariant formulation of the number density of critical

events is then

∂4N
∂r3∂R

=
〈
|J | δ(3)

D (∇δ) δD(d)
〉
. (4.7)

The expectation value in equation (4.7) can be evaluated using the joint distribution of the �eld

and its successive derivatives up to third order, P (x, xi, xij , xijk) which involves 20 variables,

see section 4.C for the PDF for Gaussian random �elds. One di�culty in evaluating equation (4.7)

spans from δD(d). In practice, it can for instance be dealt with numerically by ‘broadening’ the

Dirac delta function: this method is used for validation and when considering two-point statistics

in the section 4.3.1. Alternatively, one can go to the Hessian’s eigenframe as described in the next

section.

3

Note that the determinant can be developed along the �rst line or the �rst column of the Jacobian matrix to �nd

out – as shown by the simpli�cations in the next section – that the �nal result in our case does not depend on ∂Rd,

thanks to the zero determinant constraint det∇∇δ = 0.
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1 2 3

4 5 6

Figure 4.2.3: From left to right and top to bottom, a smoothing sequence of a Gaussian

random �eld, whose density is colour coded from blue to red as a function of height

(analogous to the slices shown on �gure 4.2.2). The skeleton tracing the ridges is shown

in purple, while the anti-skeleton tracing the trough is shown in white. The saddles

shown as green crosses lay at the intersection. The Maxima are shown as red triangles

while the minima as blue squares. As one smooths the �eld, these critical points drift

towards each other along the skeletons, until they vanish in pairs. The upcoming

coalescence are identi�ed with grey circles. Note that as saddle points vanish, the two

corresponding skeletons do too. Note also that the direction of coalescence is typically

set by the skeleton’s just before coalescence. In this two dimensional example, the ratio

of peak+saddle to void+saddle event is one. The black segment in the bottom left of the

�rst and last image represents the amount of smoothing. This chapter is concerned with

studying the one and two-point statistics of these grey circles. Note that these events

are indeed proxy for mergers of the peaks of the underlying �eld: for instance, between

snapshot 3 and 5 the central four peaks have merged into one. Similarly, between 1 and

4 the central four voids have merged into one. I provide an interactive tool to follow

such events in 2D and 3D.

4.2.2.2 Expression in the frame of the Hessian
The Jacobian is by construction invariant under rotation, so one can rewrite it in the frame of

the eigenvalues of the Hessian (which will be denoted with tildas) without loss of generality.

Developing d into σ3
2x̃11x̃22x̃33 and assuming (arbitrarily) that direction 3 is the degenerate one,

the Jacobian can be rewritten as follows

J(d, δ)

σ1σ4
2σ3

= |x̃11x̃22|
∣∣∣∣
∂Rx̃33 x̃33i

∂Rx̃i x̃ij

∣∣∣∣ , (4.8)

= |x̃11x̃22|

∣∣∣∣∣∣∣∣

∂Rx̃33 x̃133 x̃233 x̃333

∂Rx̃1 x̃11 0 0
∂Rx̃2 0 x̃22 0
∂Rx̃3 0 0 0

∣∣∣∣∣∣∣∣
, (4.9)

= |x̃11x̃22|2|∂Rx̃3||x̃333|, (4.10)

https://pub.cphyc.me/Science/3d/critical_point_2D.html
https://pub.cphyc.me/Science/3d/critical_point_3D.html
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Peak-filament 

crit. event
(halo merger)

Filament-wall 

crit. event
(filament merger)

Wall-void 

crit. event
(wall merger)

Figure 4.2.4: Illustration of critical events in a 3D random �elds and their physical

meaning.  symbols are peaks, × symbols are �lament-type saddle points (�lament

centres),⊗ symbols are wall-type saddle points (wall centres) and# symbols are minima

(void centres). Top: Peak-�lament critical events encode the merger of two halos and

the disappearance of their shared �lament. After the merger, only one peak subsists

and the �lament disappears. Middle: Filament-wall critical events encode the merger

of two �laments and the disappearance of their shared wall. After the merger, only

one �lament subsists. Bottom: Wall-void critical events encode the merger of two

walls and the disappearance of their joint void (surrounded by the two walls and the

dotted lines). After the merger, only one wall-type saddle-point subsists and the void

has disappeared. Halo mergers are encoded by peak-�lament critical events, �lament

mergers. Alternatively, one could have chosen to describe these events as resp. �lament,

wall and void disappearances.

where the factorisation with |x̃11x̃22| along the �rst line in equation (4.8) is a consequence of x̃33

being zero – which also nulls the last component of equation (4.9). Using equation (4.6) again to

re-express the derivative w.r.t. smoothing in terms of the Laplacian of the �eld, one can rewrite

the number density of critical events using the typical scales of equation (2.95) as
4

∂n

∂R
=

2π2R

R̃2R3∗

〈
|∑ix̃3ii||x̃333|δ(3)

D (x̃i) |x̃11x̃22|δD(x̃33)
〉
, (4.11)

where I introduced n = ∂3N/∂r3
the volume density of critical events (that does not depend on

the spatial location r as the �eld is assumed to be stationary). Let me stress that the distribution

of the �elds expressed in the frame of the Hessian matrix di�ers from the original ones. The

statistics of x and xi and xijk are left unchanged and I therefore drop the tildes for the �eld and its

�rst and third derivatives . However, going from cartesian coordinates to the Hessian eigenframe

4

One factor of |x̃11x̃22| drops between equation (4.10) and (4.11) because of the Dirac of d in equation (4.7).
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modi�es the distribution of the second derivatives that were chosen here to be ordered (such that

the Doroshkevich formula is recovered)

P̃ (x̃11, x̃22, x̃33) = 2π2(x̃33 − x̃22)(x̃22 − x̃11)(x̃33 − x̃11)×
P (x11 = x̃11, x22 = x̃22, x33 = x̃33, x12 =0, x23 =0, x13 =0),

where x̃11 < x̃22 < x̃33 are distributed according to P̃ and �elds in cartesian coordinates follow

the distribution P . Note that the factor 2π2
is due to the integration over the Euler angles.

Equation (4.11) therefore introduces a jacobian 2π2|x11x22(x11−x22)|, as x33 is null, when going

from the Hessian eigenframe to cartesian coordinates and the di�erential number count of critical

events becomes

∂n

∂R
=

2π2R

R̃2R3∗

〈
|∑ix3ii||x333|δ(3)

D (xi) |x11x22|2|x11−x22|δD(x33) δ
(3)
D (xi 6=k)

〉
, (4.12)

where δ
(3)
D (xi 6=k) must be understood as a product of Dirac delta functions of all the o�-diagonal

components of the Hessian matrix. Here R∗ and R̃ are the typical inter critical point separation

and inter in�ection point separation introduced in equation (2.95), section 2.1.7.1. The novelty

of equation (4.12) w.r.t. the classical BBKS formula is the weight |∑i x3ii||x333| which requires

the knowledge of the statistics of the 3rd order derivative of the �eld. The expectations in

equation (4.12) can be evaluated with the joint statistics of the �eld and its successive derivatives,

P (x113, x223, x333, x11, x22) which now only involves 5 variables. Interestingly, because the

dominant contribution to the expectation value of 〈|∑ix3ii||x333|〉 comes from

〈
x2

333

〉
with very

good accuracy (at the percent level), equation (4.12) is very well approximated by

∂n

∂R
≈ 2π2R

R̃2R3∗

〈
x2

333δ
(3)
D (xi) |x11x22|2|x11−x22|δD(x33) δ

(3)
D (xi 6=k)

〉
. (4.13)

Note that this equation closely resembles the equation giving the �ux of critical lines per unit

surface presented in Pogosyan et al., 1998, up to the delta function on the third eigenvalue in the

present context. This is in fact expected since I require here that along the �lament’s direction the

curvature should be �at, whereas they marginalised over all possible longitudinal curvature. The

similarity re�ects the fact that critical points essentially slide along critical lines as one smooths

the �eld, see �gure 4.2.3. In some sense the 3D event count can be approximatively recast into a 1D

event count along the ridges. The expectation involves the product of the transverse curvatures

because the larger those curvatures the larger the �ux of such lines per unit transverse surface.

4.2.2.3 Gaussian number density of critical events per type

The aforementioned formalism makes no assumption on the type of the merging critical points.

While the coalescence of peaks with �laments (PF critical events, the slopping saddles of Hanami,

2001) are clearly central to the theory of mass assembly, the �lament-saddle to wall-saddle

(FW critical events) and wall-saddle to minima coalescence (WV critical events) also impact the

topology of galactic infall, as they destroy �laments, walls, voids within the surrounding cosmic

web.

Let me therefore compute the number density of critical events of each type of mergers (P ≡
PF, F ≡ FW andW ≡WV). Using the fact that for Gaussian random �elds, equation (4.12) can
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be split into odd- and even-derivative terms, one can write

∂nj
∂R

=
2π2R

R̃2R3∗

Codd︷ ︸︸ ︷〈∣∣∣∣∣
∑

i

xjii

∣∣∣∣∣|xjjj |δ
(3)
D (xi)

〉
×

〈
ϑH(x33 − x22)ϑH(x22 − x11) δD(xjj) δ

(3)
D (xk 6=l)

∣∣∣∣∣
∑

kl

εjkl

2 x2
kkx

2
ll(xkk − xll)

∣∣∣∣∣

〉

︸ ︷︷ ︸
Cj,even

(4.14)

where ε is the completely antisymmetric Levi-Civita tensor, ϑ the Heaviside function, and j =
1, 2, 3 for peak (P), �lament (F ) and wall (W) mergers respectively. Note that equation (4.14) for

a given value of j is essentially the same as equation (4.12), modulo a choice of null eigenvalue

and the requirement that the eigenvalues are sorted. In 3D, Codd and Cj,even have analytical

expressions given by

C2,even = 〈λ1λ3δD(λ2)〉 =
2√
15π

,

C1,even = C3,even = 〈λ1λ2δD(λ3)〉 =
29− 6

√
6

18
√

10π
, (4.15)

and

Codd =

√
27(1− γ̃2)√

50π5

(
2√

21(1− γ̃2)
+ tan−1

√
21(1− γ̃2)

2

)
, (4.16)

which can also be computed in arbitrary dimensions as shown in section 4.A. From this I can

compute the ratio of peak to �lament mergers rP/F = C2,even/C1,even. Interestingly, the event

ratio is independent of the spectral index of the �eld and is given by

rP/F =
24
√

3

29
√

2− 12
√

3
≈ 2.05508 ≈ 37

18
, (4.17)

which is nothing but the ratio between the mean number of wall-type saddles and peaks minus

1, a relationship which is valid in arbitrary dimension, as shown in section 4.A.4. This equation

shows that there are twice more �lament disappearing in �lament merger events (F events) than

in halo merger events (P events). Similarly, I can compute rF/W to deduce that there are twice

more walls disappearing due to �lament mergers (F events) than due to void mergers (W events).

Section 4.A also presents these ratios in dimension 4 to 6.

4.2.3 3D di�erential event counts of a given height
Introducing δD(x− ν) in the expectation of equation (4.14) allows me to write the density of

critical events as a function of height, hence make the distinction between mergers of important

critical points and less signi�cant ones. The introduction of the height will also be used later to

compute the number density of events as a function of cosmic time in section 4.5.1.

For Gaussian random �elds, the �eld only correlates with its even derivatives (second in this

case). Imposing the height of the critical events considered here therefore only modi�es the term

Cj,even while Codd is left unchanged, following

Cj,even(ν) =
〈
ϑH(x33 − x22)ϑH(x22 − x11) δD(xjj)δ

(3)
D (xk 6=l) δD(x− ν)

×
∣∣∣∣∣
∑

kl

εjkl

2
x2
kkx

2
ll(xkk − xll)

∣∣∣∣∣

〉
.

(4.18)
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Interestingly, Cj,even(ν) appears to have an analytical expression once rotational invariants are

used to evaluate the expectations. Following the formalism described �rst in Pogosyan et al., 2009,

we introduce the variables

J1 = I1 , J2 = I2
1 − 3I2 , (4.19)

J3 =
27

2
I3 −

9

2
I1I2 + I3

1 , ζ =
x+ γJ1√

1− γ2
, (4.20)

that are linear combinations of the density �eld x and rotational invariants of its second derivatives

namely the trace I1 = tr H = λ1 + λ2 + λ3, minor I2 = 1/2((tr H)2 − tr H ·H) = λ1λ2 +
λ2λ3 + λ3λ1 and determinant I3 = det H = λ1λ2λ3 of the Hessian matrix H = (xij). The

distribution of these variables is given by

P (ζ, J1, J2, J3) =
25
√

10π

24π2
exp

(
−1

2
ζ2 − 1

2
J2

1 −
5

2
J2

)
, (4.21)

where J3 is uniformly distributed between −J3/2
2 and J

3/2
2 and J2 is positive. Using these

rotational invariants, one can rewrite equation (4.18) for each type of critical event

C1,even(ν) =
〈
|I2|δD(x− ν) δD(I3)B(−2J

1/2
2 < J1 < −J1/2

2 )
〉
,

C2,even(ν) =
〈
|I2|δD(x− ν) δD(I3)B(−J1/2

2 < J1 < J
1/2
2 )

〉
, (4.22)

C3,even(ν) =
〈
|I2|δD(x− ν) δD(I3)B(J

1/2
2 < J1 < 2J

1/2
2 )

〉
= C1,even,

with

δD(I3) =
27

2
δD

(
J3 −

3J1J2 − J3
1

2

)
, (4.23)

δD(x− ν) =
1√

1− γ2
δD

(
ζ − ν + γJ1√

1− γ2

)
, (4.24)

and the condition that the determinant is null due to λj being zero is enforced by restricting the

range of J1 according to the Boolean speci�ed in equations (4.22). Eventually, the integration in

equation (4.22) can be done symbolically and an analytical expression for Cj,even(ν) follows

C1,even(ν)=
∑

i=1,6,9

c1,i exp

(
− ν2

2 (1− γ2/i)

)
, (4.25)

C2,even(ν)=c2,6 exp

(
− ν2

2(1− 5γ2/6)

)
, (4.26)

with

c1,1 =
3
√

5
2γ
√

1− γ2ν
(
275γ4 + 30γ2

(
2ν2 − 23

)
+ 351

)

π3/2 (9− 5γ2)4 ,

c1,6 = −
erf

(
γν√

2
√

5γ4−11γ2+6

)
+ 1

√
5π
√

6− 5γ2
,

c2,6 =
2

π
√

30− 25γ2
,

c1,9 =

erf

( √
2γν√

5γ4−14γ2+9

)
+1

4π
√

5 (9− 5γ2)5/2

(
3600γ4ν4

(9− 5γ2)2 +
120γ2

(
27−35γ2

)
ν2

9− 5γ2
+575γ4−1230γ2+783

)
.
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Figure 4.2.5: The PDF of critical events of the various types (P,F ) in 2D for ns =
−2,−3/2,−1,−1/2 from light to dark. Note that the dominant change with spectral

index is in the amplitude which scales like 1/R̃2/Rd?. The rest of the shape variation

comes from the weaker γ and γ̃ dependence of Codd and Ceven.

The resulting counts of critical events as a function of their height ν is plotted in �gure 4.4.1

for di�erent values of the spectral index ns. Note that ∂2n/∂R∂ν scales like 1/R4
but is also a

function of R via the spectral parameters γ and γ̃.

4.2.4 2D event counts and di�erential counts
Since the formalism is very similar, let me also brie�y present the analogues of equation (4.14) for

2D �elds. It reads

∂2n

∂R∂ν
=

2πR

R̃2R2∗
〈|x211 + x222||x222|δD(x1) δD(x2)〉× (4.27)

〈ϑH(x22−x11) δD(x22)δD(x12) δD(x− ν)|x11−x22|〉 ,

which after some algebra, given the knowledge of the 2D PDF given in section 4.C, yields for the

peak merger rate

∂2n

∂R∂ν
=
RCodd

R̃2R2∗

[
4γν

√
1− γ2

(3− 2γ2)2 exp

(
− ν2

2(1− γ2)

)

+

√
8π(2γ4 + γ2(ν2 − 5) + 3)

(3− 2γ2)5/2
erfc

(
−γν√

4γ4 − 10γ2 + 6

)
exp

(
− 3ν2

6− 4γ2

)]
,

(4.28)

with

Codd =
γ̂ + 3γ̂2 tan−1 (3γ̂)

4π2
, given γ̂ =

√
1− γ̃2 .

The wall merger rate is obtained by swapping ν to −ν in this expression. The two rates are

plotted in �gure 4.2.5 and validated against Gaussian random �elds in �gure 4.4.2. The counts,

∂n/∂R = 2CoddR/(3
√

3R̃2R2
∗) follows by integration over ν.

Section 4.A also presents di�erential counts in dimension 4 to 6, together with asymptotic

expressions in the large dimension limit for the integrated count ratios. As expected, for any
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dimension the number counts per unit log-volume is logarithmically scale invariant (up to the

slow variation in the spectral parameters), i.e. Rd ∂2nd
/
∂ logR∂ν is a function of γ, γ̃ and ν

only.

4.2.5 Beyond Gaussian statistics
Let us �nally compute the one-point statistics for close to Gaussian �elds. The Edgeworth

expansion joint statistics of the �eld at x, P (x, xi, xij , xijk), involving the hierarchy of cumulants

obeys

P (x) = PG(x)

(
1 +

∞∑

k=3

σk−2 〈Hk(x)〉
σ2k−2

·Hk(x)

)
, (4.29)

where Hk is a vector of orthogonal polynomials with respect to the kernel PG obeying Hk =
(−1)k ∂kPG

/
∂xk /PG while at three order in perturbation theory (Bernardeau et al., 2002),

〈Hk(x)〉 /σ2k−2
is independent of the varianceσ2(z) below k = 6. Equation (4.29) is in practice an

expansion of the Gaussian PDF in the mildly non-linear regime where σ(z)� 1, so that the model

is particularly accurate at large scales and at early times. Cumulants such as

〈
x2

1x111

〉
entering

equation (4.29) could in the context of a given cosmological model involve a parametrisation of

modi�ed gravity (via e.g. a parametrisation of F2(k1,k2)), and/or primordial non-gaussianities

(via e.g. fNL). From this expansion, or relying on the connection between event ratio and

connectivity discussed in section 4.A.5, we can for instance compute the non-Gaussian correction

to the ratio of critical events, de�ned in equation (4.17) as

rP/F
rP/F ,G

= 1 + cr
(
8
〈
J3

1

〉
−10 〈J1J2〉 − 21

〈
q2J1

〉)
+O(σ2). (4.30)

where cr =
(
29
√

2+12
√

3
)
/210/

√
π, while σ2

1q
2 = |∇ρ|2 the modulus square of the gradient,

J1 and J2 are de�ned in equation (4.20) via the trace and minor of the Hessian. These extended

skewness parameters are isotropic moments of the underlying bispectrum which, when gravity

drives the evolution, scale with σ at three order in perturbation theory (e.g.

〈
J3

1

〉
/σ is indepen-

dent of σ). The correction to one entering equation (4.30) is negative (approximately equal to

−σ(1/7− log(L)/5) for a ΛCDM spectrum smoothed over L Mpc/h), suggesting that gravita-

tional clustering reduces the relative number of peak mergers compared to �lament mergers: �la-

ments disconnect. When astronomers constrain the equation of state of dark energy using the cos-

mic evolution of voids disappearance they e�ectively measure σ in equation (4.30). Conversely, for

primordial non Gaussianities, the extended skewness parameters must be updated accordingly (see

Gay et al., 2012; Codis et al., 2013). For instance, 〈J1q
2〉 = 〈J1q

2〉grav−2fNL

√
1+f2

NL/(1+4f2
NL).

Since the computation of the expectation (4.14) with the Edgeworth expansion (4.29) is beyond

the scope of this dissertation, let us investigate an alternative proxy for the event rate. Figure 4.2.6

makes use of the perturbative prediction of Gay et al., 2012 to �rst order in σ for the gravitationally-

driven non-Gaussian di�erential extrema counts to compute the product of such counts as a proxy

for the events, namely P(ν) ∝ P (ν)×F (ν), F(ν) ∝F (ν)×W (ν), andW(ν)∝W (ν)×V (ν).

This Ansatz is reasonable, since for a merger to occur, two critical points of the same height must

exist beforehand. We use the Gaussian PDF as a reference, to recalibrate the relative amplitude of

the �lament to peak merger counts. Since Gay et al., 2012 provide �ts to the critical PDFs as a

function of σ, it is straightforward to compute their product.

From �gure 4.2.6, we see that gravitational clustering shifts the peak event counts to lower

contrast, as it should. This is con�rmed in simulation in �gure 4.5.6. Less trivially, the �lament

merger rates also shift towards negative contrasts. From these PDFs one can re-compute the

cosmic evolution of the ratio of critical events: it scales like rP/F = 7/34(1− σ/7) (for n = −1),

in good agreement with equation (4.30), suggesting that this approximation indeed captures the
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Figure 4.2.6: Predicted cosmic evolution of the product of extrema counts as a proxy

for the event counts (W in blue, F in green and P in red) for the variances σ = 0, 0.04,

0.08, 0.12, 0.16 (from light to dark) and an underlying scale invariant power spectra of

index n = −1. The F counts have been rescaled by a constant 205/332 factor to better

match the actual counts. The predicted trend with σ are in qualitative agreement with

the measured counts presented in �gure 4.5.6.

main features of gravitational clustering. This provides a physical understanding of the evolution

of the one-point distribution of the critical events in the mildly non-linear regime.

4.3 Theory: two-point statistics
In the previous section, I have presented the concept of critical events (section 4.2.1) and derived

their number counts counted together and by type (section 4.2.2), and by height (section 4.2.3). I

have also presented how these results can be transposed in two dimensions (section 4.2.4 and

eventually in d dimensions, see section 4.A.3). The formalism has also been extended in the mildly

non-linear regime section 4.2.5.

Let me now present a method to compute the two-point statistics of critical events. Such

statistics are of interest, for example to study the cosmic evolution of the connectivity of peaks, or

to understand how large scale tides bias mass accretion (the so-called assembly bias). Section 4.3.1

presents the two-point statistics of merger events in 3D, while section 4.3.2 provides analytical

approximations while assuming mergers occur along a straight �lament. Section 4.3.3 computes

the conditional merger rates subject to larger scale tides.

4.3.1 Clustering of critical events in R, r space
One cannot generally assume that the orientation of the two critical events are aligned w.r.t. the

separation vector, so the covariant condition for critical event of type j ∈ {P,F ,W}, condj , is

given by the argument of the expectation in equation (4.7) multiplied by requirement on the sign

of the two non-zero eigenvalues. For instance

condP(x) = |J |δ(3)
D (xi) δD(d)× ϑH(−tr(xik))ϑH

(
tr2(xik

)
− tr(xilxlk)) ,

where the two Heaviside conditions ensure that the trace is negative and the minor positive so

that the two eigenvalues are negative. From the joint two-point count of critical events, I can



104 Chapter 4. Forecasting special events driving the assembly of dark halos

de�ne the relative clustering of critical events of kind i, j smoothed at scales (Rx, Ry) and located

at positions (rx, ry), ξij(s) as

1 + ξij(s) =
〈condi(x) condj(y)〉
〈condi(x)〉〈condj(x)〉 , (4.31)

with

s ≡
√

2


 rx − ry√

R2
x +R2

y


 , (4.32)

the event separation between x(0) and y(s). Note that this de�nition of the separation includes

the dependence of the correlation functions to the smoothing scale, as the product of two Gaussian

kernels with scales Rx, Ry is equivalent to smoothing at a single scale R =
√

(R2
x +R2

y)/2. The

de�nition of equation (4.32) provides a natural distance ladder when comparing points at two

di�erent smoothing scales. Evaluating the expectation in equation (4.31) requires full knowledge

of the joint statistics of the �eld P (x, xi, xij , xijk, y, yi, yij , yijk) (involving 40 variables, see

section 4.C.2).

We rely on Monte-Carlo methods in MATHEMATICA in order to evaluate numerically equa-

tion (4.31). Namely, we draw random numbers from the conditional probability that x and y
satisfy the joint PDF, subject to the condition that xk = 0, yk = 0, x = ν1 and y = ν2. For each

draw (x(k),y(k)) depending on the type of critical event hence the sign of tr(xij) and tr2(xik)−
tr(xikxkj) we drop or keep the sample; if it is kept, we evaluate |J(x)|δ(ε)

D (d(x)) |J(y)|δ(ε)
D (d(y))

where δ
(ε)
D is a normalised Gaussian of width ε, which in the limit of ε→ 0 would correspond to

a Dirac function imposing here that the two determinants are zero. Eventually

〈condi(x)condj(y)〉 ≈ Pm(x = ν1, y = ν2, xl = yl = 0)

N
×

∑

k∈Sij

∣∣∣J(x(k))
∣∣∣δ(ε)

D

(
d(x(k))

) ∣∣∣J(y(k))
∣∣∣δ(ε)

D

(
d(y(k))

)
, (4.33)

where N is the total number of draws, Pm the marginal probability for the �eld values and

its gradients, and Sij is the subset of the indices of draws satisfying the constraints i, j on the

Hessians. The same procedure can be applied to evaluate the denominator. Equation (4.31) then

yields an estimation of ξij(s, ν1, ν2). This algorithm is embarrassingly parallel.

This is illustrated in �gure 4.3.1a which shows the auto-correlation of peak merger ξPP on

the one hand, and the cross-correlation of peak and �lament merger ξPF on the other at �xed

merger height, as labelled. Here we used ε = 0.1. Note that because equation (4.31) is a ratio, the

prefactors in the counts involving scales all cancel out. Similar results are presented in 2D on

�gure 4.3.1b.

4.3.2 Correlation of peak merger along filament
Let us brie�y present the two-point statistics of high density peak mergers while assuming for

simplicity that the mergers occur along the same (straight) �lament (discussed in section 4.2.2), as

it is instructive and simpler. In this approximation we can resort to one dimensional statistics.

In the high density limit, we may drop the Heaviside constraint on the sign of the eigenvalues

since all high density critical points tend to be automatically maxima. Then the (1D) correlation

function of peak mergers, 1 + ξν1ν2(s) of height ν1 and ν2 becomes

〈δD(x− ν1)x2
111δD(x1) δD(x11) δD(y − ν2) y2

111δD(y1) δD(y11)〉
〈δD(x− ν1)x2

111δD(x1) δD(x11)〉〈δD(y − ν2) y2
111δD(y1) δD(y11)〉
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Figure 4.3.1: (a): The auto-correlation of peak merger ξPP (in shades of red, as labelled

in terms of the height of the two critical points) and the cross-correlation of peak and

�lament merger ξPF (in shades of yellow, as labelled) as a function of separation s. As

expected, the saddle mergers are clustered closer to the higher peak compared to the

peak mergers. (b): The two-point correlation of events in 2D �elds with scale invariant

power spectra of index ns = −1

where the expectation is over the Gaussian PDF whose covariance for the �eld (x, x1, x11, x111,

y, y1, y11, y111) obeys




1 0 −γ 0 γ00 γ01 γ02 γ03

0 1 0 −γ̃ γ01 γ11 γ12 γ13

−γ 0 1 0 γ02 γ12 γ22 γ23

0 −γ̃ 0 1 γ03 γ13 γ23 γ33

γ00 γ01 γ02 γ03 1 0 −γ 0
γ01 γ11 γ12 γ13 0 1 0 −γ̃
γ02 γ12 γ22 γ23 −γ 0 1 0
γ03 γ13 γ23 γ33 0 −γ̃ 0 1




, (4.34)

where for instance γ02(s) = 〈x(0)y22(s)〉, which can be computed using the formalism presented

in section 2.1.1.3. The dominant contribution in the large threshold ν1, ν2 � 1, large separation

s� 1 regime reads

∆ξ0
ν1ν2(s) =

ν1ν2 (γ00(s) + γ (2γ02(s) + γγ22(s)))

(1− γ2)2 , (4.35)

which as expected scales like the underlying correlation, γ00(s), boosted by the bias factor ν1ν2

(Kaiser, 1984b)
5
. In that limit, the next order correction to the correlation function involving the

third derivative of the �eld reads

∆ξ1
ν1ν2(s) =

2
(
γ̃2γ11(s) + 2γ̃γ13(s) + γ33(s)

)2

(1− γ̃2)2 , (4.36)

where γ̃-weighted linear combination of the auto-correlation of∇∆δ and the cross-correlation of

∇∆δ and∇δ appear, evaluated at events separated by s. The assumption of successive mergers

of peaks occurring along a straight �lament is of course very idealised, and prevents us from

considering cross-correlations between peak mergers and e.g. �lament mergers.

5

As γ02 and γ22 decay faster than γ00.
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4.3.3 Conditional merger rates in vicinity of larger tides
In the context of galaxy formation, it is of interest to quantify conditional merger rates computed

subject to tides imposed by the large scale structure to explain geographically the origin of

assembly bias. To do so one must compute the conditional event counts, subject to a given large

scale critical point at some distance s from the running point x. The critical point can be e.g. a

peak of a given geometry and height, if one is concerned with the impact of clusters on mergers

trees of dark halos in their vicinity (Hahn et al., 2009; Ramakrishnan et al., 2019), or it could be a

saddle point, as a proxy for a larger scale �lament, when studying how halo growth stalls in such

vicinity (Borzyszkowski et al., 2017; Musso et al., 2018). In turn this involves the joint expectation

〈condj(x) δD(yi)|det yij |〉 . (4.37)

Here condj is de�ned as in equation (4.31), namely it is the argument of equation (4.7) for a

critical event of kind j
Evaluating equation (4.37) requires the full knowledge of the joint statistics of the �eld at rx

and ry , P(x, xi, xij , xijk, y, yi, yij) (involving 30 variables). The correlations of the PDF involves

the covariance of the �eld and its derivatives computed at two smoothing scales, Rx and Ry . I

can then marginalise over all variables, subject to e.g. imposing the height, νc and shape, µci of

the large scale critical point

〈cond(x)δD(yi)| det yij |δD(x− ν)δD(y − νc)ϑH(−λi) δD(µi − µci )〉

where λi are the eigenvalues of xij and µi are the eigenvalues of yij . The conditions imposed

by the mergers and the properties of the peaks and large scale environment reduces the number

of integrals from 30 to 21. Section 4.B.3 describes how to sample conditional event counts using

constrained realisation of Gaussian random �elds. While a direct integration of equation (4.38) is

beyond the scope of this dissertation, section 4.5.1 presents the statistics of critical events in the

vicinity of a large-scale �lamentary structure, sampled using constrained Gaussian random �elds.

4.4 Measurements for Gaussian random fields
In the previous sections, I have provided the one-point statistics of critical events section 4.2 and

their two-point statistics section 4.3.

Let me now validate the theory while counting critical events within realisations of Gaus-

sian random �elds. Section 4.4.1 details the procedure followed to generate Gaussian random

�elds. Section 4.4.2 measures the one-point statistics and compares them to predictions, while

section 4.4.3 measures the two-point statistics.

4.4.1 Method
For each power-law power spectrum with spectral index ns = −2,−1.5,−1,−0.5, I have gen-

erated 200 Gaussian random �elds. I have also generated 200 Gaussian random �elds with a

ΛCDM power spectrum using mpgrafic (Prunet et al., 2008) in a Planck cosmology (Planck

Collaboration, 2018a) generated using the Eisenstein and Hu, 1999 �tting formula. Each realisation

will henceforth be called a “cube”. Each cube has a size of 2563
pixels and a physical extent of

100 Mpc/h .
6

Each cube has been smoothed using a Gaussian �lter with scale ranging from

1 Mpc/h to 20 Mpc/h (2.56 px to 51.2 px). The smoothing operation were operated in Fourier

space, assuming periodic boundary conditions. At each scale, all critical points are detected

(minima, saddle points and extrema) using the method detailed in section 4.B.1 while the critical

events have been detected using the method detailed in section 4.B.2.

6

The box size is only relevant in the ΛCDM case, as the power-law cases are scale invariant.
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Additionally, I have generated 200 20482
cubes with a power-law power spectrum with spectral

index ns = −1 and a physical box size of 1 000 Mpc/h which I smoothed with a Gaussian �lter

with scale ranging from 1 Mpc/h to 20 Mpc/h .

4.4.2 Critical events counts

In this section I present the number density of critical event measured in cubes with a power-law

power spectrum and compare the theoretical predictions of section 4.2.3 to measurements in

cubes.

I �rst measured the ratio of the number of critical events of di�erent kind, which is found

to be rF/P = rF/W ≈ 2.1, regardless of the smoothing scale or the underlying power spectrum.

This excess of about 2% in the ratio originates to an over-detection of saddle points with respect

to local extrema. Theory predicts this ratio to be Nsaddle/Npeak ≈ 3.055 in 3D (see e.g. Codis

et al., 2018, equation 2) while the measured value is 3.1. In the following of the chapter, I have

corrected the excess number density of F ,W critical events by applying a correction factor to

their number counts.

Let me now proceed to the number count at �xed density. Figure 4.4.1 shows the PDF of the

critical events as a function of their height for di�erent power-law spectra (ns = −2, −1.5, −1,

−0.5, ΛCDM). The critical events have been selected at scale 2.35 Mpc/h ≤ R ≤ 3.01 Mpc/h
(6.0 px ≤ R ≤ 7.7 px). The lower boundary ensures that the critical points are well separated

7
.

The upper boundary is �xed so that the smoothed cubes have consistent e�ective spectral param-

eters γeff(R) and γ̃eff(R). Indeed, the cubes have scale-dependent spectral parameters induced by

the �niteness of the box and the discreteness of the grid (see e.g. Gay, 2011, �gure 5.1). Errorbars

have been estimated using a bootstrap method ran on 400 subsamples each made of 50 randomly

chosen cubes. Solid lines show the result of a �t of the theoretical formula to the cube data with

free parameters γ̂, ˆ̃γ.

The e�ective spectral index n̂s is �xed using γ =
√

(ns + 3)/(ns + 5). The measured values of

γ and γ̃ are consistent with the e�ective values measured directly in the cubes using equation (2.97).

For example with ns = −2, the values measured in the cubes are γeff = 0.62 ± 0.02, γ̃eff =
0.72± 0.01 (ns,eff = −1.75± 0.13) using equation (2.97). The mean values have been estimated

with a sample of 100 cubes and the errors are the standard deviations of the sample. The �tting

procedure on the PDF of the critical events yields γ̂ = 0.621 ± 0.002, ˆ̃γ = 0.737 ± 0.004
(n̂s = −1.74± 0.02). The relative di�erence between theory and measurements, presented on

the upper panel of �gure 4.4.1, shows no systematic deviation of the measurements and is within

a few percents in the region where most of the events are.

In order to further test the theoretical prediction, I have proceeded to the same analysis in

the 2D case. The results are presented on �gure 4.4.2 and show that the agreement between

theory and measurements is of the order of the percent. Once again, no systematic deviation

of the measurements is noted. The results in 2 and 3D con�rm the analytical formula derived

in section 4.2.3 and illustrate the accuracy of the detection algorithm presented in section 4.B.

Interestingly, since the algorithm has been designed to make no assumption on the number of

dimensions, it is expected to work as well in d dimensions.

4.4.3 Two-point statistics

Let me now estimate the two-point statistics of critical events using the critical events from the

cubes presented above. For any two subsets A and B of critical events, one can estimate their

7

Critical points are typically separated by R∗ & 0.6R (for ns < 0), so R = 6 px gives a typical separation of

3.6 px between critical points, which is larger than the number of points used to infer the curvature.
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Figure 4.4.1: PDF of the critical events as a function of height in a scale invariant

GRF as labelled. The left bundle corresponds to void mergers, the middle bundle to

�laments mergers and the right bundle to peak mergers. The solid curve corresponds

to the theory while the error bars correspond to the error on the mean extracted from

160 simulations. The grey lines are the results obtained for a ΛCDM power spectrum
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correlation function numerically using

ξAB(s) =
〈AB〉

f
√
〈ARA〉〈BRB〉

, (4.38)

where RA and RB are uniformly distributed random points with 1/f times the number of points

as A and B respectively. I have additionally checked that common estimators, such as the Landy-

Szalay estimator yield similar results. This is further discussed in section 4.B.4, which shows

that both estimators yield similar results at scales of interest to our analysis (s = r/R ' 1). For

each cube in the simulation, I then select all critical events in a thick slice of smoothing scales

(∆R/R = 0.3). The critical events are then split in two subsamples, the �rst is selected at an

overdensity ν = 1 with kind j and the second at ν = 0.7 with kind k (j, k ∈ {P,F ,W}). The

correlation functions are then given by the number of pairs at distance s = r/R in all cubes using

equation (4.38). The pair counting was done using a dual-tree algorithm, as described in Moore

et al., 2001
8
.

Figure 4.4.3 shows the measured correlation functions in 2D for a power law power spectrum

with spectral index ns = −1 (top panel) and in 3D with a ΛCDM power spectrum smoothed at

scales between 1 and 20 Mpc/h (bottom panel). In both cases the PF cross-correlation function

(peak merger to �lament merger correlation) peaks at r ≈ 1.5R while the PP auto-correlation

function (peak merger auto-correlation) peaks at r ≈ 2.5R. This indicates that each halo merger

is more likely to be followed by a �lament merger compared to another halo merger. Interestingly,

peak mergers are also more likely to be followed by void mergers. Indeed, a halo merger induces

a topological defect, as it leads to a resulting over-connected halo. The defect is quickly corrected

by a �lament merger, decreasing the local connectivity of the halo back towards the cosmic

average. Doing so another topological defect appears as a void becomes under-connected as one

of its walls disappeared. This last defect is then corrected by a last void merger that makes the

under-connected void disappear. On average, critical events happen so that the global ratio of

peak-to-�lament, �lament-to-walls and wall-to-void stays constant as smoothing increases, so

that the global connectivity is preserved. The link between critical events and global connectivity

of the cosmic web is further discussed in section 4.5.2.

4.5 Applications to galaxy formation and discussions

I showed how one can derive the one-point and two-points statistics of critical events in sections 4.2

and 4.3. I have then successfully compared the predictions to Gaussian random �elds and provided

the two-point correlations functions in section 4.4.1.

The scope of application of the present formalism is obviously very wide. Rather than

attempting to cover it all, I will present a few examples here, while a more thorough investigation

is left for future work.

In a cosmic framework, section 4.5.1 will �rst translate the one-point statistics presented in the

previous section into halo and void merger rates as a function of mass and redshift. Section 4.5.2

explains how mergers of �laments need to match that of halos in order to preserve the connectivity

of peaks. Section 4.5.3 explains how conditional merger counts in the vicinity of a �lament explains

how the environment drives assembly bias. Section 4.5.4 illustrates how the theoretical predictions

compare to results fromN -body simulations and galaxy catalogues. It also shows how wall merger

rates can be used to yield constraints on modi�ed gravity or primordial non gaussianities.

8

See the scipy doc for more information.

https://docs.scipy.org/doc/scipy-0.19.1/reference/generated/scipy.spatial.cKDTree.count_neighbors.html
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Figure 4.4.3: (a): Correlation functions between critical events P,F in 2D at �xed

smoothing scale. (b): Correlation functions between critical events P,F ,W in 3D at

�xed smoothing scale. Pairs of critical events have been selected at ν = 0.7 and ν = 1.0.

The correlation function of halo-merger with �lament-merger, ξPF , peaks at r ∼ 1.5R
while the halo-merger auto-correlation functions ξFF peaks at r ∼ 2R. This shows

that halo-mergers are more likely to be followed by �lament-mergers. The data have

been �ltered using a Savgol �lter. Errorbars have been estimated assuming a Poisson

noise on the sample.

4.5.1 Merger rates in M , z space
The predictions in the initial Lagrangian space bear theoretical interest, yet they do not translate

easily to measurable quantities. In this section, let me show how one can map the predictions

to observable quantities, and in particular merger rates in M, z space. It is straightforward to

change variable from R to M (recalling that M = 4
3πρ̄(αR)3

from equation (4.2)) and from ν
to z using the spherical collapse condition (equations 4.1 and 4.2), so that for condition c (peak,

void) one has
9

∂2n

∂ logM∂z

∣∣∣
c

=
∂2n

∂R∂ν

∣∣∣
c

∂R

∂ logM

∂ν

∂z

= − ∂2n

∂R∂ν

∣∣∣
c

δc
3αD(z)2

dD

dz

(
3M

4πρ̄

)1/3

, (4.39)

where α ≈ 2.1 and ρ̄ ≈ 2.8× 1011 h2M�/Mpc3 ΩM (see e.g. Musso, Cadiou et al., 2018, Table

A1). The same reasoning can be applied to get a similar relation for void mergers (or equivalently

wall mergers) substituting δc by |δv| = 2.7 (see Jennings et al., 2013, equation 8). Note that this

simple relation holds in principle for small enough voids only (R / 3 Mpc/h). A more detailed

study will be provided in future works. From equations (4.14) and (4.39), I am now in a position

to count how many (peak, void) mergers occur early or late in the accretion history of a certain

mass or within some mass range, via straightforward integration.

Figure 4.5.1 shows the merger rate of peaks and voids as a function of the mass of non linearity.

The cosmology-dependent terms of equation (4.39) (D(z) and dD/dz ) have been computed using

the code Colossus (Diemer, 2018) in a Planck cosmology. With increasing time mergers of

increasing size are able to happen, as the collapse barrier decreases. In order to evaluate the

number density of critical events, I have assumed a scale-dependent equivalent power-law power

spectrum
10

. Note that the cuto� at large-scale is signi�cantly faster that the Press-Schechter

9

Note that dD/dz = −Df/(1+z) with f ≡ d logD/d log a ∼ Ω0.6
m .

10

At each scale, the equivalent power-law power spectrum is given by the formula ns,eq = −3−2 d log σ/d logR ,

where σ is computed using a ΛCDM power spectrum.
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Figure 4.5.1: PDF of the halo merger rate (solid red lines) and the wall merger rate

(dashed blue lines) as a function of redshift of formation (from dark to light at z =
0, 0.25, 0.5, 0.75, 1), see the text for details, up to a renormalisation. For the sake of

clarity, only the redshifts z = 0, 0.5, 1 appear in the legend. For small masses the merger

rate follows the Press-Schechter (Press and Schechter, 1974) halo mass function up to a

renormalisation (black dotted line), while at larger masses the halo merger rate decays

signi�cantly faster. As expected, the transition mass increases with time. The same

evolution is found for void mergers.

cuto�, as mergers of large-mass objects require two massive objects.

It should in principle be possible to generalise equation (4.39) for �lament mergers, but this

would require the knowledge of a relation between the initial overdensity and the mass of the

�lament or its length, as well as a collapse condition. In practice, this would likely result in

implementing a cylindrical collapse condition, while Pogosyan et al., 2009 suggested this could be

achieved using a somehow smaller critical overdensity for �lamentary collapse. The impact of

our results on �lament merger rates in M, z space will be done in a follow-up work.

Beyond the scope of this dissertation, those results could also be extended to take into account

mergers with di�erent ratios, so that they can be compared to measurements in numerical

simulations (e.g. Genel et al., 2009; Fakhouri et al., 2010; Rodriguez-Gomez et al., 2015).

4.5.2 Consistency with cosmic connectivity evolution
The properties of the initial random �eld was shown by Codis et al., 2018 to control to a large

extent the connectivity of dark halos, as de�ned by the number of connected �laments (locally

and globally) at a given cosmic time. The upshot of this work is that the packing of peaks (i.e. the

“volume” they occupy, as imposed by their exclusion zone) and saddles implies that 3-4 �laments

typically dominate locally. Interestingly, the rate of �lament disappearing must match the peak

merger rate, in order to preserve this number. Beyond numerology, this rate is important because

�laments later feed coherently dark halos, so their lifespan matters to understand the balance

between �lamentary cold gas in�ow (from subsisting �laments) and environmentally-driven

disruptions (from �laments mergers).

In practice, one should distinguish the local and global connectivity (see Codis et al., 2018,

for more details). Unfortunately, the link between global connectivity and merger rates that was

discussed in the present work does not translate straightforwardly to the local connectivity. Our
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qualitative understanding of the critical structure of Gaussian random �elds remains in close

relation to packaging: each vicinity of a critical point, and with the same argument, of a critical

event, must by continuity occupy a certain volume of space, as set by its eigenvalues, which

puts constrains on the position of other points in the vicinity. Indeed, critical points are found

where the gradient vanishes, with some local curvature, so that the �eld is quadratic in each

eigenvector’s direction. As a consequence, the gradient of the �eld is linear at non-null separation

and cannot vanish, so that no other critical point can be found in the direct vicinity of another

critical point or event. At large separations the �eld decorrelates from its values at the critical

point, so that another critical point event becomes likely. The same reasoning applies to critical

event, except that the �eld has a third order behaviour along the ridge of the vanishing saddle

point (it is an in�ection point in that direction). The idea is that e.g. before connecting a given

peak to a peak of a di�erent height, the �eld must �rst go through a local minimum along the

ridge, which distance is set by the ‘width’ of that peak. For events, the process of smoothing the

�eld will impact both the local curvature but also the curvature of these other points. Hence, it is

expected that smoothing jointly disconnects neighbouring peaks as mergers occur: the ridges are

smoothed out because technically their saddle points vanish.

I can quantify this process via the two-point correlation functions of these events. From the

auto- and cross-correlations of the P and F events presented in section 4.3, I can de�ne the ratio

of the separation at the maximum of these two correlations (sij = argmaxsξij(s)) as a measure

of the relative ‘proximity’ of the two events. Since this ratio sPF/sPP ≈ 3/4 is smaller than

one, it means that �lament mergers are more clustered around halo mergers than halo mergers

around halo mergers, so that the rate at which �laments disappear matches the merger rate and

the typical number of �laments per halo remains constant through cosmic time. As a result of

this spatial clustering, the most likely sequence happening is a PFFP , (one halo merger, followed

by two �lament mergers, followed by a halo merger) as presented on the cartoon of �gure 4.5.2 in

2D. This sequence conserves the connectivity of peaks, and is consistent with the relative rates of

events. Figure 4.5.3 illustrates an analogous consistent PF4P (one halo merger, followed by four

�lament mergers, followed by a halo merger) sequence in 3D. Figure 4.5.4 shows how the local

connectivity of 3 can also be preserved, as the weaker �laments typically lie o� the main plane.

Finally, the clustering of �lament disappearance impacts the connectivity of peaks as they

merge as discussed in the next section (see �gure 4.5.5, bottom right panel). This is a direct

consequence of the clustering of events of the various types.

4.5.3 Assembly bias in the frame of filaments

Let me now make use of the merger statistics to study the impact of the large scale structures

on assembly bias, following section 4.3.3. Previous works have highlighted the modulation

e�ect induced by large-scale �lamentary structure on the assembly of dark matter halos and their

galaxies. Indeed, it is expected on theoretical grounds that the typical accretion rate increases when

going from saddle towards nodes Musso, Cadiou et al., 2018. Looking at galactic properties instead,

Kraljic et al., 2019 showed that the galactic ratio of rotational-velocity-to-velocity-dispersion

(v/σ) is also modulated as a function of the distance and orientation to the nearest �lamentary

structure. Using the framework developed in this work, I generate a suite of Gaussian random

�elds constrained to the presence of a proto-�lament (represented as a �lament-type saddle point)

at the centre of the box, the exact generation procedure being described in section 4.B.3. The

proto-�lament is de�ned at a scale R = 5 Mpc/h , is oriented along the z axis and lays in a wall

in the yz plane. Using the set of constrained cubes, I compute the excess density of each kind of

critical event with respect to the cosmic mean, at �xed smoothing scale (hence at �xed object

mass) 2.5 ≤ R ≤ 5 Mpc/h . The results are shown on �gure 4.5.5.

The peak merger rate is shown on the top left panel of �gure 4.5.5. Going from the voids
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4

6

Figure 4.5.2: Snapshots of the density �eld at two smoothing scales (colour coded from

blue, low density to red high density). The black line represents density ridges/trough

connecting the red peaks, and the blue voids via the green saddle points. As the two

low persistence pair of peaks (in white) merge the connectivity increases from 4 to 6 (as

labeled). The fate of this connectivity now depends on the nature and location of the

next merger events inspired from Sousbie et al., 2011.

to the wall, from the wall to the �lament and from the �lament to the nearest node, the peak

merger rate increases and the maximum peak merger rate is found at the location where a node

is expected (z ∼ ±10 Mpc/h). At larger scales, the �eld becomes unconstrained so that the peak

merger rate falls back to its cosmic mean. I reproduce here from �rst principle the results of

Borzyszkowski et al., 2017, showing that halos close to the �lament saddle are stalled compared

to those in nodes: they do not undergo many mergers nor do they accrete much as the local tidal

�elds channels all the matter towards the two surrounding nodes, bypassing the centre of the

�lament. Quantitatively, halos forming at the centre of the �lament are found to have a halo

merger rate close to the cosmic average, while those close to the nodes are expected to have 40%
more mergers. Conversely, halos forming in a void next to a �lamentary structure are expected to

have a merger rate −20% smaller than the cosmic mean.

Filament merger rates act locally to decrease the connectivity of halos, as each �lament

merger will disconnect one �lament from two halos. The top right panel of �gure 4.5.5 shows

that the merger rate is maximal along the wall and minimal along the �lament. Going o� the

plane of the wall (x direction), the �lament merger rate simply decreases towards the cosmic

mean. Interestingly the �lament merger rate is minimal in the nodes (−13%) and maximal in

the wall (+10%). As a consequence, halos forming close to a node have a larger halo merger

rate but a smaller �lament merger rate. This in turn will have an impact on the assembly of dark

matter halos and their galaxies. In the wall where the �lament merger rate is the highest, I expect

�laments to merge faster than halos, resulting in halos with fewer connected �laments. This can
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Figure 4.5.3: As labelled from a) to d) an abstraction of the merger sequence of a 2D

‘cosmic crystal’ impacting the connectivity of the central peak. Ridges are shown in

black while troughs are shown in dark blue. The red circles represent the peaks, the

green stars the saddles and the blue diamonds the voids. A P1 merger (highlighted in

light grey) rises the mean connectivity of the central peak from 4 to 6, but the next two

F1,2 mergers (highlighted in darker grey) lower it back to 4. The next P2 merger (panel

d) will reduce the void’s connectivity. A more realistic representation of this process is

also visible on �gure 4.2.3.

be interpreted using the results of section 4.2.4. Indeed, in a cosmic wall, the geometry is locally

2D so that the theoretically expected connectivity becomes 4 instead of 6.

The bottom left panel of �gure 4.5.5 shows that the wall merger rate is decreased in walls

and even more strongly in �laments. The minimum wall merger rate is found at the location of

the node with a rate −40% smaller than the cosmic mean. Conversely, the wall merger rate is

enhanced in the two voids surrounding the wall with a rate 20% above the cosmic mean.

The evolution of the connectivity with cosmic environment is resumed by the bottom right

panel of �gure 4.5.5, which shows the ratio of halo mergers (P critical events) to �lament mergers

(F critical events), for which the cosmic mean is 2.055 (see equation (4.17)). Small values of

rF/P indicate that halos merge faster than their surrounding �laments, so that the connectivity

increases as halos grow. On the contrary, large values of rF/P indicate that �laments merge faster

than halos, so that the connectivity decreases as halos grow. The bottom right panel of �gure 4.5.5

shows that in nodes, the ratio drops to about rF/P ≈ 1.1. On the contrary halos forming in voids

are expected to have a ratio of about 2.4. I therefore expect that, at �xed �nal mass, halos forming

next to a node will grow an increasing number of connected �laments
11

. The expected physical

11

Conversely Codis et al., 2015 found that when averaged over all large scale structures, connectivity increases with

mass.
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Figure 4.5.4: Following the cartoon shown in �gure 4.5.3, the left panel shows a

smoothing sequence (from top to bottom) which would preserve the connectivity of a

3D peak. It requires that each P merger should be followed by four F mergers in the

vicinity. The right panel highlights how the multiplicity is preserved if one starts with 3

dominant co-planar �laments.

outcome of this process is that the streams feeding a galaxy growing next to a node will become

more and more isotropic with increasing connectivity.

Assuming that an isotropic acquisition of matter leads to a smaller amount of angular mo-

mentum being transferred down to the disk, I propose that this e�ect prevents the formation of

gaseous disks in the vicinity of nodes. Conversely, I expect that halos growing in the neighbour-

ing voids see their �laments destroyed faster than they merge, so that the halo is likely to grow

with steadier �ows coming from a few �laments (see also Codis et al., 2015; Laigle et al., 2015,

section 6.2.1, and 5 resp. for similar conclusions reached via the kinematic structure of large scale

�ows in �laments). The results presented here show a signi�cant e�ect of the saddle point on

the dynamical evolution of halos and their surrounding. At �rst order, the one-point statistics

presented in section 4.2 show that the number density of halo mergers increases with increasing

density, while the number density of �lament merger decreases so that a more detailed analysis

will be required to disentangle the e�ect from density from the modulation from the cosmic

web. Following the arguments of Musso, Cadiou et al., 2018, one can however argue that the

saddle point di�erentially impacts the statistics of halo mergers compared to �lament mergers (as

their two-points correlation functions are in principle di�erent), so that an e�ect beyond density

can be expected. This could be checked by comparing the �lament merger-to-halo merger ratio

estimated from the mean local density alone to the maps presented in �gure 4.5.5. These e�ects

however require a more in-depth analysis and will be studied in future works.

4.5.4 Departures from gaussianity

With increasing time, non-linearities arising from gravitational collapse translate into departures

from gaussianity (Bernardeau et al., 2002). This can formally be studied in the framework described

in section 4.2.5. In particular, the PDFs will become skewed as the dynamics of gravitational

collapse depends on the primordial overdensity.
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Halo mergers (P events) Filament mergers (F events)

Wall mergers (W events) Filament merger to peak merger F/P ratio

Figure 4.5.5: From left to right and top to bottom, peak-merger, �lament-merger and

wall-merger excess density around a large-scale proto-�lament, illustrated by the vertical

cylinder (z direction) and the wall in which it resides, illustrated by the grey plane (yz
plane). The bottom right panel shows the local ratio of �lament to peak mergers rF/P .

Each side of the cube shows a slice through the centre, shifted to the side of the plot for

visualisation purposes. Red regions have an excess of critical events while blue regions

have a de�cit of critical events with respect to cosmic average. Interactive versions of

these plots can be found online for the halo mergers, �lament mergers, wall mergers

and �lament to peak merger ratio. Going from voids to wall, from wall to �lament and

from �lament to the nearest node (along the z axis), the halo merger rate increases and

the �lament merger rate decreases. Halos in the �lament are therefore stalled: they

merge less than those in the nodes. At the same time, the �lament merger rate decreases

when going from the �lament towards the node so that the mean connectivity, given by

the ratio of halo merger to �lament merger, is expected to increase.

https://pub.cphyc.me/Science/3d/critical_events_peak_around_filaments.html
https://pub.cphyc.me/Science/3d/critical_events_filament_around_filaments.html
https://pub.cphyc.me/Science/3d/critical_events_wall_around_filaments.html
https://pub.cphyc.me/Science/3d/critical_events_filament_to_peak_around_filaments.html
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Figure 4.5.6: Critical events number count as a function of the rarity in dark-matter

only simulations in di�erent redshift bins as mentioned in the legend, with the same

colours as �gure 4.4.1. The curves have been normalised so that in each redshift bin,

the integral of the three curves (W,P,F ) equals one. At high redshift, the merger

rates resembles the Gaussian prediction (thick dashed grey lines, with an arbitrary

normalisation). The skewness of the distributions increases with decreasing redshift as

the �eld departs from gaussianity.

Results in N -body simulations

Here, let me quantify the e�ect �rst on simulations, and then compare to the proxy of section 4.2.5

relying on known perturbative results. Figure 4.5.6 presents the redshift evolution of critical event

counts measured in 200 realisations of ΛCDM simulations in boxes of 500 Mpc/h involving 2563

particles evolved using Gadget (Springel et al., 2001) sampled on a 2563
grid smoothed with

a Gaussian �lter over 6 Mpc/h . The algorithm described in section 4.B is used to identify and

match the critical points. The qualitative similarity with the cosmic evolution of the measured

event counts and the prediction shown in �gure 4.2.6 is striking, strongly suggesting that indeed,

the set of critical events in the initial condition do capture the upcoming cosmic evolution of the

�eld.

At high redshift, the Gaussian prediction is recovered. At lower redshift, the P and F counts

shift towards lower contrast, but respectively decrease and increase in amplitude, while the

W counts increase in amplitude. Since the �rst halos to merge are due to high σ peaks, it is

expected that the low-z PDFs are biased towards low densities. Similarly, the mean density of

�lamentary structure decreases with increasing time, as the less dense �laments take more time

to gravitationally form, so that the PDFs of the �lament mergers shift to smaller densities at

low z. The evolution of void structures with cosmological time is somehow symmetric to the

evolution of peaks: early forming voids are the most underdense while late-time voids form out of

less underdense regions. At �xed resolution, this results in a shift of the typical density of voids

towards higher densities. Indeed, in the limit of in�nite time, it is expected that the only voids

found at a given size stem from ν = 0, as any void with ν < 0 will have had time to collapse

earlier. This con�rms that the predictions from the Gaussian initial condition, extended to take

into account departures from gaussianity can indeed be used to predict halo, �lament and wall

merger events in real datasets.
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Figure 4.5.7: PDF of the critical events extracted from the galaxy catalogue of

Horizon-AGN as a function of the log galaxy density for a range of cosmic time as

labelled. When compared to �gure 4.5.6, the PDFs of are strongly biased, with much

fewer walls hence wall mergers detected. From Nicolas Cornuault, private communica-

tions.
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Figure 4.5.8: (a): Critical point number counts as a function of the rarity in dark-matter

only simulations in di�erent redshift bins as mentioned in the legend. The curves have

been normalised so that in each redshift bin, the integral of the four curves equals

one. The purple bundle corresponds to voids, the blue one to walls, the green one to

�laments and the red one to peaks. (b): Product of the PDFs. At large redshifts, the

curves resemble the prediction of �gure 4.2.6.
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Comparison to galaxy catalogues
It is of interest to follow the position of all critical points (not just the maxima) explicitly as a

function of true cosmic time in galaxy catalogue extracted from hydrodynamical simulations, so

as to assess i) the impact of biasing involved in selecting speci�c tracers and ii) how non-linear

clustering impacts the statistics. This was done in collaboration with N. Cornuault and C. Pichon

illustratively using 330 snapshots of galaxies extracted from Horizon-AGN (shown on �gure 4.1.1

at redshift zero with its set of walls and �laments), for which the critical points are derived using

DisPerSE with a persistence threshold of σ/100. The algorithm described in section 4.B is used

to match merging critical points as a function of redshift. The set of events are then binned as a

function of log density for 4 redshift bins and shown on �gure 4.5.7. Gravitational clustering has

skewed the PDFs, but most dramatically galaxies poorly trace under dense regions, hence the

number of wall mergers plummeted. While more work needs to be done in order to be conclusive,

this illustrates that the detection algorithms presented here can readily be applied to virtual

catalogues in state-of-the-art simulations.

Void counts as a cosmological measurement
One particular application of these results is the study of the void number counts. Voids are

very interesting laboratory both for galaxy evolution and cosmology. They represent primitive

environments for galaxies, where density is low and matter �ow is still relatively curl-free. Void

galaxies are therefore interesting probes for galaxy formation (e.g. Lindner et al., 1996). Voids are

also a tool of choice to probe the cosmology or to test theory of modi�ed gravity (e.g. Gay et al.,

2012; Lavaux and Wandelt, 2012; Cai et al., 2015) as a mean to constrain the equation of state of

dark energy. In particular, these authors have used the cosmic evolution of the size and the number

of voids as constrains on the linear matter growth function D(z). In the present formalism void

disappear as a function of cosmic time via mergers of walls, hence the one-point statistics of

wall merger could be used as a cosmic probe. From equation (4.29) the cosmic evolution of the

rate of void of volume V merging during time interval δz can be expanded to �rst order in σ via
equation (4.39) as

∂2n

∂logV∂z =
∂2n

∂logV∂z
∣∣∣
G

+ σ(z)
∂2n

∂logV∂z
∣∣∣
NG

, (4.40)

where the �rst term re�ects cosmic evolution of the rate of void disappearance presented in sec-

tion 4.5.1, while the second term is obtained by substituting ∂2n/∂R∂ν
∣∣
G

by ∂2n/∂R∂ν
∣∣
NG

into

equation (4.39). As discussed in section 4.2.5, the scaling of these non-Gaussian corrections yield

joint estimates for the cumulants (Codis et al., 2013), hence a measure of fNL or a parametrisation

of modi�ed gravity.

4.6 Conclusion
As a proxy for cosmic evolution, I computed the rate of merging critical points as a function of

smoothing scale from the primordial density �eld to forecast special events driving the assembly of

dark halos and possibly galaxies. I considered all sets of critical points coalescence, including wall-

saddle to �lament-saddle (�lament mergers) and wall-saddle to minima (wall or void mergers), as

they impact the topology of galactic infall, such as �lament disconnection or void disappearance.

The theory developed in this chapter, hereafter the “critical event theory”, is central to the

understanding of the e�ect of the cosmic web on the formation of galaxies, since their evolution

is the result of their past history, which is usually encoded by their merger tree and the properties

of their host halo. In this context, the critical event theory provides a way to encode not only the

evolution of the halo hosting the galaxy via its merger tree, but also the evolution of its upcoming

internal structure with time, which itself is responsible for driving the angular momentum

acquisition, as will be seen in chapter 6. I argue that the theory can be seen as an extension to the
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classical halo model, where the properties of galaxies have an extra dependence on their “dressed”

merger history which takes into account the merger history of their surrounding �laments and

walls.

The scope of this theory is obviously very broad, but let me sum up here the results relevant

to astrophysics and in particular to the problem of the assembly of galaxies.

i) I studied critical events of all types, their clustering properties, and presented analytical

formulas for the one-point statistics of these events in �elds of dimensions up to 6, and also

the two-point statistics.

ii) I have established the link between critical events and connectivity. This allows me to com-

pute the connectivity of peaks and other critical events in arbitrary dimensions. Physically,

I established the duality between the evolution of the cosmic web (critical events) and its

topological features (connectivity).

iii) I provided a covariant formulation of the critical event theory which allowed me to also

compute the two-point statistics for critical events. The two-point statistics show that halo

mergers are typically followed by a �lament merger, so that the connectivity is conserved.

iv) I have shown that the critical event theory can be further extended to take into account the

early stages of non-linear gravitational evolution. This has then been compared positively to

numerical simulations at high redshift. This extension also probes the non-Gaussianities that

arise from primordial non-Gaussianities and can be used as a cosmological measurement.

v) I have shown that halos forming in nodes grow by successive mergers, while their �laments

do not merge, so that that their local connectivity increases. The trend is expected to reverse

in voids, where �lament mergers happen faster than halo mergers, resulting in halos with a

small connectivity. This is likely to have an impact on galaxy formation, and in particular

on angular momentum acquisition.

I have only touched on practical applications for the forecasting of special events in a multi-

scale landscape. It should prove to be a fruitful �eld of research in astronomy and beyond in the

future. This work is part of an ongoing research e�ort and will lead to a publication in the near

future.

4.A Critical events in ND
For the sake of completeness and possible interest in other �elds of research, let us present the

one-point statistics of critical events in arbitrary dimension d.

4.A.1 Joint PDF of the field and its second derivatives
From Pogosyan et al., 2009 the probability of measuring the set of d eigenvalues of the d dimen-

sional Hessian {λi} and density ν obeys

Vd
∏

i≤d
dλi
∏

i<j

(λj − λi) exp

(
−1

2
Qγ(ν, {λi})

)
, (4.41)

where Qγ is a quadratic form in λi and ν given by

Qγ(ν, {λi}) = ν2 +
(
∑

i λi + γν)2

(1− γ2)
+Qd({λi}) , (4.42)

with

Qd({λi}) = (d+ 2)


1

2
(d− 1)

∑

i

λ2
i −

∑

i 6=j
λiλj


 . (4.43)

In equation (4.41) Vd arises from the integration over the angles and is given by equation (4.56)

below.
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4.A.2 Joint PDF of the first and third derivatives
Here, we will look into the PDF of the �rst and third derivatives in d dimensions in order to

compute the odd derivative term Codd that enters critical event number counts in d dimensions.

First, let us note that the �rst derivatives are Gaussian distributed with individual variance〈
x2
i

〉
= 1/d so that the probability for all �rst derivatives to be zero is

P (∇ρ = 0) =

(
d

2π

)d/2
. (4.44)

Now let us study the statistics of the third derivatives. By symmetry, one can note that

〈(∑

i

x1ii

)2〉
=

1

d
, (4.45)

because the third derivatives are rescaled by σ3, and

〈
x2

1jj

〉
= 〈x111x1jj〉 =

1

5

〈
x2

111

〉
= 3 〈x1jjx1kk〉 ∀j 6= k 6= 1.

Therefore,

1

d
=
〈
x2

111

〉
+(d−1)

〈
x2

1jj

〉
+2(d−1) 〈x111x1jj〉+(d−1)(d−2) 〈x1kkx1jj〉 ∀j 6= k 6= 1 (4.46)

implies that

〈
x2
iii

〉
= 15/d(d+ 2)(d+ 4) and the full covariance matrix of the third derivatives is

therefore now known. However, we are interested in statistics subject to a zero gradient constraint,

in particular the three quantities of interest are (�xing d as the degenerate direction and assuming

an implicit summation on the i indices)

〈
x2
ddd|xd = 0

〉
=
〈
x2
ddd

〉
− 〈xdiixd〉

2

〈
x2
d

〉 , (4.47)

〈
(xdii)

2 |xd = 0
〉

=
〈

(xdii)
2
〉
− 〈xdddxd〉

2

〈
x2
d

〉 , (4.48)

〈xdiixddd|xd = 0〉 = 〈xdiixddd〉 −
〈xdxddd〉 〈xdxdii〉〈

x2
d

〉 , (4.49)

which can easily be computed thanks to the additional relation

〈
x2

11

〉
= 3/d(d+ 2),

〈
x2
ddd|xd = 0

〉
=

3

d(d+ 2)

[
5

d+ 4
− 3γ̃2

d+ 2

]
, (4.50)

〈
(xdii)

2 |xd = 0
〉

=
1− γ̃2

d
, (4.51)

〈xdiixddd|xd = 0〉 =
3

d(d+ 2)
(1− γ̃2). (4.52)

4.A.3 Critical event number counts in ND
It now follows that the critical event number counts of type j at height ν in dimension d read

∂2ndj
∂R∂ν

=
RVdCd,odd

R̃2Rd∗

〈
δD(λj)

∣∣∣∣∣∣
∏

i 6=j≤d
ϑH(λi − λj)λi

∣∣∣∣∣∣

〉
, (4.53)
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where this expectation is computed using the conditional expectations presented in the previous

section. Equation (4.53) is a function of ν because of the correlation between ν and

∑
i λi seen in

equation (4.42). Recalling the formal analogy with the �ux of critical lines per unit hyper surface,

∂2ndP
∂R∂ν

γν→∞∼ R

R̃2Rd∗

VdCd,odd√
2π

exp

[
−1

2
ν2

](
ν

R0

)d−1

,

in the large d large ν limit (Pogosyan et al., 2009). The contribution from the odd part of the

distribution function, Cd,odd obeys

Cd,odd =

〈∣∣∣
∑

i

xjii

∣∣∣|xjjj |δ(d)
D (xi)

〉
, (4.54)

where the expectation in equation (4.54) should be computed with the odd derivative PDF given

in section 4.A.2. After a bit of algebra,

Cd,odd =

(
d

2π

)d
2
[

2
√

6

π

√
(d− 1) (1− γ̃2)

d2(d+ 2)2(d+ 4)
+

6
(
1− γ̃2

)

πd(d+ 2)
tan−1

(√
3

2

√
d+ 4

√
1− γ̃2

√
d− 1

)]
.

(4.55)

Finally, the volume Vd of the hyper-wedge corresponding to the marginalisation over the orienta-

tion of the Hessian obeys

Vd =
1

2d−1d!

x
dSO(d) =

1

2d−1d!

n−1∏

i=1

Vol(Si) ,

=
1

2d−1d!

n−1∏

i=1

2π(i+1)/2

Γ((i+ 1)/2)
, (4.56)

where Vol(Si) denotes the i-dimensional volume (i.e. surface area) of the unit i-sphere in Ri+1
,

the factor d! comes from not sorting the eigenvalues and the factor 2d−1
from not imposing their

sign. It follows that V2 = π/2, V3 = π2/3, V4 = π4/12, V5 = π6/45 and V6 = π9/540. The

PDFs of critical events in 4D, 5D and 6D are shown in �gure 4.A.1. Note that the intermediate

signature events dominate in number over the extreme ones, in accordance with the relative

number of critical points.

4.A.4 Ratios of critical events
From equation (4.42), the integration over ν yields the marginal probability of {λi}

Vd
∏

i≤d
dλi
∏

i<j

(λj−λi) exp


−1

2
Qd({λi})−

1

2

(∑

i

λi

)2

 . (4.57)

Finally, the d dimensional ratio of critical event of type j and k is simply given by

rj/k=

〈
δD(λj)

∣∣∣
∏
i 6=j ϑH(λi−λj)λi

∣∣∣
〉

〈
δD(λk)

∣∣∣
∏
i 6=k ϑH(λi−λk)λi

∣∣∣
〉 , (4.58)

where the PDF to evaluate this expectation is given by equation (4.57). Note that these counts

correspond to the area below each curve shown in �gure 4.A.1. In 3D, we recover the ratio

presented in the main text. In 4D the ratio is analytic and reads

rF/W =
2(57 + 25π − 50 cot−1(3))

75π − 2(57 + 50 cot−1(2))
≈ 3.17. (4.59)
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Figure 4.A.1: The PDF of critical events of the various types (P,F ,W1,W2) in 4D

(le�), in 5D (right) and 6D (bottom) for ns = −2,−3/2,−1,−1/2 from light to dark.

More generally,

d = 2: rF/W = 1 ,

d = 3: rF/P = 2.06 ,

d = 4: rF/P = 3.17 , rW/P = 3.17 ,

d = 5: rF/P = 4.36 , rW1/P = 6.72 , rW2/P = 4.36 ,

d = 6: rF/P = 5.67 , rW1/P = 11.97 , rW2/P = 11.97, rW3/P = 5.67.

Note that these ratios are pure numbers and do not depend on the detailed shape of the underlying

powerspectrum (for Gaussian random �elds).

4.A.5 Self-consistency links with critical points counts

These results can be used to derive the connectivity as de�ned in Codis et al., 2018. Indeed, let

us formally write Ni the number density of critical point of kind i in d dimensions and Ni the

number density of critical event of kind i–i+ 1. The evolution of Ni is given by

∂Ni

∂R
= −





N0 if i = 0,

(Ni−1 +Ni) if 0 < i < d− 1,

Nd−1 if i = d− 1.

(4.60)
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For Gaussian random �elds, the number density of critical point can be formally written as

Ni =
1

Rd∗

〈∣∣∣
∏

j

λj

∣∣∣
〉〈
δ

(3)
D (xi)

〉

︸ ︷︷ ︸
Ci

,

where the PDF to evaluate the left part of the r.h.s. is given by equation (4.57). HereCi is a number

common to all power spectra. The derivative of Ni with respect to the smoothing scale is then

∂Ni

∂R
= −Ni × d

d logR∗
dR

. (4.61)

Using equation (4.60) and equation (4.61) yields a simple relation between the number density of

critical points and the number density of critical events

Ni =
1

d× d logR∗/dR





N0 if i = 0,

(Ni−1 +Ni) if 0 < i < d− 1,

Nd−1 if i = d− 1.

For Gaussian random �elds, one has the property that Ni = Nd−i−1 and Ni = Nd−i−2. This

follows from the fact that the �eld δ is invariant under sign change so that −δ has the same

properties. This provides us with simple way to compute the ratio of critical events as a function

of the ratio of the critical points. For any d, the ratio of �lament to peak is connected to the ratio

of F to P critical events

N1

N0
=
N0 +N1

N0
= 1 +

N1

N0
= 1 + rF/P . (4.62)

As an example, let use derive the ratio of other critical points in dimensions up to 6D. For d = 4,

N1

N0
=
N2

N3
= 1 + rF/P ≈ 4.17,

N2

N1
=
N1 +N2

N0 +N1
=
N0 +N1

N0 +N1
= 1.

For d = 5,

N1

N0
=
N3

N4
= 1 + rF/P ≈ 5.36,

N2

N1
=
N2

N3
=
N1 +N2

N0 +N1
=
rF/P + rW1/P

1 + rF/P
≈ 2.07.

For d = 6,

N1

N0
=
N4

N5
= 1 + rF/P ≈ 6.67,

N2

N1
=
N3

N4
=
N1 +N2

N0 +N1
=
rF/P + rW1/P

1 + rF/P
≈ 2.64,

N3

N2
= 1.

Given that Codis et al., 2018 provides an asymptotic limit for the connectivity, I can re-express it

in terms of the ratio of critical events as

N1

N0
=
Nd−2

Nd−1
= 1 + rF/P = d+

1

2
((2d− 4)/7)7/4 , (4.63)
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Figure 4.A.2: The ratio of peak to �lament merger as a function of d. For reference, the

�rst diagonal is shown as a dashed grey line as well. The ratio is approximately �tted as

d−1+((2d− 4)/7)7/4/2 and shown as red dots. The dashed line is the identity.

which in the large d limit, asymptotes to

rF/P
d→∞∼ 1

2

(
2

7

)7/4

d7/4 ≈ 1

17
d7/4 . (4.64)

4.A.6 Testing the link between critical pts and events counts
From equation (4.61) and because for a Gaussian �lter, we have

dσ2
i

dR2
= −σ2

i+1,

one can easily derive

∂Ni

∂R
= −Ni × d

R

R2
?

1− γ̃2

γ̃2
(4.65)

which in d = 3 for peaks reads

−∂N0

∂R
= 3N0

R

R2
?

1− γ̃2

γ̃2
(4.66)

=
3R

R3
?R̃

2
(1− γ̃2)

29
√

15− 18
√

10

1800π2
(4.67)

which happens to be equal to the di�erential number counts of 3D critical events (equation (4.14))

but only if Codd is computed with the approximation in equation (4.13) that boils down to (using

equation (4.50))

Codd ≈
3(1− γ̃2)

d(d+ 2)

(
d

2π

)d/2
. (4.68)

The discrepancy is however tiny, as a result of the transverse third derivatives being only very

weakly correlated to the on-diagonal terms, i.e. 〈xijjxiii〉 is small. More work will however be

required to understand the origin of this disagreement.
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4.B Algorithms
The source code of the implementation can be found online. It is based on Python and the Scipy
stack (E. Jones et al., 2001).

4.B.1 Critical points detection
This section presents the algorithm used to �nd the extrema in a N -dimensional �eld. Let F , Fi
and Fij be a �eld evaluated on a grid, its derivative and its Hessian. For any point x on the grid,

we have the following relation

Fj(x) = Fj(xc) + (xi − xc,i)Fij(x) +O(∆x2
i ). (4.69)

Critical points are found where F ′j = 0 by solving the linear system of equation

∆xiFij = −Fj , (4.70)

where ∆x = x− xc. The algorithm works as follows:

1. Solve equation (4.70) for each cell on the grid. We then get a set of points (xic,x
i), where

the former is the cell centre and the latter the closest critical point.

2. Remove all critical points found at |xic,xi|∞ ≥ ∆x, where ∆x is the grid spacing.

3. For all critical point, compute the value of the Hessian by interpolating linearly from the

2N (4 in 2D, 6 in 3D) neighbouring cells.

4. Compute the eigenvalues of the Hessians and the type of the critical point (maximum,

saddle point(s) or minimum).

5. Merge all critical points of the same kind closer than ∆x. To do this, we �rst build a KD-Tree

of the critical points and �nd all the pairs located at a distance dij = |xi − xj |∞ ≤ ∆x.

For each pair, we keep only the point that is the closest to its associated cell.

4.B.2 Critical events detection
The algorithm is based on the idea that each critical event has two predecessors at the previous

smaller smoothing scale (two critical points). Conversely, each critical point has either a critical

point successor of the same kind at the next (larger) smoothing scale or a critical event. Therefore,

a way to detect critical events is to �nd critical points that do not have a successor. These points

will be referred to as “heads” as they are the tip of a continuous line of critical points in the

smoothing scale direction. Critical events are then found between pairs of heads of kind k and

k + 1 (e.g. a peak and a �lament).

Following this idea, the algorithm can be decomposed in two steps: compute the heads of

each kind, than �nd pairs of heads to detect critical events. In the following of the section,

let us call R0 (resp. R1) the smallest (resp. largest) scale at which the �eld is smoothed. Let

CR,k = {ri, R}i=1,...,N be the set of theN critical points of kind k at scaleR. The whole detection

algorithm reads

1: procedure FindCritEvents(CR,k, α)

2: E ← {} . All critical events

3: for k in 1, . . . , d do . Find heads of critical points

4: Hk ← BuildHeads(k, ∆ logR)

5: end for
6: R← R0

7: while R ≤ R1 do . Find pairs of heads (crit. events)

8: ∆R← R×∆ logR .
9: E ← E+FindHeadPairs(H1, . . . ,Hd, R, α∆R)

10: R← R+ ∆R

https://github.com/cphyc/py_extrema
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11: end while
12: return E
13: end procedure

The parameter α controls how far heads can be in the smoothing scale direction, in units of logR.

A value of 1 looks for pairs of heads at the same scale, a value of 2 looks for pairs of heads at a

scales R,R+ ∆R.

The �rst step (line 4) of the algorithm builds the set of heads Hk. It works as follows

1: procedure BuildHeads(k, ∆ logR) . Build heads of kind k
2: Hk ← CR1,k . Initialise heads

3: Pk ← Hk . Initialise progenitors

4: R← R1

5: while R ≥ R0 do
6: P ′k ← {} . Initialise new progenitors at R
7: for p, c, d in SortedPairs(Pk, CR,k, R) do
8: if c 6∈ P ′k then
9: P ′k ← P ′k + {p, c} . Found new progenitor

10: end if
11: end for
12: Pk ← P ′k
13: for c in CR,k do . Loop over crit. points

14: if c 6∈ P ′k then . Keep only unpaired ones. . .

15: Hk ← Hk + {c} . . . . and add them to heads

16: Pk ← Pk + {c}
17: end if
18: end for
19: R← R(1−∆ logR)
20: end while
21: return Hk . Heads are points with no successors at larger R
22: end procedure
Here, SortedPairs(X,Y,Rmax) returns (x, y, d), where x, y are points in X,Y and d ≤ Rmax is

their relative distance (in (r, R) space). The tuples are sorted by increasing distance. This can be

e�ciently implemented using a KD-tree with periodic boundary conditions. BuildHeads builds

all heads by using a watershed approach. Starting from the largest smoothing scales, it �nds and

discards all critical events that are progenitors of a head at any larger scale. The remaining points

have no successor (they are the progenitor of nothing) and are hence heads.

Once the heads have been computed, the second step of the algorithm pairs them (line 9)

1: procedure FindHeadPairs(H1, . . . ,Hd, R,∆R) . Find pairs of heads (crit. events)

2: HR,k ← {c ∈ Hk | R ≤ c.R < R+ ∆R} . Keep heads at scale R
3: P ← {} . Head pair list

4: for k in 1, . . . , d− 1 do
5: P ← P+SortedPairs(HR,k, HR,k+1, R)

6: P ← P+SortedPairs(HR,k+1, HR,k, R)

7: end for
8: P ← SortByDistance(P )

9: P ′ ← {} . Pairs with no double counts

10: for c1, c2, d in P do
11: if c1 6∈ P ′ and c2 6∈ P ′ then
12: P ′ ← P ′ + {c1, c2}
13: end if
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14: end for
15: E ← {} . Critical events

16: for c1, c2 in P ′ do
17: E ← E+ CritEventData(c1, c2)

18: end for
19: return E
20: end procedure
Lines 5-6 ensure that the detection method is invariant by permutation of k ← d − k + 1.

CritEventData(c1, c2) computes the properties (position, kind, gradient, . . . ) of the critical

events given two critical points. FindHeadPairs works as follows. It �rst �nds all pairs of heads

separated by less than a smoothing scale. It then loops over all pairs (sorted by increasing distance)

and greedily consumes heads. Each head can only be paired once, to its closest not-yet-paired head

of either the previous or next kind. This prevents for example F critical points from being paired

to a P and a W critical point, which would result in a double count. Note that this procedure

may leave some heads unpaired (e.g. critical points at the largest smoothing scale do not merge

but have no successor). In practice the unpaired heads typically account for less than a percent

(0.5 % for ∆R = αR∆ logR with α = 2) of the total number of heads.

An alternative to the present algorithm could involve modifying Disperse to only retain the

points of lowest persistence.

4.B.3 Generation algorithm
I have used ConstrField coupled with MPgrafic from Prunet et al., 2008 to generate constrained

realisations of a Gaussian random �eld. I generate an unsmoothed Gaussian random �eld,

constrained to have a �lament-type saddle point of height δ = 1 (ν = 1.17) at smoothing

scale R = 5 Mpc/h . The eigenvalues of the Hessian are constrained to be {λ1, λ2, λ3} =
σ2{−1/2,−1/2,−1} with eigenvectors {x̂, ŷ, ẑ}. Figure 4.B.1 shows the mean density pro�les

as well as one realisation. As expected, the density is locally entirely set by the constrain and has

a parabola-like shape. At larger scales, the �eld decouples from the constrains resulting in large

�uctuations around the mean value.

4.B.4 Comparison of two-point correlation function estimators
In the �eld of cosmology, some e�orts (see Kerscher et al., 2000, and references therein) have

been dedicated to build unbiased estimators of the two-point correlations. Indeed, such estimator

are impacted by the size of the sample as well as �nite volume e�ects if the catalog does not cover

the entire sky. Because of periodic boundaries, I do not have problem with the size of the box.

The estimator used in this work is

ξAB =
〈AB〉

f
√
〈ARA〉〈BRB〉

, (4.71)

where A,B are two catalogs and RA, RB are random samples with 1/f times more data than

A,B respectively. I have compared it to the popular Landy-Szalay (LS) estimator (Landy and

Szalay, 1993; Szapudi and Szalay, 1999)

ξAB,LS =
〈(A−RA/f)(B −RB/f)〉

〈RARB〉/f2
. (4.72)

The results are shown on �gure 4.B.2. At large scales, both estimators converge to the expected

value of one. However at small scales, the LS estimator is more noisy since at small scales, no

pairs AB are found so that the estimator of equation (4.71) returns 0, while the LS estimator
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Figure 4.B.1: Density pro�le of a random �eld constrained to a density δ = 1, null

gradient and a Hessian with eigenvalues σ2/2,−σ/2,−σ in directions x, y, z at the

centre of the box, assuming periodic boundary conditions. The expectation of the

�eld is shown in dashed lines and the value of the �eld in one realisation is shown in

solid lines. Dotted lines show the second order Taylor series of the �eld around the

constrained point. The inset shows a zoom on the constrained zone. For the sake of

clarity, each curve have been shifted by 0.02. At small distances from the constrain, the

�eld resembles its mean and its Taylor expansion.

includes contributions from ARB and BRA pairs and returns a non-null, noise-dominated

signal. Following a pragmatic approach I have used throughout all our analysis the estimator of

equation (4.71).

4.C Joint PDFs
Let us present here the PDF of the �eld and its (up to 3rd) derivative which will allow us to

compute the expectations involved in the main text.

4.C.1 One-point PDFs
Since the odd and even variables of Gaussian random �elds do not correlate, let us write the joint

PDF as PG = P0(x, xkl)P1(xi, xijk). The expression for P0(x, xkl) for the Gaussian �eld was

�rst given by Bardeen et al., 1986. Introducing the variables

u ≡ −∆x = −(x11 + x22 + x33) , (4.73)

w ≡ 1

2
(x11 − x33) , (4.74)

v ≡ 1

2
(2x22 − x11 − x33) , (4.75)

in place of diagonal elements of the Hessian (x11, x22, x33) one �nds that u, v, w, x12, x13, x23

are uncorrelated. Importantly, the �eld, x is only correlated with u and

〈xu〉 = γ, 〈xv〉 = 0, 〈xw〉 = 0, 〈xxkl〉 = 0, k 6= l,
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Figure 4.B.2: PP correlation function in the 2D case using the estimator of equa-

tion (4.71) (blue line) vs the Landy-Szalay estimator (light orange line). The di�erence

(green line) has been shifted by 2.5 for visualisation purposes. The LS estimator yields a

correlation function that is more noisy at small separations.

where γ is the same quantity as in equation (2.96). The full expression of P0(x, xkl) is then

P0(x, xkl) =
51/2152

(2π)7/2(1− γ2)1/2
exp

(
−1

2
[Q0 +Q2]

)
,

with the quadratic forms Q0 and Q2 given by

Q0 = x2 +
(u− γx)2

(1− γ2)
, (4.76)

Q2 = 5v2 + 15(w2 + x2
12 + x2

13 + x2
23),

=
15

2
xabxab , (4.77)

where the last identity is demonstrated in Pogosyan et al., 2009 and involves the detraced tensors:

tij = tij −
1

3
taaδij , (4.78)

tijk = tijk −
3

5
taa(jδkl) , (4.79)

with an implicit summation over repeated indices and symmetrization between parenthesised

indices (for instance: taa(jδkl) = [taajδkl+taakδlj+taalδjk]/3 and so on). Equation (4.76) depends

only on a single correlation parameter: γ. A similar procedure can be performed for the joint

probability of the �rst and third derivatives of the �elds, P1(xi, xijk) by de�ning the following

nine parameters (see also Hanami, 2001)

ui ≡ ∇iu, vi ≡
1

2
εijk∇i (∇j∇j −∇k∇k)x , with j < k ,

wi ≡
√

5

12
∇i
(
∇i∇i −

3

5
∆

)
x , (4.80)

and replacing the variables (xi11, xi22, xi33) with (ui, vi, wj). In that case, the only cross-correlations

in the vector (x1, x2, x3, u1, v1, w1, u2, v2, w2, u3, v3, w3, x123) which do not vanish are between
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the same components of the gradient and the gradient of the Laplacian of the �eld:

〈xiui〉 = γ̃/3, i = 1, 2, 3, (4.81)

where γ̃ was de�ned in equation (2.96). This allows us to write:

P1(xi, xijk)=
1057/233 exp

(
−1

2 (Q1 +Q3)
)

(2π)13/2(1− γ̃2)3/2
, (4.82)

with the quadratic forms:

Q1 = 3
∑

i

(
(ui − γ̃xi)2

(1− γ̃2)
+ x2

i

)
, (4.83)

Q3 = 105

(
x2

123 +
3∑

i=1

(v2
i + w2

i )

)
,

=
35

2
xijkxijk . (4.84)

4.C.2 Two-point PDFs
Calling x = (x, xi, xij , xijk) and y = (y, yi, yij , yijk), the Joint PDF reads

P2(x,y) =

exp

[
−1

2

(
x
y

)T

·C−1 ·
(
x
y

)]

det|C|1/2 (2π)15 , (4.85)

where C is the covariance matrix which depends on the separation vectors only because of

homogeneity

C =

(
Cxx Cxy

CT
xy Cyy

)
. (4.86)

Note that xT ·C−1
x · x is given by Q0(x) +Q2(x) +Q1(x) +Q3(x), where the Qi are given by

equations (4.76) and (4.84). The cross terms will involve correlations of all components of x and y

Cxy = 〈x · yT〉 . (4.87)

The correlation length of the various components of Cxy di�er, as higher derivatives decorrelate

faster, see �gure 4.C.1. Note that the separations are measured in units of R, whereas the Qi are

independent of R.
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Figure 4.C.1: The correlation functions entering equation (4.87) for a scale invariant

powerspectrum of index ns = −3/2.
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5.1 Introduction
Astrophysical numerical codes usually solve the equation of hydrodynamics in two di�erent

approaches, following either the Lagrangian or Eulerian description of the gas. In the former

approach known as SPH, the basic elements are macro-particles that represent a given mass of

gas (Springel et al., 2001; Wadsley et al., 2004; Price et al., 2017). This approach very conveniently

provides the Lagrangian history of the gas, as each particle carries a �xed amount of mass along

with their thermodynamical quantities (temperature, density, velocity, metallicity). Another

possible approach known as AMR is based on a Eulerian point of view. In these methods, the

basic elements are �nite volumes of gas (Teyssier, 2002; Bryan et al., 2014), spatially laid on

a grid. One of the strength of AMR methods is their ability to control the spatial resolution

in regions of interest by adapting the resolution. The most common approach is the so-called

“pseudo-Lagrangian” re�nement scheme, where regions containing a lot of mass are re�ned,

e�ectively ending up with each volume containing a similar mass (see section 2.2.3). One can
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however trigger re�nement on arbitrary criterion, such as the gas vorticity, the local Jeans length

or above a certain pressure gradient, so that the geometry of the �ow can be captured by adapting

the geometry of the grid. As AMR methods are built around Riemann solvers, they are also very

good at capturing shocks in numerical simulations. They can therefore provide a very good

solution to the problem of cosmic accretion, which requires to accurately resolve shocks around

the virial radius. However, due to their Eulerian nature, AMR codes are unable to capture the

Lagrangian evolution of the gas and do not provide the past thermodynamical history of a parcel

of gas.

This caveat is particularly problematic when studying cosmic accretion, and in particular cold

�ows as their peculiar evolution is usually captured by their maximum temperature, as the gas

that composes them never heated up above a given threshold (see section 6.2.3) This e�ectively

selects the gas that crossed the virial radius without shocking, so that the de�nition of cold �ows

requires the knowledge of the past Lagrangian history of the gas. To overcome this issue, AMR

codes have been equipped with “tracer” particles. Tracer particles are passively displaced with

the gas �ow and hence track its Lagrangian evolution. On their trajectory, they usually record

instantaneous quantities, in particular the temperature of the gas and its density, but also the

torques resulting from the gravitational interaction of the gas with the halo and the disk and from

the pressure of the surrounding hot medium.

This chapter presents a technical description of the tools I developed in order to make Ramses

suited to the study of cold �ows, although the methods presented hereafter can also be applied

to a variety of other problems. Section 5.2 presents a new tracer particle scheme developed

for the code Ramses. I compare the implementation to previous ones and show that it largely

improves the results. In particular, the new tracer particles are able to accurately reproduce the

Eulerian distribution of the gas (so that they are trustable) and also provide the entire Lagrangian

evolution of the baryons (so that they provide a comprehensive history of the baryons’ evolution).

Section 5.3 presents the methods developed to compute the di�erent torques acting on a parcel of

�uid in post-processing. As will be shown in the next chapter, these methods can then be used to

provide a detailed description of the evolution of the angular momentum of the cold �ows.

5.2 “Accurate tracer particles of baryon dynamics in the adaptive mesh refinement
code Ramses”

One of the requirements of tracer particles is that they should accurately reproduce the Eule-

rian distribution of the gas. In the naive approach, tracer particles are advected by the gas by

interpolating the velocity. This is usually done with a cloud-in-cell interpolation (�rst order

interpolation), where the value of the velocity is interpolated from the 8 closest cells. Such a

velocity-based approach was implemented in Ramses (Dubois et al., 2012) and used to probe the

link between cosmic gas infall and galactic gas feeding. This approach yields smooth Lagrangian

trajectories, yet it falls short of reproducing the gas density distribution accurately in regions

of converging �ows, as I showed in Cadiou et al., 2019 (paper below). In addition, there is no

natural way of taking into account transfers of baryons between the gas, stars and SMBHs which

are particularly relevant in the context of galaxy formation in the inner regions surrounding the

galaxy.

Using a di�erent approach, Genel et al., 2013 suggested to instead sample mass �uxes via a

Monte-Carlo method. In this approach, the mass �ux between cells, which is readily computed by

the Riemann solver of the code, is approximated by moving particles across cells interface: each

particle jumps from cell i to cell j with probability

pij =
∆Mij

Mi
, (5.1)



5.2 “Accurate tracer particles of baryon dynamics in the adaptive mesh refinement code Ramses”135

where ∆Mij is the transferred mass (as computed by the Riemann solver) and Mi is the mass

of the cell originally containing the particle. Since tracer particles reproduce mass �uxes, their

evolution is fully consistent with that of the gas, up to a sampling noise.

Instead of providing smooth trajectories, Monte Carlo tracer particles provide a statistical

sample whose mean accurately tracks the properties of baryons in the simulation and whose

spatial distribution matches the Eulerian gas density. They are therefore perfectly suited to the

problem of cold �lamentary accretion. In the paper provided hereafter, I present the details of

the implementation for gas-to-gas transfers. I then present how one can extend equation (5.1)

to take into account any baryon transfers, providing a clear improvement over previous tracer

particle implementations. I then show that my implementation is able to accurately reproduce the

Eulerian distribution of the gas, while providing at the same time the full Lagrangian evolution

of baryons in their journey in the gas, stars and SMBHs. As a proof of concept, the method is

then applied to the problem of cold �ows to recover the bimodal accretion mode observed in SPH

simulations (e.g. Kereš et al., 2005).

The paper, published in A&A in Cadiou et al., 2019, is provided hereafter.
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ABSTRACT

We present a new implementation of the tracer particles algorithm based on a Monte Carlo approach for the Eulerian adaptive mesh
refinement code Ramses. The purpose of tracer particles is to keep track of where fluid elements originate in Eulerian mesh codes, so
as to follow their Lagrangian trajectories and re-processing history. We provide a comparison to the more commonly used velocity-
based tracer particles, and show that the Monte Carlo approach reproduces the gas distribution much more accurately. We present a
detailed statistical analysis of the properties of the distribution of tracer particles in the gas and report that it follows a Poisson law. We
extend these Monte Carlo gas tracer particles to tracer particles for the stars and black holes, so that they can exchange mass back and
forth between themselves. With such a scheme, we can follow the full cycle of baryons, that is, from gas-forming stars to the release
of mass back to the surrounding gas multiple times, or accretion of gas onto black holes. The overall impact on computation time is
∼3% per tracer per initial cell. As a proof of concept, we study an astrophysical science case – the dual accretion modes of galaxies
at high redshifts –, which highlights how the scheme yields information hitherto unavailable. These tracer particles will allow us to
study complex astrophysical systems where both efficiency of shock-capturing Godunov schemes and a Lagrangian follow-up of the
fluid are required simultaneously.

Key words. hydrodynamics – methods: numerical – cosmology: theory – Galaxy: formation

1. Introduction

Many astrophysical problems of interest require us to solve
equations of hydrodynamics on very different timescales and
physical scales. Two main methods have been developed to solve
these equations. On the one hand, one can study the motion
of the gas by following the evolution of interacting particles.
This Lagrangian approach is the one used by smooth particle
hydrodynamics (SPH, e.g. Springel 2005; Wadsley et al. 2004;
Price et al. 2018) codes. These codes sample the gas distribu-
tion using a set of fixed-mass macro-particles smoothed with a
given kernel, and move particles accordingly. By construction,
this approach provides the Lagrangian evolution of the gas. This
property is also one of its shortcomings: low-density regions are
populated by large particles and hence lack resolution. On the
other hand, gas hydrodynamics can also be described on a grid,
where gas distribution is sampled on finite volumes, and solved
with efficient shock-capturing Godunov solvers. Adaptive mesh
refinement (AMR, e.g. Kravtsov et al. 1997; Teyssier 2002;
Springel 2010; Bryan et al. 2014) codes follow this approach and
allow for a dynamical refinement of the mesh. Though quasi-
Lagrangian refinement is most commonly adopted in situations
addressing galaxy formation problems, super-Lagrangian reso-
lutions can also be achieved by refining the grid based on gas
quantities such as the Jeans length to follow gravitationaly unsta-
ble star-forming regions (Agertz et al. 2009), the vorticity to fol-
low the seeding of turbulence (e.g. Iapichino & Niemeyer 2008),
the relative variation of any hydro quantity (such as e.g. the
ionised fraction of hydrogen; Rosdahl & Blaizot 2012), or using

a passive scalar to keep track of a particular gas phase (such as
for jets, see, e.g. Bourne & Sijacki 2017), among others. While
super-Lagrangian refinement provides a very flexible method to
trigger refinement, it falls short of providing the Lagrangian his-
tory of the gas.

To overcome this issue, AMR codes have been equipped
with “tracer” particles. Tracer particles are passively displaced
with the gas flow, and hence track its Lagrangian evolution.
Each tracer can also be used to record instantaneous quantities,
such as the thermodynamical properties of the gas or any other
property. Many astrophysical problems can can benefit greatly
from this Lagrangian information. For example, when studying
galaxy formation, the past Lagrangian history of the gas is cru-
cial to understand how gas has been accreted and how it has
been ejected in large-scale galactic outflows. Tracer particles can
be used to study the density and temperature evolution of the
gas (e.g. Nelson et al. 2013; Tillson et al. 2015) that will even-
tually form stars. For example, one could use tracer particles to
study the temperature evolution of the gas as it falls onto galax-
ies, to study the number of dynamical times before it becomes
star forming or to quantity the number of time gas is recycled in
stars or sent in galactic fountains. Another problem that requires
the use of tracer particles is the study of mixing. Particularly
in turbulent environments, such as the interstellar or the inter-
galactic medium, the Lagrangian information provides informa-
tion about, for example, mixing timescale (e.g. Federrath et al.
2008), the origin of turbulence (e.g. Vazza et al. 2011, 2012), or
how it contributes to core buildup Mitchell et al. (2009). In addi-
tion to this, the past Lagrangian evolution of a parcel of fluid

Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
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can also impact the modelling itself (e.g. Federrath et al. 2008;
Silvia et al. 2010).

In this paper we present a new implementation of tracer par-
ticles in the AMR Ramses code (Teyssier 2002). This imple-
mentation is based on the one developed by Genel et al. (2013)
for the moving mesh arepo code (Springel 2010). It has been
extended to track the full Lagrangian history of baryons in
any phase, including their conversion from gas to stars, from
stars back into the gas via supernova feedback, their interac-
tion with feedback from black holes, and their accretion onto
them. This Monte Carlo (MC) tracer particle implementation
improves the previous implementation, velocity-advected trac-
ers. With the velocity-based approach, tracer particles are moved
based on the interpolated local values of the gas velocity field.
While this yields qualitative results, it suffers from systematic
effects: tracer particles over-condensate in regions of converg-
ing flows (Genel et al. 2013). Monte Carlo tracer particles fol-
low a different idea. They are moved so that the tracer particle
mass flux at each cell interface is statistically equal to that of the
gas. Thanks to this property, the Eulerian distribution of tracers
converge to that of the gas when the number of tracer particles
goes to infinity. In addition to matching the gas distribution, the
implementation of tracer particles here is also able to match the
distribution of baryons in stars and in black holes.

The paper is structured as follows. Section 2 details the
implemented algorithm. Section 3 presents tests and validations
of the new implementation. In particular, Sect. 3.1 presents the
results from idealised tests and Sect. 3.2 presents an analysis of
the properties of tracers in a real astrophysical simulation. Using
the same simulation, Sect. 3.3 illustrates the efficiency of the
scheme applied to a specific science case – the bimodal accretion
of gas onto galaxies at high redshift. Section 4 assesses the per-
formance of the scheme. Section 5 provides a discussion of our
results and our conclusions. Appendix A provides more details
about the algorithm.

2. Implementation

The Ramses code (Teyssier 2002) solves the full set of Euler
equations by formulating the equations in terms of finite-volume,
that is, by calculating fluxes at the interfaces of cells of the adap-
tive mesh. This is done by using a MUSCL-Hancock method
with a second-order Godunov solver calculating the fluxes from
linearly interpolated values at cell faces from the cell-centred
values limited by a total-variation-diminishing scheme. Such a
Eulerian-based method has proven efficient at capturing shock
discontinuities and achieves efficient mixing of shear layers of
gas; however, its main drawback is that it does not naturally pro-
vide the Lagrangian trajectories of gas elements.

To address this problem, it is possible to introduce the so-
called tracer particles of the flow that should follow the flow
lines of the gas. A naive approach to track the motion of the
gas is to use the velocity of the gas itself, assign it to tracer par-
ticles, and move them accordingly. This is done with a cloud-
in-cell interpolation of the velocity values of the overlapped
cells where the volume of the cloud is that of the host cell,
though the level of the interpolation is not particularly impor-
tant (nearest grid point or triangular shape cloud; Federrath et al.
2008). Such a velocity-based approach was implemented in
Ramses (Dubois et al. 2012a) and used to probe the link between
cosmic gas infall and galactic gas feeding, and its acquisition
of angular momentum (Pichon et al. 2011; Dubois et al. 2012a;
Tillson et al. 2015). While this approach yields smooth trajec-
tories, it falls short of reproducing the gas density distribution

accurately in regions with strong convergence of the velocity
field (Genel et al. 2013).

To address this shortcoming, we have implemented in
Ramses the MC approach of tracer particles introduced
by Genel et al. (2013) for arepo (Springel 2010). Instead of hav-
ing proper velocities and positions, MC tracers are attached to
individual cells and are allowed to “jump” from the centre of
one cell to the centre of another according to the mass fluxes
obtained through the Godunov solver.

We have generalised the MC method to track exchanges
of baryons between gas, star particles, and supermassive black
hole (SMBH) particles, and in the following we refer to them
as “buckets”. At each time step, tracers are allowed to jump
from any bucket i to any bucket j with a probability (gas→gas,
gas↔star, gas→black hole) of

pi j =



∆Mi j

Mi
, if ∆Mi j ≥ 0,

0, if ∆Mi j < 0,
(1)

where ∆Mi j is the mass flowing from bucket i to bucket j
between t and t + ∆t and Mi is the mass of the depleted bucket
i at time t. This probability is also the fraction of baryons flow-
ing from one bucket to another. If the initial Eulerian distribu-
tions of tracers and baryons are equal, then in the limit where the
number of tracers becomes large, satisfying Eq. (1) is sufficient
for the Eulerian distributions to remain equal at all times. Here
is an outline of the proof. For any bucket i containing Nt trac-
ers of equal mass mt, let the total tracer mass read Mt ≡ Ntmt.
Because tracers are moved stochastically, the tracer mass flux
∆Mt,i j is a random variable. If at time t, Mt = Mi (i.e. the Eule-
rian distributions are the same), then the expected tracer flux is
E

[
∆Mt,i j

]
= Nt × pi jmt = Mi pi j = ∆Mi j. When the number

of tracers becomes large, the tracer mass flux converges to the
baryon flux, ∆Mt,i j → ∆Mi j. The buckets have the same initial
mass and are updated with the same mass fluxes, so they remain
equal at the next time step, t + ∆t. Therefore, if the initial Eule-
rian distributions are equal, by induction they remain equal at all
times (in the limit of a large number of tracers)1.

All the processes that are able to move tracers from bucket
to bucket are summarised in Fig. 1. Tracers can move from one
gas cell to another through gas dynamics, and the jet mode of
AGN feedback from SMBHs, from gas to stars via star forma-
tion, from stars to gas via supernova (SN) feedback, and from
gas to SMBHs via black hole accretion. Below, we present the
different algorithms used for each of these processes.

2.1. Gas dynamics

The algorithm moving tracer particles from one gas cell to
another is the following. For each level of refinement, all the
unrefined leaf cells are iterated over. For each leaf cell i con-
taining tracer particles, the total outgoing mass is computed as
∆M ≡ ∑2Nd

j=1 max(∆Mi j, 0), where j runs over the index of the
neighbouring cells, Nd is the number of dimensions, and ∆Mi j
is the mass transferred between cell i and cell j in one time
step and obtained from the Godunov flux of mass Fm,ij, that is,
∆Mij = Fm,ij∆t. We take

pgas =
∆M
Mi

, (2)

1 In general, any stochastic scheme for which the expected tracer flux
equals that of the baryons is able to track the Eulerian distribution at all
times.
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stellar 
feedback

AGN
feedback

star formation

SMBH accretion
SMBH

gas

stars

AGN jet

Fig. 1. Scheme of the different “buckets” that can hold tracer parti-
cles and the process that moves them around. The three buckets are gas
cells, stars, and SMBHs. Arrows indicate outgoing mass fluxes between
buckets and the physical process associated, and grey squares represent
tracer particles. The jet mode feedback from AGNs (around SMBHs) is
able to move gas tracer particles from the central cell to the surround-
ing cells. The particles have no spatial distribution within the buckets or
any phase-space distribution. Tracer particles are exchanged probabilis-
tically between buckets based on the mass fluxes. For example, for the
gas, they are exchanged based on the mass fluxes at the boundary of the
cells.

to be the probability of displacing a gas tracer particle from one
cell to any other of its neighbouring cell, and

p j = max
(
∆Mi j

∆M
, 0

)
, (3)

to be the probability of moving this tracer particle into cell j.
For each tracer particle in cell i, a random number r is drawn
from a uniform distribution between 0 and 1. If r < pgas, the
tracer is selected. For each selected tracer, another random num-
ber r′ is drawn. For each neighbouring cell j with a positive flux
(such that ∆Mi j > 0), if r′ < p j the tracer particle is moved into
cell j and the algorithm proceeds to the next particle; else, r′ is
decreased so that r′ ← r′−p j and the algorithm proceeds to the
next neighbouring cell. Because the sum of all the p j is 1, this
procedure will assign the tracer to a single cell.

When a cell of mass M0 is refined between two time steps,
all its tracers are distributed randomly to one of the eight newly
created cells, the probability for a tracer particle to be attached to
the new cell i being p = Mi/M0 (refined density can be interpo-
lated from neighbouring values or equally distributed amongst
new cells). Conversely when a cell is derefined all its tracers are
attached to the parent cell.

2.2. Star formation

This part of the algorithm involves moving tracers from the gas
phase into star particles, and moving the star-tracer particles
along with their star particles.

We first recall that the star formation process in Ramses is
usually modelled by a Schmidt law, where the star formation
rate density is non-zero and

dρ?
dt

= ε?
ρg

tff
, (4)

when ρg > ρ0, and where ρg is the gas density, ρ0 a gas density
threshold, tff = (3π/(32Gρg))1/2 the gas free-fall time, and ε?
the efficiency of star formation, which can be taken as an ad hoc
constant, or as a function of the local gravo-turbulent properties

of the gas (Krumholz & McKee 2005; Hennebelle & Chabrier
2011; Padoan & Nordlund 2011). A single star particle made of
N? stars of mass resolution M?,0 is created, where N? is drawn
according to random Poisson process (Rasera & Teyssier 2006):

Psf =
λN?

N?!
exp (−λ), (5)

where Psf is the probability of creating N? particles from the gas
(and accordingly removing M? ≡ N?M?,0 mass from the gas
cell), and

λ =
ρg∆x3

M?,0

∆t
ε−1
? tff
· (6)

Finally, the transfer of gas tracer particles to star-tracer par-
ticles at time of creation t of M? is given by the probability

p? =
M?

Mi
· (7)

In more details, we loop over all the gas tracer particles con-
tained in the cell where the new star is created. For each of
them, a random number r is drawn from a uniform distribution
between 0 and 1. If r < p?, the gas tracer particle is turned
into a star-tracer particle at the same position as that of the star
particle (i.e. at the centre of the cell). The star-tracer particle is
“attached” to the star particle by moving along with the star par-
ticle, which is done through a classic leap-frog integration of its
motion. Therefore, at all time steps, the position of the tracer is
updated to match the position of its star. The index of the star is
also recorded on the tracer for convenience.

The implementation also comes with two alternatives to ini-
tialise the tracer particles. One can feed in a list of positions to
the code; one tracer will be created at each location. Alterna-
tively, we developed an initialisation scheme that takes as input
the mass that each tracer particle represents, mt. The scheme is
called “in-place initialisation” as it is performed directly within
the code: the scheme is called once at startup, after the AMR
grid has been built. It loops over all cells, and for each of them
computes the number of tracer particles to create. The expected
number of tracers created in a cell of mass Mcell is N = mt/Mcell.
Let us write N0 = bNc. The scheme creates N0 ≡ bNc particles
in the cell and then creates an additional one with probability
N−N0. In the end, the expected number of tracer particles cre-
ated in the cell is N, meaning that on average each cell is popu-
lated with the correct number of tracer particles. In the following,
unless stated otherwise, the tracer particle distribution is always
initialised using the in-place method.

2.3. Supernova feedback

Let us describe the transfer of mass of a star particle to the gas
according to type II SN explosions (referred to henceforth as
SNII) and their associated tracer particles. This can be trivially
extended to the more complete description of the evolution of
stellar mass loss.

When a star particle sampling an initial mass function (IMF)
of mass M? explodes into type II SNe, it releases a mass ηSNM?,
where ηSN can be crudely approximated by the mass fraction of
the IMF going SNII. The probability of releasing a star-tracer
particle into the gas is pSN = ηSN. For each star particle turning
into SNe, we loop over all the star-tracer particles attached to it.
For each of these, a random number r is drawn from a uniform
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Fig. 2. Scheme of the 48 neighbouring virtual cells (only the 24 rear
ones are shown) where mass and momentum are deposed during a SN
event. The cell containing the SN has a size of ∆x and is outlined in red.

distribution between 0 and 1. If r < pSN, the star-tracer parti-
cle is released in the gas and turned into a gas tracer particle.
Otherwise, the tracer is left attached to the stellar remnant.

The transfer of star-tracer particles to the gas by SNII is
described here for the so-called mechanical feedback model of
(Kimm & Cen 2014; see also Kimm et al. 2015)2. In this model,
the gas is released into the neighbouring cells. The mechani-
cal feedback scheme is designed to overcome the consequences
of radiative losses in SN bubbles due to the lack of resolution.
Where the cooling time of the SN-heated gas is shorter than the
hydrodynamical time step, the energy-conserving phase (with
Sedov-Taylor solution), during which the momentum is growing
by the pressure work of the bubble, cannot be captured properly,
and leads to spurious energy and momentum loss. To circum-
vent this problem, Kimm & Cen (2014) introduced a model that
correctly accounts for the momentum injection according to the
Sedov-Taylor or snow-plough solution (Thornton et al. 1998),
which depends on the cooling rate of the gas, or more precisely
on the energy release, local gas density, and metallicity. The cell
containing the exploding star particle is virtually represented by
8 cells refined by an additional level, which are equivalently
surrounded by 48 such virtual neighbouring cells, as illustrated
in Fig. 2 (Kimm & Cen 2014). The mass ejecta together with
the mass of the swept-up gas of the central true cell is released
evenly in all the virtual cells, and is attributed back accordingly
to the true existing cells.

The tracer particles are interfaced with this feedback model
as follows: For each released star to gas tracer particle, a random
integer number l ∈ [1, 48] is drawn uniformly. The star tracer is
then moved to the centre of the lth virtual cell and attributed to
the corresponding true existing cell as a new gas tracer particle.

2.4. SMBH formation and gas accretion

Supermassive black holes are modelled as sink particles that
can form out of the dense star-forming gas, grow by accretion
of gas, and coalesce following the implementation described
in Dubois et al. (2012b).

2 We have extended this implementation to i) simple thermal pulses of
energy (with or without delayed cooling; Teyssier et al. 2013), where
the mass is released to the central cell only, and ii) to the so-called
kinetic model of (Dubois & Teyssier 2008; in its more recent form
described in Rosdahl et al. 2017) where “debris” particles are replaced
by a bubble injection region of energy, momentum, and mass according
to the Sedov-Taylor solution.

A SMBH forms according to several user-defined criteria,
typically above a given gas density threshold ρ0 and outside an
exclusion distance radius rex within which SMBH is artificially
prevented if any other SMBH already exists (in order to prevent
creation of multiple SMBHs within the same galaxy). When a
SMBH forms with an initial seed mass MSMBH,0, gas tracer par-
ticles in the cell of mass Mi containing the SMBH are attached
to the SMBH and become SMBH tracer particles according to a
probability

pSMBH =
MSMBH,0

Mi
· (8)

SMBHs can continuously accrete gas according to the
Bondi–Hoyle–Littleton accretion rate, capped at Eddington with

ṀSMBH = (1 − εr) Ṁacc = (1 − εr) min(ṀB, ṀEdd), (9)

ṀB =
4πρG2M2

SMBH

(c2
s + u2)3/2

(
ρ

ρboost

)α
, (10)

ṀEdd =
4πGmpMSMBH

σTεrc
, (11)

where Ṁacc, ṀSMBH, ṀB, and ṀEdd are the disc, SMBH, Bondi–
Hoyle–Littleton, and Eddington accretion rates, respectively, mp
is the mass of a proton, G the gravitational constant, σT the
Thomson cross-section, εr the radiative efficiency, cs the speed
sound, u the mean velocity of the gas with respect to the SMBH,
and c the speed of light. ρboost and α are free parameters set,
here, to ρboost = 8mp cm−3 and α = 2 introduced to boost
the accretion rate due to unresolved small-scale larger densi-
ties (Booth & Schaye 2009). The value of εr is either chosen as
a constant value equal to 0.1, or, here, as a varying function of
the spin of SMBH, whose evolution is governed by gas accre-
tion and BH coalescence (see Dubois et al. 2014a,b, and Dubois
et al., in prep., for details).

The mass taken from the gas cell in one time step is ∆Macc ≡
∆t min(ṀBH, ṀEdd). We note that ∆Macc > ṀSMBH∆t as part of
the accreted mass is radiated away due to relativistic effect (and
lost to the simulation). Each gas tracer in the cell containing the
SMBH at a given time is accreted into the black hole with a
probability of

pacc =
∆Macc

Mi
. (12)

Tracer particles also model SMBH merger events. All the tracer
particles attached to the two parent SMBHs are moved to the
newly formed SMBH. There is no mechanism to extract tracers
from the SMBH (reflecting the fact that there is no way to extract
matter from a BH). One should also note that the total mass of
SMBH tracers is larger than the total mass of SMBHs, as part of
the energy-mass has been radiated away during accretion (and
tracers have a fixed mass).

2.5. AGN feedback

In Dubois et al. (2012b), there are two modes of AGN feed-
back: a quasar/heating mode and a radio/jet mode. The mode is
selected based on the ratio of the Bondi–Hoyle–Littleton accre-
tion rate to the Eddington accretion rate χ = ṀB/ṀEdd. If
χ < 0.01, the AGN is in jet mode, and, otherwise, it is in quasar
mode (Merloni & Heinz 2008).

In quasar mode, all the energy of the AGN proportional to
EAGN,Q = εf,QεrṀaccc2∆t (the value εf,Q = 0.15 is calibrated to
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Fig. 3. Schematic representation of the jet model. Gas is transported
from the central cell (hatched region) containing the SMBH (black dot)
into the jet (blue shaded region). The radial profile of the jet is a Gaus-
sian of scale rAGN. The shape of the jet is a “capsule” (a cylinder capped
with two half spheres).

match the BH-to-galaxy mass relation; Dubois et al. 2012b) is
released as thermal energy in all cells within a sphere of size
RAGN and the mass of the gas is left untouched. This feedback
mode has only an indirect effect on the gas mass distribution (and
hence on tracer particles), turning some fraction of the released
thermal energy into kinetic energy and launching a quasar-like
wind.

In radio mode, a jet is launched from the AGN. The jet moves
mass from the central cell only and spreads it into the jet and
injects linear momentum, and energy. The released energy (and
hence, momentum within the jet), as for the quasar mode, is pro-
portional to the rest-mass accreted energy with an efficiency of
εf,R , which is either taken as a constant value of 1 (to match the
SMBH-to-galaxy mass relation; Dubois et al. 2012b) or a vary-
ing function of the spin of the SMBH following the results of
magnetically arrested discs (MADs) from McKinney et al. 2012;
see Dubois et al., in prep. for details). The jet is modelled by a
“capsule” (a cylinder with spherical caps) of size rAGN, as illus-
trated in Fig. 3. The radius of the jet rAGN is usually set to a
few times the cell resolution. The mass sent through the jet is
proportional to the accreted mass onto the SMBH

Ṁjet = fLoadṀSMBH, (13)

where fLoad is a mass-loading factor, usually 100. The mass
transported by the jet is distributed to all the cells intersecting
with the capsule. Each cell i receives a relative fraction ψi of the
mass (and of the injected linear momentum)

ψi =
ρi

∫
I e−r2/2r2

AGN d3V
∑

j ρ j
∫
J e−r2/2r2

AGN d3V
, (14)

where I (resp. J) is the volume of the intersection between the
AGN capsule and the cell i (resp. j) and ρi is the cell mean den-
sity. The radius r in Eq. (14) is the polar radius in the cylindrical
frame centred on the AGN and aligned with its direction (it is
the distance to the jet centre). This integral is computed approx-
imately, using a numerical integration scheme.

The tracer particles are interfaced with the jet model as fol-
lows. Each gas tracer particle in the cell i containing the SMBH
is moved into the jet volume with a probability of

pjet =
Ṁjet∆t

Mi
· (15)

For each of these particles a random number r is drawn from a
uniform distribution between 0 and 1. If r < pjet, the tracer is
selected and moved into the jet. The new position of the tracer
(x, y, z) is drawn randomly, z being the coordinate in the direction
of the jet; x and y are drawn from a normal distribution of vari-
ance rAGN and z is drawn uniformly between −2rAGN and 2rAGN.
The algorithm uses a draw-and-reject method until one position
inside the capsule is found. We note that the gas tracer distribu-
tion (as given by Eq. (15)) is consistent with the distribution of
the gas sent through the jet (as given by Eq. (14))3.

More details about the algorithm are given in Appendix A.

3. Validations and tests

Let us now present various validation tests of the algorithm.
Section 3.1 presents the results of idealised tests for gas-only
tracer particles. Section 3.2 presents the results obtained from a
cosmological zoom-in simulation of a galaxy with its SMBH at
z = 2 and provides the details of the observed distribution of
tracer particles. Unless stated otherwise, the gas hydrodynam-
ics is solved with an adiabatic index of γ = 5/3 and the HLLC
approximate Riemann solver (Toro 2009), applying the MinMod
slope limiter on the linearly reconstructed states.

3.1. Idealised tests

In this section, we introduce different idealised tests to con-
firm that the evolution of the gas is correctly tracked by
gas tracers. Section 3.1.1 presents a simple two-dimensional
(2D) advection of an overdensity to quantify diffusion effects.
Sections 3.1.2 and 3.1.3 present a Sedov–Taylor explosion and
a Kelvin–Helmoltz instability and confirm that the gas tracers
are able to accurately follow the motion of the gas for a strong
shock case and a mixing layer of gas, respectively. Section 3.1.4
presents an idealised halo with an AGN at its centre to confirm
that the gas tracers correctly track the evolution of the gas in
AGN jets.

3.1.1. Uniform advection

In order to quantify the level of diffusion of MC tracers, we run
a simulation similar to that run for Fig. 6 of Genel et al. (2013).
The simulation is a region of 1 cm in size with a constant den-
sity of 1 g cm−3 and a velocity of 0.01 cm s−1. An overdensity
of 14 g cm−3 is set at 0 < x < 0.05 cm. The sound speed is
cs = 1.3 cm s−1 in the under-dense region and 0.35 cm s−1 in the
over-dense region. The simulation is performed on a uniform 2D
1282 grid including 250 000 tracer particles, initially distributed
in the same way as the gas. Due to the intrinsic numerical diffu-
sion (advection error) of the hydrodynamical solver, the spatial
extent of the overdensity increases as a function of time as it is
advected away. This is illustrated in the central panel of Fig. 4.
We note that the density profiles have each been shifted along
their x coordinate for visualisation purposes and do not reflect
their real absolute position (in fact the rightmost peak travelled
5 cm in 100 s). The top panel of Fig. 4 shows that, when rescaled
by the expected noise level σ ≡ 1/

√
Mcell/mt = 1/

√
N (N is

the expected number of tracer particles in the cell), the relative
error between the gas tracers and the gas distributions shows

3 In practice, the numerical evaluation of the integrals of Eq. (14) may
lead to small yet undetected discrepancies between the gas tracer and
the gas distributions.
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Fig. 4. Top panel (bottom):: gas density profile (solid line) and gas den-
sity profile (plus symbols) at different times (reported in the legend).
The profiles have been recentred and shifted horizontally by −0.12 cm,
0, 0.12 cm, and 0.24 cm for t = 0, 1, 9, and 100 s, respectively. Top panel
(top):: relative difference between the gas and gas tracer density profiles
in units of the expected noise level σ = 1/

√
Mcell/mt. Bottom panel:

evolution of the spatial extent of an advected overdensity as a function
of time for the gas (dashed) and the gas tracer particles (dot symbols)
for a high-resolution run (blue) and a low-resolution run (orange, see
text for details). The difference shows no spatial dependence. The gas
tracers diffuse exactly as the gas.

no spatial modulation. Their distributions are the same with an
extra factor that is entirely due to sampling noise, which in turn
depends only on the local cell mass and the (constant) tracer
mass.

In more quantitative terms, let us compare the time evolu-
tion of the spatial extent of the gas tracer overdensity to that
of the gas. We rerun the simulation on a 322 grid (low resolu-
tion) in addition to the previous run (high resolution). We com-
pute the spatial extent by fitting a Gaussian function ρ(x) =
ρ0 + H exp(−(x − x0)2/(2σ2

ρ)) to the gas and gas tracer profiles,
with free parameters ρ0 the base density, H the amplitude of the
overdensity, x0 the position of the overdensity, and σρ its spa-
tial extent. The results are shown in the bottom panel of Fig. 4.
As expected due to the numerical diffusion, the spatial extent of
the overdensity increases as a function of time and the diffusion
becomes larger when the resolution is decreased. In both cases,
the Eulerian distribution of tracer particles is diffused exactly as
much as the gas4.

4 This result complements that of Genel et al. (2013). Indeed we study
here the diffusion of the Eulerian distribution of the tracer particles,
while the original paper presents the Lagrangian diffusion of the tracer
particles.
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Fig. 5. Bottom panel: radial profile at different times of a Sedov explo-
sion (from blue to yellow) for the gas (solid lines) and the gas tracer
(dots). The error bars are 2σ errors. Top panel: relative difference
between the gas profile and the gas tracer profile. Data have been shifted
by −0.25, −0.125, 0, 0.125 and 0.25 radius units respectively (from blue
to yellow) so that one may easily distinguish the different data points.
Details of the simulation are discussed in the text. The gas tracer parti-
cles are accurately advected with the gas.

3.1.2. Sedov-Taylor explosion

We ran a classical Sedov-Taylor explosion in three dimensions
and compare the gas density radial profile to the density profile
of gas tracer particle. The simulation was performed on a coarse
grid of 1283, refined on the relative variation of the density and
of the pressure: a new level is triggered when the local relative
variation of one of these quantities is larger than 1% with up to
two levels of refinement. The simulation was initialised with a
uniform density and pressure of 1 g cm−3 and 10−5 dyne cm−2,
respectively, and an over-pressure in the central cell of the box
of 6.7 × 106 dyne cm−2. 2 900 000 tracers, statistically uniformly
distributed initially in the box, hence, with around ∼1.4 tracer
per initial cell.

The evolution of the spherically averaged radial density pro-
file of the gas and of the tracers is shown in Fig. 5. The tracer
density has been computed by deposing the gas tracer mass in
the nearest cell. The axes have been normalised so that the radius
of the blast is one at the latest output. The error bars have been
estimated assuming that the number of tracers per radial bin is
given by a Poisson distribution. This assumption is discussed in
more detail in Sect. 3.2.2.

At all stages of the blast, the tracer particles radial profile
matches that of the gas at percent levels. This is more easily seen
in the top panel of Fig. 5 where the relative difference between
the gas tracer density and the gas density is plotted. The errors
are all within a few percent and consistent with random fluctua-
tions. As the explosion expands, the swept-up mass of gas in the
shocked region increases. This is well tracked by the tracer dis-
tribution. Because the mass increases, the total number of tracer
particles in the shock increases proportionally, causing the sam-
ple noise to decrease. In this particular test, the tracer distribu-
tion accurately reproduces that of the gas in the pre- (which is
trivially that of the initial distribution) and post-shocked regions
(shocked shell plus hot bubble interior). The noise level is a func-
tion of the number of tracer particles; its expected value is pro-
portional to the total gas mass only.
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Fig. 6. Projection of the density (top panel) and of the gas tracer den-
sity (bottom panel) around a developing Kelvin–Helmoltz instability.
To reduce the noise of the gas tracer projection, we have superposed the
four projections of the forming rollers (each of size 0.25 cm). The gas
tracer distribution resembles that of the gas with extra noise due to their
stochastic nature.

The Sedov explosion is a reliable way of testing the ability of
hydrodynamical codes to deal with shocks: more specifically it
tests the ability of the code to capture the shock dynamics prop-
erly and also tests that the code resolves the shock interface with
a few cells in a regime where the Mach number is largely above
1. Here, the gas tracer distribution has been shown to match that
of the gas to a high degree of confidence, confirming that the
gas tracers are correctly transported with the flow and are able to
resolve shocks.

3.1.3. Kelvin–Helmholtz instability

We ran a classical Kelvin–Helmoltz (KH) instability in three
dimensions to compare the gas density to the gas tracer density
projected maps. The gas has an adiabatic index γ = 7/55. The
simulation is performed on a 1283 grid with a physical size of
1 cm and a maximum level of refinement of 210. Cells are refined
based on the relative variation of the density: a new level is trig-
gered when the local relative variation of the density is larger
than 1%. Only hydrodynamics is included. The instability is ini-
tialised with two regions of left and right density of 2 g cm−3

and 1 g cm−3, and of tangential velocity uy,L = −1 cm s−1 (resp.
uy,R = 1 cm s−1). The instability was initially triggered by adding
a small damped sinusoidal perturbation of the perpendicular
velocity field ux = u0 cos (k(x − λ/2)) exp(−k|x − x0|), where
λ = 0.25 cm, k = 2π/λ, x0 = 0.5 cm and v0 = 0.1 cm s−1. Here
2 900 000 gas tracers were initially distributed in the box, so that
their Eulerian distribution matched that of the gas.

Figure 6 shows a projection of the gas density and of the
tracer density at time t = 0.3 s, when the Kelvin–Helmoltz was
already settled. The gas tracer distribution reproduces well the
vortices found in the gas distribution, with extra noise due to the
reduced number of tracer particles.

The largest k wave numbers of the perturbation are the first to
grow following a KH growth timescale of τKH = 2πR1/2/(|∆u|k),
with ±R = ρR/ρL, and ∆u = uy,R−uy,L. Therefore, as time pro-
ceeds, larger rollers develop in the shear interface between the
two phases of gas, and hence, the mixing layer spreads further.
We computed the evolution of the cross-section profile of the
density at different times. The results are presented in Fig. 7. The
phase-mixing region grows as a function of time and the growth

5 This value is consistent with the adiabatic index of air at 20◦.
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Fig. 7. Evolution of the cross-section of the gas density (solid lines)
and the gas tracer density (symbols and shaded regions) for the Kelvin–
Helmoltz instability at different times (from blue to red from the start
to the end of the simulation at t = 0.3 s). The profiles have been shifted
vertically (each by 0.6 g cm−3) so that one may easily distinguish them
from one another. The shaded regions are ±5σ, where σ has been esti-
mated using a Poisson sampling noise. The gas tracers are accurately
following the diffusion of the gas.

is correctly captured by the tracer particles that are able to track it
within their intrinsic noise level. Therefore, the gas tracer parti-
cles are able to correctly capture the KH shear instability leading
to mixing of two gas phases. Interestingly, the present algorithm
does not lead to any relative diffusion between the gas and the
tracers, as is illustrated quantitatively in Sect. 3.1.1.

3.1.4. AGN feedback

We subsequently tested the accuracy of the mass transfer for the
jet mode of AGN feedback, which transfers part of the gas of the
central cell to the surrounding cells within a “capsule” region
(see Sect. 2.5 for details). We ran an idealised simulation of a
halo with an AGN at its centre. The simulation is performed on
a coarse grid of 1283, refined according to a quasi-Lagrangian
refinement criterion: a cell is refined/derefined wherever the
mass resolution is above/below 1.4 × 107 M� up to a maximum
level of refinement of 12. The box size is 1.2 Mpc, hence with
a minimum cell size of 300 pc. The max level of refinement is
also enforced in all the cells closer than 4∆x from the SMBH,
where ∆x is the minimum cell size. The gas distribution fol-
lows a NFW (Navarro et al. 1997) gas density profile, while the
dark matter part follows a similar NFW profile modelled with
a static gravitational profile (no back reaction of gas onto dark
matter). The NFW profile has parameters V200 = 200 km s−1 (at
200 times the critical density of a H0 = 70 km s−1 Mpc−1 Uni-
verse), a concentration of c = 6.8, and is 10% gas. The gas is ini-
tially put at rest and at hydrostatic equilibrium. A SMBH of mass
MSMBH,0 = 3.5 × 1010 M�6 is set at the centre of the box and 106

tracers are set in the cell containing the black hole. We force the
AGN to be in jet mode with a fixed direction in space and boost
its efficiency so that all the tracer particles are sent into the jet in
one time step. The radius and height of the jet is rAGN = 50 kpc.
This value is much larger than usual values which are usually
a few times the cell resolution (here typical values would be a

6 We note that the SMBH mass is taken anomalously high for a typical
halo mass of M200 ' 3 × 1012 M�. This is chosen simply to get a suffi-
cient power of the jet through the Bondi accretion rate given the NFW
distribution of gas.
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few kiloparsecs). This is chosen so that the jet reaches cells at
different levels of refinement and in other CPU domains. Within
50 kpc of the AGN, there are 1200, 24 000, 12 000, 13 000 and
8000 cells at levels 28 to 212 (∆x from 5 kpc to 0.3 kpc) so that the
tracer particles are deposited in regions of different refinement
level. This region also covers 8 of the 16 CPU domains used.
This controlled test enables us to check that the distribution of
tracers sent through the jet matches the expected distribution, in
the presence of deep refinement and parallelism.

Let us first present the theoretical probability distribution
function as a function of the distance to the jet and along the jet.
We then compare theoretical figures to those of the simulation.
The marginal probability density function (PDF) in the direction
of the jet r‖ is given by

p(r‖) =
1
A



√
e − er2

‖ /2r2
AGN , if |r‖| < rAGN,√

e − 1, if rAGN < |r‖| < 2rAGN,
(16)

where

A = 2
√

erAGN

(
2 +
√

2F
(
1/
√

2
)
− 1/

√
e
)
. (17)

Here F is Dawson’s integral. The marginal PDF in the radial
direction r⊥ is

p(r⊥) =

r⊥e−r2
⊥/2r2

AGN

(
1 +

√
1 − r2

⊥/r
2
AGN

)

r2
AGN

(
2 − √2F

(
1/
√

2
)
− 1/

√
e
) · (18)

The marginal PDF in the radial distribution is similar to a χ dis-
tribution with two degrees of freedom with an extra factor due
to the two spherical caps: more particles are found close to the
centre of the jet since the capsule is more extended close to its
centre.

Figure 8 presents the results from the comparison of the sim-
ulation to the expected distribution. The distribution in the radial
direction has been rescaled by a factor of two to span the same
range as in the parallel direction. Theoretical curves (Eqs. (16)
and (18)) are in very good agreement with the observed distri-
butions, confirming that the algorithm is distributing tracer par-
ticles correctly in jets. In addition we have also run the same
idealised simulation without forcing the AGN efficiency. We
report that the tracer mass flux is equal to the gas mass flux. This
confirms that the physical model of the jet is accurately sam-
pled by the tracer particles interacting with it, both in terms of
its mass and for its spatial distribution.

3.2. Astrophysical test

We have run a 50 cMpc/h-wide cosmological simulation down
to z = 2 zoomed on a group of mass 1 × 1013 M� at z = 0, where
the size of the zoom in the Lagrangian volume of initial condi-
tions is chosen to encapsulate a volume of two times the virial
radius of the halo at z = 0. We start with a coarse grid of 1283

(level 7) and several nested grids with increasing levels of refine-
ment up to level 11. The adopted cosmology has a total matter
density of Ωm = 0.3089, a dark energy density of ΩΛ = 0.6911,
a baryonic mass density of Ωb = 0.0486, a Hubble constant of
H0 = 67.74 km s−1 Mpc−1, a variance at 8 Mpc σ8 = 0.8159,
and a non-linear power spectrum index of ns = 0.9667, compat-
ible with a Planck 2015 cosmology (Planck Collaboration XIII
2016).

The simulation includes a metal-dependant tabulated gas-
cooling function following Sutherland & Dopita (1993) allow-
ing the gas to cool down to T ∼ 104 K via Bremsstrahlung
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Fig. 8. Distribution of particles moved by a jet before any hydro-
dynamical time step has occurred. Shown is the parallel distribution
marginalised over the plane of the jet (blue) and the radial distribution
marginalised over the direction of the jet (orange) vs. the expected theo-
retical distributions from Eqs. (16) and (18) (dashed grey). The abscissa
is in units of rAGN in the parallel direction and in units of rAGN/2 in the
radial direction. The distribution of gas tracers sent into the jet perfectly
matches the expected one.

radiation (effective until T ∼ 106 K), and via collisional and
ionisation excitation followed by recombination (dominant for
104 K ≤ T ≤ 106 K). The metallicity of the gas in the sim-
ulation is initialised to Z0 = 10−3 Z� to allow further cool-
ing below 104 K down to Tmin = 10 K. Reionisation occurs
at z = 8.5 using the Haardt & Madau (1996) model and gas
self-shielding above 10−2 mp cm−3. Star formation is allowed
above a gas number density of n0 = 10 H cm−3 according to the
Schmidt law and with an efficiency εff that depends on the gravo-
turbulent properties of the gas (for details, see Kimm et al. 2017;
Trebitsch et al. 2017). The main distinction of this turbulent star-
formation recipe with the traditional star formation in Ramses
(Rasera & Teyssier 2006) is that the efficiency can approach and
even exceed 100% (with εff > 1 meaning that stars are formed
faster than in a free-fall time). The stellar population is sampled
with a Kroupa (2001) initial mass function, where ηSN = 0.317
and the yield (in terms of mass fraction released into metals)
is 0.05. The stellar feedback model is the mechanical feedback
model of Kimm et al. (2015) with a boost in momentum due to
early UV pre-heating of the gas following Geen et al. (2015).
The simulation also tracks the formation of SMBHs and the evo-
lution of AGN feedback in jet mode (radio mode) and thermal
mode (quasar mode) using the model of Dubois et al. (2012b).
The jet is modelled in a self-consistent way by following the
angular momentum of the accreted material and the spin of the
black hole (Dubois et al. 2014b). The radiative efficiency and
spin-up rate of the SMBH is then computed using the MAD
results of McKinney et al. (2012).

We have a minimum roughly constant physical resolution of
35 pc (one additional maximum level of refinement at expan-
sion factor 0.1, 0.2, and 0.4), a star particle mass resolution of
m?,res = 1.1 × 104 M�, a dark matter (DM) particle mass res-
olution of mDM,res = 1.5 × 106 M�, and gas mass resolution of
2.2 × 105 M� in the refined region. A cell is refined according to
a quasi-Lagrangian criterion: if ρDM +ρb/ fb/DM > 8mDM,res/∆x3,
where ρDM and ρb are respectively the DM and baryon den-
sity (including stars plus gas plus SMBHs), and where fb/DM
is the cosmic mean baryon-to-DM mass ratio. The max level of
refinement is also enforced in all cells closer than 4∆x from any
SMBH, where ∆x is the minimum cell size. We add tracer parti-
cles in the refined region with a fixed mass of mt = 2.0 × 104 M�
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Fig. 9. Top panels: density weighted projection of the gas density in a cosmological simulation (left), of the velocity tracer distribution (right), and
of the MC gas tracer distribution (centre). All the plots share the same colour map. Bottom panels: relative difference between the tracer and the
gas. Velocity tracers accumulate in convergent regions (e.g. filaments, nodes). The MC gas tracer distribution reproduces more accurately that of
the gas than velocity tracers.

(Ntot ≈ 1.3 × 108 particles). There is on average 0.55 tracers per
star and 22 per initial cell. Cells of size 35 pc and density 20 cm−3

contain on average one tracer per cell.

3.2.1. Velocity tracers versus Monte Carlo tracers

In addition to the above simulation, we ran the exact same one
replacing each MC tracer with a velocity-advected tracer. This
simulation was performed down to z = 6 and compared to the
fiducial one. Both have a similar gas distribution, confirming that
the tracer particles are indeed passive7. At this redshift, 99% of
the baryons are still in the gas phase (0.72% in stars and 8 ×
10−5% in SMBHs), meaning that the comparison between MC
tracers (that can be transferred into stars) and velocity tracers
is fair when looking at cosmological scales. Since the velocity
tracers have not been linked to star formation or SMBHs, we
expect significant discrepancies within galaxies, where the gas-
to-star ratio is much smaller.

The top panels of Fig. 9 show projections of the density-
weighted density of gas (top left panel), of MC tracers (top-
centre panel), and of velocity-advected tracers (top-right panel).
The distribution of the MC tracers resembles that of the gas with
extra noise due to sampling noise. All the prominent structures

7 They have however an indirect impact on stochastic processes such
as star formation and SN feedback as they impact the random num-
ber generator (hence the outcome of these random processes will vary
depending on how many and where the tracer particles are).

in the gas are also present in the MC tracer distribution. On
the other hand, the velocity tracer distribution is much sharper
than that of the gas. The velocity tracers aggregate in converg-
ing flows (filaments and centres of galaxies) while MC tracers
do not (they aggregate in high-mass regions, as expected). At
such large scales, the origin of the discrepancy is an intrinsic
issue of velocity tracers. This test shows that on a qualitative
level, the MC tracers have a distribution that is in much better
agreement with the gas distribution than the velocity advected
tracers. The relative difference between the gas distribution and
the tracer distribution is presented in the bottom panels of Fig. 9.
The relative difference between the MC tracer density and the
gas density (bottom central panel) is significantly smaller than
the relative difference between the velocity advected tracer den-
sity and the gas density (bottom right panel). The latter is also
much more biased: the velocity advected tracer density in con-
vergent flows (e.g. filaments) can be up to an order of magnitude
larger than the gas density, while in the vicinity of converging
regions, the velocity advected tracer density is largely underes-
timated (e.g. around filaments). On the contrary, the MC tracer
density is found to be in better agreement with the gas density
and is not biased.

3.2.2. Gas tracers

As we have seen, velocity tracer particles are a less reliable tracer
of the actual gas density compared to MC tracer particles, and
this can already be seen on cosmological scales. Therefore, we
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Fig. 10. Density-weighted projection of the gas density (left panels), of the gas tracer density (centre panels), and of their relative difference (right
panels) along the x axis around the most massive galaxy of the cosmological simulation at z = 2. Top panels: large-scale structure of the gas; data
have been selected within 200 kpc of the centre. Bottom panels: zoom on the central galaxy; data have been selected within 10 kpc of the centre of
the galaxy. The MC tracer density is similar to that of the gas. The radial modulations are due to differences in cell mass at fixed cell resolution:
massive cells (closer to the centre at fixed resolution) are best sampled by the MC tracers.

now continue to explore only the distribution of MC tracer parti-
cles with respect to the actual distribution of baryons. Figure 10
shows the density-weighted projected gas density and cloud-in-
cell interpolated gas tracers around the zoomed galaxy of the
simulation. Visual inspection reveals that the gas tracer distribu-
tion matches that of the gas with additional noise. All structures
with a contrast above the noise level are reproduced by the gas
tracers. More quantitatively, Fig. 11 shows the density of trac-
ers versus the density of gas for the entire available range of gas
densities (i.e. 9 orders of magnitude); the expected one-to-one
relation is seen, with some scatter due to MC sampling noise.

More quantitative results can be obtained by computing the
statistical properties of the gas tracer population. A cell of mass
Mcell is expected to contain on average Mcell/mt tracers. For a
sample of cells of similar masses, we expect the mean number
of tracers per cell to be λ ≡ 〈Mcell〉/mt. The distribution of the
number of tracers per cell in the simulation is shown in Fig. 12
for different cell-mass bins. Within a cell-mass bin, the number
of tracers Nt can be seen to be very well approximated by a Pois-
son distribution with parameter λ

pλ(Nt = k) =
λke−λ

k!
· (19)

To confirm this observation, we compared the mean number of
tracers per cell to the expected number λ in the top panel of
Fig. 12. For all cell masses, the mean number of tracer particles
per cell is accurately described by its expected Poisson distribu-
tion. At large values of gas mass within a cell (right of the plot),

the scatter in the histogram count is due to the small number
of massive cells in the simulation. Indeed, these cells can only
be found in the most refined regions (otherwise they would be
refined into smaller cells) where they also tend to be converted
into stars.

In the following we assume that the gas tracer distribution is
given by a Poisson distribution with parameter λ = 〈Mcell〉/mt.
This yields a simple rule of thumb to estimate the precision of
the tracer scheme. The accuracy of the Eulerian distribution of
the tracer can be written 1/

√
λ ∼ √mt/Mcell.

3.2.3. Star formation and feedback

Figure 13 shows the integrated stellar mass and star-tracer mass
around the zoomed galaxy of the cosmological simulation. Both
distributions are visually in agreement and feature the same spa-
tial distribution. At large radii where the star density is smaller
than the gas density (r & 4 kpc, see Fig. 14), the noise level of the
star-tracer distribution is larger than that of the gas. This is due to
the fact that small masses are poorly resolved by the MC tracers.
Close to the galactic centre, the increasing star density induces
a larger star-tracer density, and therefore, at fixed resolution, a
smaller noise sampling. This is illustrated by the right panel of
Fig. 13, where the centre of the plot shows smaller fluctuations
than at large radii. More quantitative results are presented below.

We first present the analytical distribution of tracer parti-
cles for stars and for the number of tracers released in SN
events, derived from first principles. When a star particle is
formed, each tracer in the cell containing the newly created star
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Fig. 11. Gas density vs. gas tracer density, colour coded by cell mass.
The grey dashed line shows the one-to-one relation. The gas and gas
tracer densities match on nine orders of magnitude.

particle is attached to the star particle and has a probability of
p? ≡ M?,0/Mcell of becoming a “star tracer”, where M?,0 is the
mass of the newly created star particle8. Because M?,0 < Mcell –
a star particle cannot be formed with more material than what
is available – this probability is well defined: 0 < p? < 1.
When the heavy stars in a star particle go into SN, they yield
ηM?, and the mass of the corresponding star particle becomes
M? = (1 − η)M?,0. The star tracers are then returned to the gas
with a probability of η. Before the SNe explode, the distribution
of tracers for an individual star particle is given by a binomial
distribution with parameters Ni (the initial number of tracer in
the cell where the star particle formed) and p?

pform(Ni; N f = k) =

(
Ni

k

)
pk
?(1 − p?)Ni−k. (20)

The number of tracer particles released in the SN event reads

pSN(N f ; N = k) =

(
N f

k

)
ηk(1 − η)N f−k, (21)

where N f is the number of star tracers in the star particle before
the SN explosion. The number of tracers in the star particle after
the SN has exploded is, thus, given by a binomial distribution of
parameters Ni and (1 − η)p?,

pf
?(Ni; N = k) =

(
Ni

k

)
((1 − η)p?)k (1 − (1 − η)p?)Ni−k . (22)

In the limit where the Ni becomes large and (1 − η)p? small,
Eq. (22) converges mathematically to a Poisson distribution with
parameter Ni(1 − η)p?.

Now, we compare the expected distribution of tracer parti-
cles to the measured one. Figure 15 presents the distribution of
the number of tracer particles per star particle for different star
particle mass bins. The number of star tracers per star particle
can be seen to be well approximated by a Poisson distribution
with parameter λ = 〈M?〉/mt. There is a clear deviation at the
tail of the distribution which displays an excess of probability.

8 We note that in practice the star particles have a mass that is a multi-
ple of the stellar mass resolution.
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Fig. 12. Bottom panel: distribution of the number of gas tracers for
different cell-mass bins as observed in the simulation (solid lines) vs.
a Poisson distribution with parameter λ = 〈Mcell〉/mt (dashed lines,
reported in the legend). Top panel: relative difference between the
observed mean number of tracer particles and the expected one, λ, as
a function of λ. For all cells, the distribution of the number of gas trac-
ers per cell is given by a Poisson distribution with parameter λ.

This is however expected as when a star forms in a cell, a sig-
nificant part of the cell mass is converted into the star, so that
p? ≈ 1. Because usually (1 − η) ≈ 0.9, the product p?(1 − η)
is also of order unity. At the same time, cells where stars form
have a typical mass of 104M� ∼ mt, meaning that they contain
only a few gas tracers at star formation. Therefore, we expect a
significant deviation from a Poisson distribution, as the require-
ment for Eq. (22) to converge to a Poisson distribution is not
met. This argument is reinforced by the fact that, compared to
light stars (e.g. the blue curve of Fig. 15), the most massive stars
have a more top-heavy distribution (e.g. the red curve) than a
Poisson distribution. Indeed, these massive stars are relatively
more massive than their parent cell, meaning that the parameter
p? is larger. In the simulation, star formation is only activated
for cells above a given (fixed) density threshold. This is usually
achieved at the maximum resolution, causing cells experiencing
star formation to have typically the same mass, and therefore the
same number of gas tracer particles, regardless of the mass of
the forming stars. Consequently, the massive star particle distri-
bution is indeed less Poissonian than that of the light stars, since
their p? is larger at fixed Ni. Figure 15 is in qualitative agreement
with this.

3.2.4. SMBH evolution

Using our cosmological simulations, we have checked that the
total mass of SMBH tracer particles (Mt SMBH,tot = (3.5 ±
0.3) × 106 M�9) matches that of SMBH in the simulation
(MSMBH,tot/(1− εr) = 3.1 × 106 M�) at the 10% level, up to an εr
factor. This factor is due to the mass lost by the accreted mate-
rial as it falls onto the black hole. This mass is radiated away and
lost to the simulation. Because the tracer particles have a fixed
mass in our implementation, they are unable to capture the mass
energy that is radiated. However, one could store the value of εr
at accretion time onto each tracer to be able to reconstruct the
exact mass that the SMBH tracer represents.

9 The uncertainty has been estimated using a 1-σ Poissonian noise.
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Fig. 13. Stellar surface density (left panel), star-tracer surface density (centre panel), and relative difference (right panel). The data are the same
as in Fig. 10. In the difference map, regions where no stars are found are indicated in grey. The star and star-tracer distributions are in very good
agreement; their difference shows no spatial dependence. The noise level is higher than in Fig. 10 at large radii where the star surface density is
smaller than the gas surface density, hence the star mass distribution is less resolved than the gas.
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Fig. 14. Bottom panel: radial profile of the gas density (solid blue) and
star density (solid orange) vs. the gas tracer density (blue cross) and
the star-tracer density (orange cross). The error bars are given by a
Poisson sampling noise. Top panel: relative difference between the
baryon and the tracer profiles. The tracers match their baryon coun-
terpart at a few percent level.

3.3. Bi-modal accretion at high redshift: a science case for
tracer particles

Low-mass galaxies (embedded in halos Mh . 1011 M�) exhibit a
significant amount of “cold-mode” cosmological accretion made
of cold gas streaming in narrow filaments with a temperature typ-
ically below Tmax / 105 K (Birnboim & Dekel 2003; Kereš et al.
2005; Ocvirk et al. 2008; Nelson et al. 2013, 2016). A “hot-
mode” phase made of gas that was shock heated before enter-
ing the virial radius (Tmax ∼ 106 K) appears in halos with higher
mass. At early times (z > 2.5), the accretion is dominated by
the cold mode. As time goes by, halos grow in mass so that an
increasing fraction of the gas heats up before entering the halo.
The outcome of this is a decrease of the relative importance of
cold accretion compared to hot accretion. By z / 2, most of the
accreted material comes from the diffuse hot phase. Hence, get-
ting access to the Lagrangian history of the stars and of the star-
forming gas is key to pinning down the origin of gas acquisition
in galaxies.
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Fig. 15. Distribution of the number of star tracers per star for different
star particle mass bins (in units of 104 M�) as observed in the simula-
tion (symbols and shaded surfaces) vs. as given by a Poisson distribu-
tion with parameter λ = 〈M?〉/mt (dashed). The error bars have been
estimated using a bootstrap method. For all stars, the distribution of the
number of star tracers per star is approximated by a Poisson distribution
with parameter λ.

We revisit this result using ramses and the MC tracer parti-
cles. Using the cosmological simulation of Sect. 3.2, we study
the accretion of gas as a function of time around the central
galaxy. We select all the gas tracers that end up in star particles
(not the star-forming gas) at z = 2 and r < 0.1Rvir. The halos
were detected using the AdaptaHOP halo finder (Aubert et al.
2004). For the positioning of the centre of the DM halo, we start
from the first AdaptaHOP guess of the centre (densest particle
in the halo) and from a sphere the size of the virial radius of
the halo; we use a shrinking sphere (Power et al. 2003) by recur-
sively finding the centre of mass of the DM within a sphere 10%
smaller than the previous iteration. We stop the search once the
sphere has a size smaller than '100 pc and take the densest par-
ticle in the final region. Twenty neighbours are used to compute
the local density. Only structures with a density greater than 80
times the average total matter density and with more than 200
particles are taken into account. The original AdaptaHOP finder
is applied to the stellar distribution in order to identify galax-
ies with more than 200 particles. Their Lagrangian history is
reconstructed in post-processing from the 132 equally spaced
(∆t = 25 Myr) outputs, and the thermodynamical properties of
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Fig. 16. Bottom panel: histogram of the maximum temperature of the
gas accreted onto the central galaxy between different redshifts (from
early accretion time in blue to late accretion time in yellow). Top panel:
cumulative distribution of the gas temperature. Only the gas-forming
stars within the virial radius are selected. The total distribution inte-
grated over the total accretion time is shown with the black dashed line
in the bottom panel. The total distribution has been rescaled by a factor
of one third for visualisation. The halo has two modes of accretion: a
cold and a hot mode. At high z the cold mode dominates and at low z
the hot mode dominates.

the gas are extracted from the local gas cell value. For each tracer
particle, the maximum temperature Tmax reached before falling
into the virial radius is recorded. The infall time is defined as the
last inward crossing of the virial radius. The merger tree is com-
puted following Tweed et al. (2009). The procedure only selects
tracer particles falling onto the galaxy in the gas phase. This
excludes gas tracers tracking gas that formed stars in satellite
galaxies but includes gas from wet mergers. Figure 16 presents
the temperature distribution of the accreted gas for different bins
of infall time. At early times (blue lines, z & 3) the accretion is
bi-modal. About 50% of the gas is accreted via the cold mode,
as shown in the top panel of Fig. 16. At later redshifts (z . 2.5),
the accretion becomes dominated by the hot mode. The relative
importance of the cold accretion decreases and the distribution
become less and less bimodal, until it is eventually entirely dom-
inated by the hot mode. This is in qualitative agreement with
the findings of Kereš et al. (2005) though the exact quantitative
amount of cold versus hot accreted gas relies significantly on
i) the numerical scheme to model gas dynamics (Nelson et al.
2013) and ii) the modelled feedback processes (Dubois et al.
2013).

Caution should be taken here: contrary to what was done
in the original study, only the accretion onto a single galaxy is
investigated. In particular, our results are sensitive to the particu-
lar accretion and merger history of that galaxy, which impact the
temperature distribution of the gas. In order to achieve a fairer
comparison, one would have to run a full cosmological simula-
tion and study the gas accretion of the full population within the
box. While this would now technically be possible thanks to the
new tracer algorithm, it is nonetheless well beyond the scope of
this paper.

4. Performance

To quantify the performance of the tracer particles and their asso-
ciated CPU overhead (defined as the excess of computation time
required by the tracer particles), we restarted the simulation of
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Fig. 17. Overhead as a function of the number of tracer particles per
initial cell (symbols). The orange symbol is the simulation with the
tracer deactivated. The data (excluding the run with the tracer deacti-
vated) have been fitted with a linear function (dashed line). The esti-
mated overhead (slope of the fit) is ∼3% per tracer per initial cell with
an extra constant of ∼10%.

Table 1. Run time per coarse time step for the different runs.

Name Absolute Tracer Run time Overhead
number per cell (s) (%)

t100 129325116 10 1310 39.9
t67 86214303 6.7 1270 35.3
t20 64656206 5 1210 28.7
t33 43104621 3.3 1160 23.1
t20 25861310 2 1100 17.5
t10 12929077 1 1060 13.1
t0.1 130250 0.01 1060 13.4
t0 0 0 1020 9.2
not 0 0 940 –

Notes. The run notr was performed with no tracer particles and with
all the tracer particle routines deactivated. The column “Tracer per cell”
is the number of tracer particles per initial cell in the zoomed region.
The “Overhead” column contains the run-time overhead defined with
respect to the notr run.

Sect. 3.2 at redshift z = 2, while varying the numbers of tracer
particles to test the scaling of the algorithm. At restart, we dec-
imate the tracer population to keep only 67, 50, 33, 20, 10, or
0.1% of the initial population (in the gas, star, and black holes).
We also run a simulation with no tracer but all the tracer routines
activated (t0) and a simulation with no tracer and the tracer rou-
tines deactivated (notracer). The parameters of the runs are
presented in the first three columns of Table 1. The run time
is defined as the total run time divided by the number of steps.
The overhead is defined as the relative increase of the run time
with respect to the run not. All the runs were stopped after two
iterations of the coarse time step (about ∼2000 s of run time,
∼2.8 Myr of simulation time). The results are also plotted in
Fig. 17.

By comparing the two runs t0 and notr, we conclude that
the tracer particle machinery adds a constant cost of about 10%
to the computation. This is due to the fact that the tracer particles
require the fluxes at the interface of each cell (six quantities per
cell) to be stored, which then have to be communicated between
CPUs. In addition, there are multiple loops that iterate over all
the cells and all the particles (see Sect. 2 for more details). In
principle, this could be optimised by setting tracer particles in
their own linked list, but we exploited the particle machinery
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available in Ramses, and treated tracer particles just like stan-
dard particles (star or DM) with respect to code structure. In the
following, the computation overhead will be expressed in terms
of the number of tracer per initial cell: Nt/Ncell,i, where Nt is the
number of tracer particles and Ncell,i is the number of initial (gas)
cells.

The runs with tracers show that the total run time starts
increasing with the number of tracer particles per cell10 when
this number becomes of the order of ∼0.1 tracer per initial cell.
Above this threshold, the run time scales roughly linearly with
the number of tracer per initial cell. We have run the simula-
tion on the Occigen supercomputer with 672 cores (28 nodes of
24 cores). Each node is made of two Intel Haswell 12-Core E5-
2690 V3s11 running at a clock frequency of 2.6 GHz. The nodes
are wired together with a DDR Infiniband network (20 Gbit s−1).
The code was compiled with the Intel Fortran compiler version
17.0 and OpenMPI 2.0.2. In this setup the overhead is 3% per
tracer per initial cell. For example the run t100 with 10 tracer
per initial cell had a 40% overhead. Part of the overhead is due
to the tracer particles themselves (moving, generating random
numbers, etc.). Another part is due to the load balancing. Indeed,
in this simulation, tracer particles are only found in the zoomed
region, which is already the most CPU-intensive region. Our
simulation can be seen as a worst-case scenario for the tracer
particles. In general, let us write the conservative formula giving
an estimate of the overhead induced by the tracer particles

∆t
t

= 0.03
(

Nt

Ncell,i

)
+ 0.1, (23)

where t is the run time and ∆t the extra cost induced by the tracer
particles. Here, Nt and Ncell,i are the total number of tracer parti-
cles and the total number of initial cells, respectively.

5. Conclusions

We present a new implementation of tracer particles in the
Ramses AMR code based on the Monte Carlo approach
from Genel et al. (2013). It has been interfaced with the most
common physical models used in cosmological simulations (star
formation and stellar feedback, SMBH growth and AGN feed-
back). We have shown that the Lagrangian history of the gas is
accurately reconstructed by testing the accuracy of the tracer dis-
tribution in an advection-dominated problem and in a diffusion-
dominated problem. The gas tracer distribution matches that of
the gas, even in complex situations that involve subgrid models.
We have also provided a comparison of the new MC tracer parti-
cles to the previous velocity-based implementation and showed
that the new version largely outperforms the accuracy of the pre-
vious one. We have made a detailed study of the distribution of
tracer particles in a zoom-in cosmological simulation including
state-of-the art subgrid model physics (cooling, star formation,
SN feedback, SMBHs, and AGN feedback) and show that: (i) in
each cell, the gas tracer distribution is given by a Poisson distri-
bution with parameter λ = Mcell/mt; and (ii) for each star, the
number of star tracers can be approximated by a Poisson distri-
bution with parameter λ = M?/mt. The properties of the Poisson
distribution give a simple rule to estimate the sampling noise
of the tracer particle, as the noise can be represented by 1/

√
λ.

In turn this should allow users to quantify how many particles

10 We note that here the number of cells is the one in the refined regions,
not the initial number of cells.
11 See Intel-Xeon-Processor- E5-2690.

are needed to reach their sought accuracy. We have also shown
that the gas tracer particles sample exactly the intrinsic numer-
ical diffusion of the Godunov solver. To highlight the assets of
tracer particles in a realistic setting, they were implemented in
the problem of cold flow accretion at high redshift. The known
bi-modality in the temperature of gas was recovered.

The performance of the algorithm was explored. In a zoom-
in full physics cosmological simulation, the run time grows
roughly linearly with the number of tracer particles per cell. The
overall impact on computation time is estimated to be ∼3% per
tracer per initial cell plus a constant computation time overhead
of 10%, regardless of the number of tracer particles. These fig-
ures should serve as upper limits on the computation time. The
performance of the scheme could be optimised by using two sep-
arate linked lists for the tracer particles and the other particles, as
is done in arepo (Genel et al. 2013). Implementing these possi-
ble improvements will be the subject of future studies. Presently,
the performance is significantly lower than that reported in the
original paper of Genel et al. (2013): in addition to using a spe-
cific linked list for the tracer particles, the moving mesh of arepo
reduces the number of tracer movements and mitigates the cost
of each tracer.

In comparison to the original paper by Genel et al. (2013),
we provide an additional detailed description of the statistical
properties of the ensemble of tracer particles not only in the gas
but also in stars and in AGN jets. We also studied how their
distributions behave when complex sub-grid models are involved
(star formation and feedback, AGN feedback, BH accretion) and
checked that their distribution is in agreement with the baryon
distribution.

This implementation provides an efficient method to accu-
rately track the evolution of the Lagrangian history in the Eule-
rian code Ramses. It opens new perspectives to study how baryon
flows interact in hydrodynamical simulations. For instance,
tracer particles could be used to quantify the spatial and time
evolution of the anisotropically accreted gas, its contribution
to the spin of galaxies, and how these processes impact galac-
tic morphology. Specifically, following Tillson et al. (2015),
Danovich et al. (2015), and DeFelippis et al. (2017), one could
address the following open questions: Where does the angular
momentum go? Does it contribute to the spin-up of the galaxies
or is it re-distributed before entering the disk? If it is, is it due to
turbulent pressure, shock-heating or SN and AGN feedback?
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Appendix A: Tracer particle algorithm

Let us describe here the pseudo-code underlying the tracer par-
ticle algorithm. The corresponding Fortran code is available
upon request.

A.1. Gas to gas cells

The main function in charge of moving tracers between gas cells
is called TreatCell. It takes as input the index of a cell and loops
over all tracers in it. It requires all the (mass) fluxes to be stored.
The pseudo code is the following.

function TreatCell(icell)
mcell ←MassOfCell(icell)
Fnet ← 0
for idir ← 1, 2Ndim do . Compute outgoing flux

5: F ← GetFluxInDir(icell, idir)
if F > 0 then

Fnet ← Fnet + F
end if

end for
10: tracers← GetTracerParticlesInCell(icell)

pout ← Fnet/mcell . Probability to move part. out of cell
for jpart in tracers do . Loop on tracer particles

r1 ← DrawUniform(0, 1)
if r1 < pout then

15: r2 ← DrawUniform(0, 1)
for idir ← 1, 2Ndim do . Select a direction

F ← GetFluxInDir(icell, idir)
p = F/Fnet
if r2 < p then . Move in direction idir

20: MoveParticle(icell, jpart, idir)
break

else
r2 ← r2 − p

end if
25: end for

end if
end for

end function
This function requires the MoveParticle function, which is
defined as follow

function MoveParticle(icell, ipart, idir)
Ftot ← GetFluxInDir(icell, idir)
neighbors← GetCellsOnFace(icell, idir)
īdir ← GetOppositeDirection(idir)

5: r ← DrawUniform(0, 1)
for jcell in neighbors do

F ← − GetFluxInDir( jcell, īdir)
p← F/Ftot
if r < p then. Move particle to the centre of the cell

10: SetParticleAtCenter(ipart, jcell)
break

else . Proceed to next cell
r ← r − p

end if
15: end for

end function

Fig. A.1. Cell faces numbering.

GetFluxInDir returns the mass that goes through the cell
face in one timestep. Assuming that cell faces are numbered
from 1 to 6 (left, right, top, bottom, front, rear, see Fig. A.1),
GetOppositeDirection reads

function GetOppositeDirection(idir)
mask← [2, 1, 4, 3, 6, 5]
return mask[idir]

end function
When looped over all cells, the algorithm treating all the trac-

ers has complexity O(N) where N is the total number of tracer
particles and requires O(NdimNcell) memory to store the fluxes
and O(N) to store the tracer particles information.

A.2. AGN

Here we present how the volume of the jet is computed. We also
present how the positions of the tracer particles in the jet are
drawn. The function in charge of drawing position for the tracer
particles in the jet is Tracer2Jet

function Tracer2Jet(j)
loop

c← 2
while c > 1 do

5: a← NormalDistribution(0, 1)
b← NormalDistribution(0, 1)
c← a2 + b2

end while
x← rAGN × a

10: y← rAGN × b
h← Uniform(−2rAGN, 2rAGN)
r2 ← x2 + y2

if |h| > rAGN and (|h| − rAGN)2 + r2 < r2
AGN then

break
15: else if |h| ≤ rAGN then

break
end if

end loop
. We now have a position in the frame of the jet.

20: uz ← j/|j|
ux ← [jy + jz,−jx + jz,−jx − jy]
ux ← ux/|ux|
uy ← uz ∧ ux
return x ux + y uy + h uz

25: end function
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5.3 Torque extraction
Most of the previous works (Danovich et al., 2015; Prieto et al., 2017) have studied the relative

contribution of each torques to the angular momentum (AM) evolution of the cold gas focusing

in particular on their magnitude, splitting the torques between the pressure and the gravitational

torques. This section provides an improvement over these past works by computing the gravi-

tational torques from each source (stars, DM and the gas) separately. I also lay down a general

method to compute gradients in post-processing in AMR codes, which I then use to compute

pressure gradient, and in particular, pressure torques. The precise computation of pressure gradi-

ents and the component-by-component decomposition of the gravitational torques will prove

important in the context of the study of the evolution of cold �ows in galaxies, as will be discussed

in more depth in chapter 6, but let me �rst present here how one can rigorously compute them.

Section 5.3.1 details the method I developed to compute the gravitational torques from the

di�erent sources in numerical simulations. I show that I am able to extract the torques originating

from the DM, stars, the gas. The method is then checked and I show that it provides percent-

accurate results. Section 5.3.2 details the method I developed to compute the pressure torques

in post-processing. The method can be used in general to compute any spatial derivative on an

AMR grid that can be computed from the values of the direct neighbours, which includes the

gradient, the divergence, the curl and the Laplacian operators.

5.3.1 Gravitational torques
In the vicinity of galaxies, the di�erent massive sources (DM, stars, gas) all contribute to the total

gravitational potential φ = φDM + φ? + φgas via the Poisson equation

∇2φi = 4πGρi, (5.2)

where φi and ρi are the gravitational potential and the density of the component i (DM, stars,

gas). One can then compute the speci�c forces resulting from each potential Fi = −∇φi which

can then be used to compute the speci�c torques at position r

τi ≡ r× Fi. (5.3)

In order to extract the torques resulting from each gravitational source, I have modi�ed the code

Ramses to extract in post-processing the speci�c forces due to the di�erent matter components

(DM, gas, stars). This was performed by stripping down Ramses to keep only the Poisson solver,

applied to the density of each individual component
1
. Since the resulting code is a simpli�ed

version of Ramses, it can be run with exactly the same parameters as the original run, so that

the results yielded are consistent (for example, the cosmology is the same). Using the numerical

simulation detailed in section 5.2, I have computed the gravitational force of the stars, gas and

dark matter that act on the gas for each output. For each component (star, gas and DM), I have

also computed the rate of change of speci�c angular momentum (sAM) of the gas as

fi =
τi · l
‖l‖2

, (5.4)

where l = r×v is the gas sAM, both positions and velocities are evaluated for the gas in the frame

of the central halo. Note that equation (5.4) yields a quantity that can be interpreted as the number

of time torques are able to remove all the AM per unit time (it is a frequency). Equation (5.4) is

therefore a measure of the inverse e-folding time along the Lagrangian trajectory of a particle.

fi is positive and large where torques are e�cient at increasing the sAM and negative where

1

The �ducial implementation solves the Poisson equation directly on the total matter density (gas + stars + DM).
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Figure 5.3.1: (a): Relative di�erence between the sum of the sAM evolution rate due to

stars, DM and gas gravitational forces (as computed with the method presented in the

text) and the rate due the total gravitational torques (as computed by Ramses). (b): Same,

but with the total gravitational accelerations. Vertical dashed line indicate 5 % and 95 %
quantiles. The vertical dotted line indicates the median value. The two methods yield

similar results within a few percents.

torques are e�cient at decreasing the sAM. Figure 5.3.1a shows the relative di�erence between

the sum of the evolution rates f? + fDM + fgas extracted individually in post-processing and

the total evolution rate f = τ · l/‖l‖2 computed on-the-�y by Ramses. Figure 5.3.1b shows the

relative di�erence between the gravitational accelerations computed using the two methods. The

agreement is of the order of less than a percent in 90% of the cells. Note that a perfect agreement is

not expected, as the potential from the SMBHs has been neglected in the post-processing method.

In addition, Ramses’ Poisson solver has an intrinsic accuracy of 10−4
, consistent with the median

error obtained in the gravitational accelerations (0.02 %). Overall, the agreement between the

computed rates are within a few percents. The errors on the evolution rate are slightly larger,

albeit still small, as a result of the division by l that skews the distribution and assigns larger

weights in regions where l is small. This con�rms that the post-processing decomposition yields

results consistent with the on-the-�y-computed gravitational �eld used internally to evolve the

simulation.

5.3.2 Pressure gradient estimation

The precise capture of shocks is fundamental to most of the astrophysical codes. These shocks

then result in strong, short-wavelengths gradients which are usually captured by a few cells

in most AMR codes. While numerical codes routinely deal with strong gradients, most AMR

post-processing tools either do not provide any utility to compute them (pynbody, Pontzen et al.,

2013; pymses, Guillet et al., 2013), or have gradient computing capacities that are not available for

octtree-based AMR datasets, as is the case with Ramses (e.g. yt, Turk et al., 2011). The approach

usually followed is to project data on a �xed resolution grid, which is then used to compute

gradients using a �nite-di�erence scheme. Even though this approach yields sensible results at

scales comparable to the (arbitrary) grid spacing, any information at �ner scales is smoothed out

while values at coarser levels have to be interpolated, eventually leading to spurious gradients.

In the case of the study of accretion onto galaxies, the �xed-grid approach fails to provide a

precise description of the gradients at play (pressure and potential gradients), as shocks may

form anywhere in a large volume ∼ R3
vir. In order to capture all shocks on a regular grid, one

would then require the grid to be at least as well-resolved as the AMR grid, e�ectively requiring
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∼ (Rvir/∆x)3 ≈ (100 kpc/30 pc)3 ≈ 3× 1010
cells.

2
This is in practice too large to �t in

memory, as it would require about 120 Gio of data as each pixel requires 4 o of data. In practice,

it is much more e�cient and consistent to directly work on the AMR structure dumped alongside

the physical information of the simulation.

Using a tree search algorithm, as illustrated on �gure 5.3.3, I have developed a post-processing

tool that is able to compute �nite di�erence gradients directly on the AMR grid. The binary search

algorithm ensures that any given location is found in at most N steps, where N is the number

of AMR levels in the simulation (typically between 10 and 20). To do so, I have extended the

yt code (Turk et al., 2011) to enable computation of gradients for oct-based AMR datasets. The

algorithm works as follows. (a) Loop over all octs in the tree. (b) Compute the positions of the

43 = 64 virtual cells centred on the oct and extending in ±2∆x in three directions, as illustrated

on �gure 5.3.2, left panel. (c) Get the value of interest at the centre of each virtual cell from the

AMR grid. If the virtual cell exists on the grid or is contained in a coarser cell, the value on the

grid is directly used. If the virtual cell contains leaf cells, the mean of these cells is used.
3

(d)

Compute the gradient of the quantity using a centred �nite-di�erence scheme on the 43
grid, as

illustrated on �gure 5.3.2, right panel. (e) Store the value of the gradient in the central 23
cells.

This approach aims to provide results as close as possible to the values used internally by

Ramses. It is worth noting that this approach is exactly consistent with the internal approach

of Ramses, except at the interface between di�erent grid levels where a linear interpolation is

used by Ramses, whereas our method uses a simple average. One way to check the consistency

is to compare gradients computed by the post-processing tool to the ones computed internally

by Ramses. This is for example done using the velocity divergence, as shown on �gure 5.3.4.

The �gure shows that the post-processing method recovers the velocity divergence within a few

percent, while most of the scatter is attributed to the fact that Ramses uses a linear interpolation

at the interface between coarse and �ne cells.

2

Here I have used the resolution of the simulation presented in section 5.2 and the typical size of the virial radius

of a 1012 M� halo at z = 2.

3

Note that to be fully consistent with Ramses at �ne-to-coarse boundaries, one should either use a linear interpola-

tion with a total variation diminishing scheme (TVD) or a straight injection and use 1.5∆x distance in the gradient

estimate.
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Figure 5.3.2: Scheme of the AMR structure used to estimate the gradient of a quantity f
in the central oct (red). Octs are represented in thick lines, cells in thin lines and virtual

cells in dashed lines. Le� panel: The virtual cell values on a 43
grid are interpolated

from the nearest cell in the AMR grid. If the nearest cell is at the same level, its value is

directly used. If the cell is at a coarser level, its value is directly used (for example f31

and f32 have the value of the green cell). If the cell is re�ned, the mean of its children

is used (for example f20 is the mean of all the blue cells). Right panel: Gradients are

estimated using a �rst-order �nite di�erence centred scheme on the 43
virtual cells.



156 Chapter 5. Following anisotropic accretion: numerical tools

l = 0

l = 1

l = 2

l = 3

l = 4

l = 5

x0.19 x 0.65x0.33

(a) Binary search in 1D.

x
y

l =
5

l =
4

l =
3

l =
2

l =
1

(b) Binary search in 2D.

Figure 5.3.3: (a) Scheme of a binary search in an oct structure in 1D. The requested

points are shown as red and blue dashed lines. The algorithm starts at the root level

l = 0 and goes down the structure ; at each level, it picks the cell that contains the

requested point. (b) A similar illustration in 2D, the algorithm works in the same way.

At each level, it selects one of the four cells (red and blue squares) from the oct (thick

line). The algorithm can be easily generalised to three or more dimensions. It is able to

�nd any cell containing a given point in lmax iterations exactly. If the grid is sparse, as

is the case for an AMR structure, lmax becomes an upper boundary.
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Figure 5.3.4: Le� panel: Plot of the velocity divergence as computed by Ramses vs. the

ratio of the value computed in post-processing to Ramses’s one. Right panel: PDF of the

ratio. 95 % of the distribution falls between the two horizontal lines. 95 % of the cells

have a value between 0.71 and 1.12 times the value computed internally by Ramses.
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5.4 Conclusion
In section 5.2, I have presented a new tracer particle scheme. I have shown that it is able

to accurately capture the Lagrangian evolution of the baryons in a full-featured cosmological

simulation. In particular, I showed that the tracer particles have a spatial distribution close to that

of the gas, which signi�cantly improves over previous methods. I also showed that the tracer

particles can be used to get the full Lagrangian evolution of the baryons as they move from gas to

stars and into SMBHs. In section 5.3, I presented two numerical methods to extract the torques

acting on a parcel of �uid. The methods presented have been shown to yield consistent results that

are much improved compared to previous methods. The gravitational torque extraction method

can be used to decompose the contribution to the gravitational torques due to each individual

components (DM, stars and gas). I have also presented a method to compute pressure gradients

on an AMR grid which I then applied to the computation of pressure torques. This approach

provides results consistent with the internal values of the code.

The methods detailed in this chapter have a broad range of application. The tracer particle

scheme has already been adopted by other researchers to study the formation and destruction

of clumps in clusters (see appendix B.3) and to study gas �ows in the circumgalactic medium

(P. Mitchell, private communications). They are also used in the context of protoplanetary

disk formation, where they have been modi�ed to follow the Lagrangian evolution of dust

grains (U. Lebreuilly, private communications). The gradient computation was for example

used to compare the cosmic ray pressure gradient, thermal pressure gradient and gravitational

acceleration in isolated simulations of dwarf galaxies, and concluded that cosmic ray pressure

was the dominant acceleration mechanism above 1 kpc from the plane of the disc (G. Dashyan at

al., submitted).
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6.1 Introduction
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Figure 6.1.1: Sketch of the galaxy and its environment with the outer halo (r > Rvir/3),

the inner halo (Rvir/3 > r > Rvir/10) and the disk (r < Rvir/10). The mode of

accretion are the cold mode via cold �ows (in blue) and the hot mode, characterized by a

stable shock at the virial radius (in red). Cold �ows may also shock and heat at a smaller

radius to be determined. On large scales, cold �ows are embedded in the cosmic web.

One of the successes of the ΛCDM model is its ability to reproduce the large-scale structure of

the Universe observed in galaxy distribution (e.g. Springel et al., 2006). These structure form

out of the initial tiny density �uctuations of the primordial density �eld and under the e�ect of

gravitational forces, matter departs from underdense regions to �ow through cosmic sheets into

�lamentary structures. Matter then �ows from these �laments towards high-density peaks that

will later become halos. In the process, matter acquires kinetic properties (e.g. vorticity Pichon

and Bernardeau, 1999; Laigle et al., 2015) in its journey through voids, sheets and �laments of the

cosmic web, which, in turn, a�ect the assembly of dark matter halos, as shown in chapter 4. Before

shell crossing, baryons follow the same initial fate as DM and �ow from underdense regions

to sheets. Yet, as they �ow in sheets, pressure forces prevents them from shell-crossing so that

they lose their normal velocity component to the shock front, dissipating large-scale acquired

kinetic energy into internal energy (eventually radiated away by gas cooling processes). Following

potential wells created by dark matter, baryons then �ow towards �lamentary structures where

they lose a second component of their velocity
1

and reach a dense-enough state to e�ciently cool

radiatively.

At �rst order, galaxy formation is a�ected by the mass of their dark matter halo host and

the local environment, as encoded by the local density on sub-Mpc scales, as it is assumed that

baryons have the same past accretion history as dark matter. These models have proven successful

at explaining a number of observed trends, in particular against isotropic statistics, in the so-called

halo model, yet they fail to explain some e�ects such as spin alignments (Tempel and Libeskind,

1

The component lost is in the direction perpendicular to the shock, which is in the plane of the wall and the

�lament.
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2013; Codis et al., 2015; Dubois et al., 2014; Chisari et al., 2017), colour segregation (Laigle et al.,

2018; Kraljic et al., 2018; Kraljic et al., 2019) or star formation rates (Malavasi et al., 2017; Kraljic

et al., 2019). Indeed, galaxies form by converting their gas into stars and by successive mergers,

which are in turn a�ected by the tides and large-scale modulations of the density �eld induced by

the cosmic web. The detailed history of how the gas was acquired, which can be described using

the critical event theory developed in chapter 4, and how much AM it brought, as well as the

origin of the mergers should in principle impact the formation of the galaxy. Since the physical

processes involved in dark matter halo formation di�er from the baryonic processes at the core of

galaxy formation, one can expect that the cosmic web will have a di�erent impact, if any, on the

formation of galaxies and may explain the disparity of their properties in similar-looking dark

matter halos.

In particular, at �xed halo mass and local density, properties of galaxies such as their colour

or the kinematic structure vary with their location in the cosmic web. One key process in the

di�erential evolution of galaxies is gas accretion. Indeed, at large redshifts it has been suggested

that the accretion of gas is dominated by �ows of cold gas funnelled from the large scales to

galactic scales (Birnboim and Dekel, 2003; Dekel and Birnboim, 2006). This mode of accretion has

then been con�rmed in numerical simulations using di�erent methods (Kereš et al., 2005; Dekel

and Birnboim, 2006; Ocvirk et al., 2008; Nelson et al., 2013) as the source of a signi�cant fraction

of the baryonic mass but also AM (Pichon et al., 2011; Kimm et al., 2011; Stewart et al., 2013;

Stewart et al., 2017) and it has been proposed that these �ows may feed supermassive black holes

(Di Matteo et al., 2012; Dubois et al., 2012), which in turn a�ect the cold in�ow rates (Dubois et al.,

2013). Using an extension of TTT (Peebles, 1969; Schaefer, 2009), Codis et al., 2015 showed that

anisotropic environments, such as large-scale �lamentary structures, biases the AM distribution

to align it with the cosmic web. It is then expected that this gas will fall in galaxies via cold �ows,

feeding disks with angular-momentum rich gas that is itself aligned with the tides of the cosmic

web.

Recent works have shown that the �ows are subject to a variety of processes: they may

fragment (Cornuault et al., 2018) or be disrupted by hydrodynamical instabilities (Mandelker

et al., 2016; Mandelker et al., 2019), but they are also sensible to feedback events (Dubois et al.,

2013). In this context, Danovich et al., 2015 showed that in numerical simulations, cold �ows are

nevertheless able to feed galaxies with angular-momentum rich material (as speculated by Pichon

et al., 2011; Stewart et al., 2013). In this study, it was shown that the AM acquired outside the halo

at z = 2 is transported down to the inner halo; the gas then settles in a ring surrounding the disk,

where gravitational torques spin the gas down to the mean spin of the baryons. Another study,

albeit at larger redshifts, found that the dominant force was pressure (Prieto et al., 2017). Since

there is not much freedom on the �nal AM of the galaxies, as constrained by their radius, the

excess AM brought by cold �ows has to be redistributed somehow before it reaches the disk. The

details of where this AM will end up are key to understand the AM distribution in galaxies, but

also to understand to what extent their spin is aligned with the cosmic web. If the dominant forces

acting on the AM are pressure forces, resulting from internal processes (SN winds, AGN feedback

bubbles), then the spin of the galaxy would likely be a result of chaotic internal processes and

would lose its connection to the cosmic web. Similarly, if the AM is lost into thermal energy (which

is then radiated away) in shocks, the galactic spin would be a weak function of the large-scale

AM induced by the cosmic web. On the contrary, if the dominant forces are gravitational forces,

then the spin-down of the cold gas is likely to drive a spin-up of either the disk or the dark matter

halo, which themselves are the result of their past AM accretion history. In this last scenario, the

details of which part(s) of the halo or the disk interact exchange AM with the infalling material

would constrain models aimed to understand the evolution of the spin of galaxies.

Historically, the study of cold accretion has been particularly challenging in numerical simu-
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lations. Early simulations using SPH methods largely over-estimated the fraction of gas accreted

cold (see e.g. Nelson et al., 2013, for a discussion on this particular issue) as a result of the di�culty

to capture shocks using SPH. AMR simulations do not su�er from this caveat (Ocvirk et al., 2008),

yet they fail at providing the Lagrangian history of the gas — in particular its past temperature

— which is required to detect the cold-accreted gas. In order to circumvent this limitation, most

simulations relied on velocity-advected tracer particles (Dubois et al., 2013; Tillson et al., 2015).

However, this approach yields a very biased tracer distribution that fails at reproducing correctly

the spatial distribution of gas in �laments: most tracer particles end up in convergent regions

(centre of galaxies, centre of �laments) while divergent regions are under-sampled. In order

to reproduce more accurately the gas distribution, Genel et al., 2013 suggested relying on a

Monte-Carlo approach where tracer particle follow mass �uxes instead of being advected. Using

this approach, I have showed in chapter 5 (Cadiou et al., 2019) that tracer particles are able to

faithfully reproduce the gas distribution while providing the Lagrangian history of the gas, and

in particular its past temperature and position.

In this chapter, I investigate the evolution of the AM of the cold and hot gas using cosmological

simulations of group progenitors at z > 2. I provide a detailed study of the evolution of the AM of

the cold and hot gas. In particular, this chapter aims at answering the question of which forces are

responsible for the spin-down and realignment of the AM of the gas accreted in the two modes of

accretion (hot and cold). Section 6.2 presents the numerical setup. Section 6.3 presents the AM

evolution of the cold and hot gas. It follows the evolution of the magnitude and orientation of the

AM and the di�erent forces and torques at play in the di�erent regions of the halos. It details the

evolution of the magnitude and orientation of the AM and the di�erent forces and torques at play

in the di�erent regions of the halos. Section 6.4, I present their implication on the distribution of

AM in the galaxy and the inner halo. Finally, section 6.5 wraps things up and concludes.

In the following of this chapter, I will adopt the same naming conventions as Danovich et al.,

2015. I will write Rvir the virial radius of a halo. The outer halo is de�ned as the region between

Rvir and Rvir/3. The inner halo is de�ned as the region between Rvir/3 and Rvir/10. The “disk”

is the region at radius r < Rvir/10 where the galaxy is found. This is sketched on �gure 6.1.1.

6.2 Methods
In section 6.2.1, I establish the equations that link the AM evolution of the gas to the di�erent

torques. In section 6.2.2, I describe the simulations I ran. In section 6.2.3, I describe how I selected

the cold gas being accreted on the halos in the simulations.

6.2.1 Equations
In the following, the position and velocities are computed in the frame of the halo, as measured

with the AdaptaHOP halo �nder (Tweed et al., 2009). Let me �rst derive the equation driving the

evolution of the sAM of the gas,

l = r× v. (6.1)

To do so, let us start from Euler’s equation and the mass conservation equation

∂ρ

∂t
+∇ · (ρv) = 0, (6.2)

∂v

∂t
+ (v · ∇)v = −∇P

ρ
−∇φ. (6.3)

Taking the derivative of equation (6.1) w.r.t. time, one gets that

dl

dt
= r×

(
∂v

∂t
+ (v · ∇)v

)
+

(
∂r

∂t
+ (v · ∇)r

)
× v. (6.4)
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After trivial algebra, the rightmost part of the right-hand side vanishes. Using equations (6.3)

and (6.4), the Lagrangian time derivative of the sAM then reads

dl

dt
= τP + τφ, (6.5)

where τP ≡ −r×∇P/ρ, τφ = −r×∇φ are the speci�c pressure and gravitational torques.

Here P and ρ are the pressure and density of the gas and φ is the gravitational potential. The

potential is de�ned using Poisson equation

∇2φ = 4πGρtot, (6.6)

where ρtot is the total matter density (DM, stars, gas and SMBHs). Using the linearity of equa-

tion (6.6), the total potential can be written as the sum of the potential due to each component

φ = φDM +φ?+φgas
2
, using the method developed in section 5.3.1. One can similarly decompose

the gravitational torques into three di�erent components τφ = τφ,DM + τφ,? + τφ,gas. In the

following, I will use this decomposition to assess which gravitational components contributes to

the evolution of the sAM of the gas.

Following section 5.3, let me de�ne the rate of change induced by each torque

fi =
τi · l
‖l‖2

, (6.7)

where i indicates the torque source (DM, star or gas gravitational torques or pressure torques). I

have shown in the previous chapter that this quantity has the physical meaning of the inverse

e-folding time of the sAM on a Lagrangian trajectory. Using equation (6.5) and after some algebra,

one also gets that the total rate of change can be simply expressed as the variation of the sAM

f = d log l/dt . Let me emphasize here that this relation only holds for the total rate of change.

From equation (6.7), one can also de�ne a typical timescale associated with the torques as

tτ,i =

∣∣∣∣
1

fi

∣∣∣∣ . (6.8)

These timescales measure the typical time over which a given torque will signi�cantly change

the sAM of the gas. As equations (6.7) and (6.8) only use the contribution of the torque in the

direction of the sAM, the timescale measures the typical time required to loose all the sAM, but

not to reorient it. Note that one could compute similarly the realignement timescale by replacing

the dot product of equation (6.7) with the norm of the cross product f⊥,i ∝ |τi× l|. In addition,

the rate of change is a scalar that can have a negative value if the torques are spinning the gas

down (anti-aligned with the sAM vector) while it has a positive value if they are spinning the gas

up (aligned with the sAM vector).

6.2.2 Numerical simulation
I have run a suite of three 50 cMpc/h-wide cosmological simulations, hereafter named S1, S2, S3.

The three simulations contain 6 halos with M ' 5× 1011 M�3
, hereafter named A, B, C, D, E

and F. Their properties are presented in Table 6.1. The size of the zoomed Lagrangian volume

in the initial conditions is chosen to encapsulate twice the virial radius of the halo at z = 2.

The simulation are started with a coarse grid of 1283
(level 7) and several nested grids with

increasing levels of re�nement up to level 11. The adopted cosmology has a total matter density

2

I neglect here the contribution from SMBHs as they do not contribute signi�cantly to the potential on galactic

scales.

3

Only pure halos in the zoomed-region have been selected.
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Table 6.1: Properties of the halos at z = 2.

Name Simulation Mvir/1011 M� M?/1010 M�

A S1 3.66 6.07
B S2 7.82 9.20
C S3 6.64 5.09
D S1 7.29 4.18
E S1 5.23 7.84
F S3 4.63 3.49

of Ωm = 0.3089, a dark energy density of ΩΛ = 0.6911, a baryonic mass density of Ωb = 0.0486,

a Hubble constant of H0 = 67.74 km s−1 Mpc−1
, a variance at 8 Mpc σ8 = 0.8159, and a non-

linear power spectrum index of ns = 0.9667, compatible with a Planck 2015 cosmology (Planck

Collaboration, 2015).

The simulations include a metal-dependent tabulated gas cooling function following Suther-

land and Dopita, 1993 allowing gas to cool down to T ∼ 104 K via Bremsstrahlung radiation

(e�ective until T ∼ 106 K), via collisional and ionisation excitation followed by recombination

(dominant for 104 K ≤ T ≤ 106 K) and via Compton cooling (see section 2.2.2.1). The metallicity

of the gas in the simulation is initialised to Z0 = 10−3 Z� to allow further cooling below 104 K
down to Tmin = 10 K (Rosen and Bregman, 1995). Reionisation occurs at z = 8.5 using the

Haardt and Madau, 1996 model and gas self-shielding above 10−2 mp cm−3
. Star formation is

allowed above a gas number density of n0 = 10 mp cm−3
and with e�ciency εff that depends on

the gravoturbulent properties of the gas (for details, see Kimm et al., 2017; Trebitsch et al., 2017).

The main distinction of this turbulent star-formation recipe with the traditional star formation in

Ramses (Rasera and Teyssier, 2006) is that the e�ciency can approach and even exceed 100 %
(with εff > 1 meaning that stars are formed faster than in a free-fall time). The stellar population

is sampled with a Kroupa, 2001 initial mass function, where ηSN = 0.317 and the yield (in terms of

mass fraction released into metals) is 0.05. The stellar feedback model is the mechanical feedback

model of Kimm et al., 2015 with a boost in momentum due to early UV pre-heating of the gas

following Geen et al., 2015. The simulation also tracks the formation of SMBHs and the evolution

of AGN feedback in jet mode (radio mode) and thermal mode (quasar mode) using the model

of Dubois et al., 2012. The jet is modelled self-consistently by following the AM of the accreted

material and the spin of the black hole (Dubois et al., 2014). The radiative e�ciency and spin-up

rate of the SMBH is then computed using the results of McKinney et al., 2012 in their MAD model.

SMBHs are created with a seed mass of 104 M� for S1 and 105 M� for S2 and S3.

The simulations have a roughly constant physical resolution of 35 pc (one additional maximum

level of re�nement at expansion factor 0.1 and 0.2), a star particle mass resolution of m?,res =
1.1× 104 M�, a dark matter (DM) particle mass resolution of mDM,res = 1.5× 106 M�, and gas

mass resolution of 2.2× 105 M� in the re�ned region. A cell is re�ned according to a quasi-

Lagrangian criterion: if ρDM + ρb/fb/DM > 8mDM,res/∆x
3
, where ρDM, and ρb are respectively

the DM and baryon density (including stars plus gas plus SMBHs), and where fb/DM is the

universal baryon-to-DM mass ratio. The maximum level of re�nement is also enforced up to 4

minimum cell size distance around all SMBHs. Tracer particles (Cadiou et al., 2019) are added

in the re�ned region with a �xed mass of mt = 2.0× 104 M� (Ntot ≈ 1.3× 108
particles). The

description of the tracer particle scheme is detailed in chapter 5. There is on average 0.55 tracer

per star and 22 per initial gas resolution element. Cells of size 35 pc and density 20 cm−3
contain

on average one tracer per cell.
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10 kpc10 kpc
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Figure 6.2.1: Upper panel: Projection of the gas density around the halos A (left), B

(centre) and C (right) at z = 2. Lower panel: Line-of-sight integrated star density.

6.2.3 Cold gas selection
The ratio of the total accreted mass with a maximum temperature below a given threshold Tmax

to the total gas mass — the cold fraction — is a widely reported quantity in the study of the

cosmological gas accretion, dating back to Kereš et al., 2005. In this study, a temperature cut

T . Tmax = 2.5× 105 K (see e.g. Nelson et al., 2013, for a discussion on the e�ect of the

threshold) is used. In order to study the sAM evolution of the cold gas, I use the Lagrangian

history of all the baryons (gas and star) that end up within 2Rvir of the central galaxy. This

ensemble of particle in the vicinity of the galaxy is then grouped in three sets:

1. the baryons that end up in the inner halo r < 0.3Rvir at the end of the simulation; I will

refer to this subset as “baryons in the galaxy”,

2. the baryons that never heated above the threshold temperature T ≤ Tmax from 1.5Rvir to

0.3Rvir; I will refer to this subset as “cold baryons”,

3. the baryons that were never accreted on a satellite galaxies; I will refer to this subset as

“directly accreted baryons”; this e�ectively selects gas whose �rst accretion is onto the main

halo. In practice, this is done by excluding any tracer found at any time at less than a third

of the virial radius of any halo other than the main one.

The distribution of the gas in halo A at z = 2 is shown on �gure 6.2.2 where baryons in the

galaxy are represented in the red ensemble, cold-accreted baryons in blue and directly accreted

baryons in green. In the following of the chapter, the subset of interest is the intersection of the

three ensembles: this is the gas that was accreted cold onto the galaxy, that end up in the inner

halo at z = 2 and that was not accreted via mergers. In the remaining of the paper, I will refer to

this subset as the “cold gas” while I will use “hot gas” to describe gas that was not accreted via
mergers but which eventually heated up above the temperature threshold.

I have checked that the fraction presented on �gure 6.2.2 are robust to changes of the threshold
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Figure 6.2.2: Venn diagram of the ensembles of tracer particles used to de�ne the

cold-accreted tracer particles. Direct cold-accreted tracer particles are the intersection

of the tracer particles accreted cold between 1.5 and 0.5Rvir (blue) that end up in the

central galaxy at z = 2 (red) and that were �rst accreted onto the central halo (green).

See the text for details on how each of these ensembles are de�ned. Percentages indicate

the fraction in simulation A of all the particles within 2Rvir found in each part of the

diagram. Percentages within parenthesis indicate the fraction of tracer in the inner halo

(r < 0.3Rvir) found in each part of the diagram. Direct cold-accreted baryons represent

26 % of the baryons that end up within 2Rvir and 37 % of the baryons within 0.3Rvir.

radius for �rst-accretion detection: using Rthresh = 0.5Rvir instead of 0.3Rvir only leads to

percent di�erences. Indeed, most of the gas already within 0.5Rvir of a halo is likely to later fall

into the inner part of the galaxy.

6.3 Results
I have now described the equations driving the AM evolution of the gas (section 6.2.1), the

numerical setup (section 6.2.2) and described how the cold gas is selected (section 6.2.3). In this

section, I detail the results obtained. In section 6.3.1, I present the di�erences between the sAM

and the AM per unit volume, as used in Danovich et al., 2015. In section 6.3.2, I detail the dominant

forces found in the di�erent regions surrounding the galaxy. In sections 6.3.3 and 6.3.4, I describe

the evolution of the AM magnitude and orientation respectively. Finally, in section 6.3.5, I describe

which torques dominate the evolution of the AM of the gas.

6.3.1 Specific angular momentum vs. angular momentum per unit volume
Equation (6.5) di�ers from Eq. 9 of Danovich et al., 2015. Indeed, it is an equation on the sAM
instead of the AM per unit volume. The rate of change of AM per volume includes a dependence

to the cell volume via the velocity divergence, which is itself highly sensible to the compression

and decompression of the gas. This is particularly important in astrophysical �ows that are

highly compressible. Contrary to what Danovich et al., 2015 reported, I �nd that the divergence

term dominates over the gravitational and pressure terms. In�owing gas typically moves at

100 km/s with typical variation scales of a few kpc. An order of magnitude of the divergence
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is then ≈ 100 km s−1/1 kpc ≈ 100 Gyr−1
, with larger values found in shocked and highly

compressed regions. These values are comparable or larger than pressure and gravitational

torques, highlighting their importance in the study of the evolution of the AM per unit volume.

In the following of the dissertation, I will use the sAM, its evolution being described by

equation (6.5). I will hence not consider the divergence term in the study, as it does not enter the

equation of evolution of the sAM. In addition to ignoring this term, following the Lagrangian

evolution of the sAM has the advantage of interfacing naturally with tracer particles. Indeed,

Lagrangian tracer particles have a �xed mass, so that their sAM is linked to their AM via a

constant factor (their mass).

6.3.2 Dominant forces in the cold and hot phase
The di�erent accretion mode for the cold and the hot phase of the gas leads to a spatial segregation

of the cold phase into thin collimated �lamentary structures, as shown on �gure 6.2.1. In addition,

their thermodynamical properties di�er: the cold phase is made of a quite homogenous gas, so

that the internal pressure gradients are weak. As a result, strong pressure gradients are found at

their interface, as shown by Danovich et al., 2015. On the contrary the hot gas is less homogenous,

so that pressure forces may be locally dominant. Figure 6.3.1 presents projected maps of the

magnitude of the gravitational forces and pressure forces around one halo at z = 2.7 for the hot

gas (top panel) and the cold gas (bottom panel). In addition, �gures 6.A.1a and 6.A.1b in annex

presents similar maps in the three directions (x, y and z) for the pressure and DM gravitational

forces. In the hot gas, the two dominant forces are qualitatively DM gravitational forces and

pressure forces, with stellar gravitational forces being important only in the inner halo. In the cold

phase, pressure forces are signi�cantly smaller, while gravitational forces are mostly unchanged.

In the inner halo, a notable “pressure-ring” is clearly visible in the cold gas, as shown in the

bottom right panel of �gure 6.3.1.

In order to better disentangle the di�erent contributions to the dynamical evolution of the

gas, one needs to distinguish the radial component of the forces — that is responsible for the

infall of the gas — and the ortho-radial component — that is mostly responsible for the sAM

variation. This is shown on �gure 6.3.2 that presents radial pro�les of the two components of each

(speci�c) forces (pressure forces, gravitational forces) in one of the simulated halos. In the disk,

the dominant forces in the radial and ortho-radial directions are stellar gravitational forces due to

the disk. The forces are mostly radial, with their ortho-radial component one order of magnitude

smaller than the radial one. In the inner halo, stellar gravitational forces become less dominant.

The (inward) radial acceleration becomes DM-dominated, while the ortho-radial component is

dominated by pressure torques. This is in particular the case for the hot gas, where ortho-radial

pressure forces are one order of magnitude larger than DM gravitational forces. In the cold phase,

the ortho-radial acceleration is due to both the DM and the pressure forces. The ortho-radial

acceleration stays pressure-dominated in the hot phase up to a few Virial radii. Interestingly,

both components of the gravitational forces have similar magnitudes in the cold and hot phase. I

also notice that in the outer halo, the magnitude of both components of the pressure forces are

comparable, indicating that pressure forces do not have a preferred direction. Here, I report that

the “pressure-ring” corresponds to the rise of the ortho-radial pressure forces, as shown clearly in

�gure 6.3.1, right panel. This probably marks the transition between the free-falling cold �ows

and the circumgalactic medium and may have a signi�cant impact on the structure of the accreted

gas, and in particular on the cold �ows.

6.3.3 The magnitude of the angular momentum
Before turn-around, gas acquires AM via torque with the cosmic web as explained by TTT (Hoyle,

1949; Peebles, 1969; S. D. M. White, 1984; Catelan and Theuns, 1996, see section 2.1.6). At these
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Figure 6.3.1: From left to right, mass-weighted projection of the magnitude of the DM

gravitational forces, stellar gravitational forces, gas gravitational forces and gas pressure

gradients, top panel: for all the gas but the cold one and bottom panel: only the cold gas in

halo A at z = 2.7. In the hot phase outside the halo, gas pressure and DM gravitational

forces have similar magnitudes. In the inner halo star and DM gravitational forces have

a magnitude comparable to pressure forces. In the cold phase, the pressure forces are

signi�cantly weaker. The gas gravitational forces are negligible everywhere in both the

cold and hot phases.
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Figure 6.3.2: Le�: Radial pro�le of the radial component and right: of the ortho-

radial component of the di�erent forces around halo A at z = 2.7: DM gravitational

forces (black), stellar gravitational forces (orange), gas gravitational forces (blue) and

pressure forces (red). Inward radial accelerations are shown as solid lines and outward

accelerations are shown as dashed lines. Dark lines show the pro�les for the hot gas

and light lines for the cold gas. The virial radius Rvir, Rvir/3 and Rvir/10 are shown as

vertical dashed grey lines. Gravitational forces have a similar action on cold gas. The

ortho-radial component of pressure forces is signi�cantly smaller in the cold gas outside

the inner halo.
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Figure 6.3.3: Evolution of the ratio of the gas gravitational torques to the DM gravi-

tational torques (blue) and of the ratio of the stellar gravitational torques to the DM

gravitational torques (orange) for gas crossing a Rvir/3 at z = 2.5 in halo A. The ratio

Ωb/ΩDM (horizontal dotted line) corresponds to the initial gas-to-DM density ratio.

Star torques become important in the inner halo r / Rvir/3 (vertical dotted line).

scales, the torque magnitudes are proportional to the mean density of the gas and DM component.

Indeed, when the gas is far from the halo, the density ratio sourcing the gravitational torques

is given Ωb/ΩDM ≈ 0.19. As a consequence, a similar ratio is expected on the torque ratio, as

shown on �gure 6.3.3, which presents the evolution of the torques acting on the cold gas accreted

in halo A at z = 2.5. As expected, the gas-to-DM torque ratio goes to Ωb/ΩDM in the early times,

when the gas is still far from the galaxy.

The sAM of the hot and cold gas follows a di�erent path. In order to study how the sAM

evolves, one can study the Lagrangian evolution of the sAM of all the gas accreted at the same

time as a function of its radius, as shown on �gure 6.3.4. The �gure presents the Lagrangian

evolution of the sAM as a function of radius for the cold (solid lines) and hot gas (dashed lines).

In all halos, the sAM of the cold gas is conserved down to smaller radii, typically r ∼ Rvir/3 than

in the hot gas.

For the hot gas, the virial shock is able to e�ciently mix the pristine, freshly-accreted high-

sAM gas with the gas already in the halo. In the process, most of the AM is either turned into

thermal energy or transferred to the hot halo. This picture is consistent with the results of

section 6.3.2 and �gure 6.3.1, where I showed that the dominant forces in the outer halo and up to

the outskirts of the halo in the hot gas are pressure forces.

The fate of cold gas is signi�cantly di�erent. On average in all halos, the cold gas has a sAM

∼ 3 times larger than the hot gas throughout its accretion in the outer halo down to the inner

halo. The cold gas is mostly in free-fall (Rosdahl and Blaizot, 2012) up to the inner halo, where

the cold gas shocks and the sAM quickly drops down to values comparable to the hot gas. While

signi�cant deviations are found from halo to halo, see the di�erent panels of �gure 6.3.4, the mean

Lagrangian history of the sAM is clearly di�erent between the cold and the hot gas. These results,

together with �gure 6.3.1, suggest that the spin-down of the gas happens due to the interaction

with the inner DM halo and the stellar disk.
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Figure 6.3.4: Evolution of the magnitudes of the mean sAM of the cold gas (solid lines)

and of the hot gas (dashed lines) as a function of the distance to the halo centre for all

halos. Bottom right: Mean value of the sAM averaged over all halos. The gas has been

selected to cross the virial radius inward for the �rst time at t = 2.2 Gyr (z = 2.9).

In the outskirts of the halos (r ∼ 3Rvir), hot gas starts loosing sAM while cold gas

conserves it down to the inner halo (r ∼ Rvir/3).

6.3.4 The orientation of the angular momentum
So far, I have only described the evolution of the magnitude of the sAM of the gas. In practice,

the evolution of the orientation of the sAM evolves slightly di�erently. In order to quantify the

evolution of the sAM orientation, a relevant quantity is the relative angle between the sAM at

radius R1, R2, de�ned as

cos θ =
l(R1) · l(R2)

‖l(R1)‖‖l(R2)‖ . (6.9)

If the sAM orientation is conserved, equation (6.9) should have values close to one, whereas

random reorientations yield values close to zeros. Values close to −1 are found in anti-aligned

cases. The evolution of cos θ is shown on �gure 6.3.5, which presents the relative alignment of

the sAM between its value at Rvir and its past value at 3Rvir (left panel) and its value at the

interface between the outer and inner halo (0.3Rvir, centre panel) and between the inner halo

and the disk (0.1Rvir, right panel). The alignment angle is computed at crossing time (r = Rvir)

for all six halos. The sAM of the cold gas stays mostly aligned from 3Rvir to 0.3Rvir with typical

misalignments of the order of π/3 (∼ 60°) or less. At its entry in the disk, most of the original
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Figure 6.3.5: Le�: Relative orientation of the sAM of the cold gas at Rvir compared to

its value at 3Rvir (le�),Rvir/3 (middle) andRvir/10 (right) for each halo (thin lines). The

blue thick line shows the median value for the cold gas, smoothed over 11 consecutive

outputs (550 Myr) using a fourth-order Savgol �lter and the red thick line shows the

median value for the hot gas smoothed in a similar way. In all simulations, the orientation

of the sAM of the cold gas is conserved down to ∼ Rvir/3. Upon the entry in the disk,

the sAM is reoriented and loses its connection to the large scale. The sAM of the hot

gas start decoupling at larger radii.

orientation has been lost. I however report a weak yet non-null alignment. Before entering the

halo, the evolution of the hot gas is similar to the cold gas: the orientation is conserved from 3Rvir

toRvir but it becomes signi�cantly less aligned betweenRvir andRvir/3, where the misalignment

is typically of the order of 2π/5 (∼ 70°). I do not report any signi�cant evolution of the sAM

orientation with redshift.

6.3.5 Dominant torques in the cold and hot phase

I have presented in sections 6.3.3 and 6.3.4 that the cold gas retains its orientation and magnitude

down to the inner halo, while the hot gas has lost most of its orientation before entering the halo

and conserves its orientation down to the inner halo. Here, I study which torques are responsible

for the realigment and spin-down of the gas.

Figure 6.3.6 shows a 3D representation of the sAM, pressure torques and gravitational torques

acting on the cold gas of halo A at z = 3. The �gure illustrates that both sAM and gravitational

torques have a coherent long-range spatial structure, as neighbouring vectors are aligned one

with each other. On the contrary, pressure torques vary on scales similar or smaller than the size

of �lamentary structures, so that the net contribution of the pressure torque on a slab of �lament

cancels out, as neighbouring vectors point in opposite directions. Gravitational torques have a net

(positive or negative) contribution thanks to their large-scale coherence, so that their e�ect adds

up. More quantitatively, the coherence of the torques can be estimated by comparing the local

torque value to the local torque standard deviation. This is similar to computing their “signal-to-

noise” ratio, where the signal is the torque magnitude and the noise is its local deviation. Large

values of this quantity are found in regions where torques have a coherent structures while small

values are found in regions with no structure. In �gure 6.3.7, I present mass-weighted projections

of their signal-to-noise ratio, where the local standard deviation is computed using the 33
nearest

cells in the cold gas. This illustrates that pressure torques have no spatial coherence, so that
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Figure 6.3.6: 3D representation of the sAM (left panel), pressure torques (central panel)

and DM gravitational torques (right panel, black) and stellar gravitational torques (right

panel, yellow) of the cold gas being accreted onto the central galaxy of halo A at z = 2.7.

An interactive version can be found online. Pressure torques applied to the cold gas

are mostly directed radially with respect to the �lamentary structure, so that their net

impact averages to zero. Gravitational torques are spatially coherent and contribute to

a non-null net torque on the cold gas.

di�erent locations of the cold �ows may be either spun-up or spun-down. On the contrary, large

patches of the cold �ows undergo coherent gravitational torques that can add up. Interestingly,

gas gravitational torques seem to have more �uctuations than other gravitational torques, so that

their net e�ect is small, even though they may contribute to the local force budget in the inner

halo. In the disk, all torque sources lose their long-range spatial coherence and appear noisy. This

signal-to-noise ratio for pressure torques is of the order of 10−3
, so that it is expected that the

net contribution of pressure torques can be decreased by three order of magnitudes compared to

their mean magnitude.

In order to go one step further, let me study the evolution of the cold gas by computing the

contributions of the di�erent torques to the spin-up or spin-down of the gas, projected on the axis

of the mean sAM at a given radius. This is done on �gure 6.3.8, which presents the Lagrangian

evolution of the projection of the torques on the mean sAM at 5Rvir (left panel), Rvir (centre

panel) and Rvir/2 (right panel) for halo B. The quantity plotted here is the projection of each

torques on the mean sAM of the cold gas at a given radius

τ‖,i,R0
(t) ≡ τi(t) ·

∑
part li(r = R0)∣∣∣

∑
part li(r = R0)

∣∣∣
, (6.10)

where R0 = 5Rvir, Rvir, Rvir/2 respectively and i denotes the pressure torque or any of the

gravitational torques. The cold gas has been selected to cross r = Rvir/3 at t = 2 Gyr (z = 3.2).

The projected torque measures the propensity of the torque to spin the gas down if negative or

spin the gas up if positive. In particular, large negative values contribute to remove the sAM

acquired in the cosmic web. I have checked that the results presented are not sensitive to the

radius at which the sAM has been measured, as long as it its measured in the outer halo or

beyond. This is expected from �gure 6.3.5, where I have showed that the sAM of the cold gas is

well-aligned down to the inner halo, so that the orientation is conserved. I also report that using

the mean sAM of the gas or the individual value of the sAM of each tracer particle lead to similar

results (only the plot with the mean value is reported in this dissertation).

Figure 6.3.8 shows that, once averaged over the entire cold phase, pressure forces do not

contribute signi�cantly to the variation of the sAM of the gas. Indeed, I have shown on �gure 6.3.7

that pressure forces are dominated by high-frequency spatial modulations, with a signal-to-noise

ratio of the order of 10−3
. While the magnitude of the pressure forces are comparable to the

DM gravitational forces, their net contribution to the torque budget is shown to be at least three

https://pub.cphyc.me/Science/3d/torque_z=2.html
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Figure 6.3.7: Mass-weighted projection of the ratio between the magnitude of the

torques and the local standard deviation of the torques in halo A at z = 2 from left to

right, for pressure torques, stellar gravitational torques, DM gravitational torques and

gas torques. The local standard deviation is computed using the value of the torque in

the 8 nearest cells. Blue regions indicate regions where torques are distributed randomly

and red regions indicate where torques have a smooth and coherent distribution. The

inner halo (Rvir/3) is indicated by the grey dashed circle, while the dotted grey circle

indicates Rvir/10. In all regions, pressure torques have no spatial coherence on kpc
scales. All gravitational sources have a much larger coherence scale, apart in a few

regions in the �laments and in the disk.

order of magnitude smaller. As gas falls towards the galaxy, gravitational forces exert increasing

torques resulting in a spin-down of the gas. In the inner halo down, torques become weakly

aligned to the mean sAM of the gas at Rvir, so that their projection can either contribute to the

spin-up or spin-down in this speci�c frame, which is shown on �gure 6.3.8 by rapid jumps from

negative to positive values once the gas has entered the inner halo. Similar results can be found if

one projects the torques on the axis of the AM vector of the galaxy at the end of the simulation,

L?(z = 2), as shown for halos A and B on �gure 6.A.2. These plots also feature individual

Lagrangian trajectories of the gas and illustrate that pressure torques spin the gas up as much as

they spin it down. In contrast, gravitational torques are coherent over the Lagrangian evolution

of the gas, so that their contribution adds up to spin the cold gas down. The bottom-right panels

of �gure 6.A.2 show the ratio of the DM gravitational torques to the stellar gravitational torques.

As shown in �gure 6.3.8, stellar gravitational torques are negligible in the outer halo but become

dominant in the inner halo and in the disk.

The hierarchy between the di�erent torques can in principle evolve with redshift. In order to

study their relative importance, I have computed the total pressure torques, DM gravitational

torques and stellar torques and compared the magnitude of each torques to the total torques from

all sources τall = τP + τDM + τ?. The ratio r is then de�ned as

ri =
|∑particles τi|
|∑particles τall|

. (6.11)

Here i can be any of P,DM, ? and sums are taken over all cold gas particles. The results are

presented on �gure 6.3.9, where torque ratios are presented as a function of the radial distance

to the galaxy. Note that due to the de�nition, ratios can exceed one
4
. The �gure shows that

after a settling time of about 1 Gyr (z = 5.7), the ratios of each torque are constant at all radii,

with the DM gravitational torques dominating in the outer halo and stellar gravitational torques

dominating around the disk. Outside the halo at 2Rvir, gravitational torques contribute to 90% of

the total torques, while this fraction decreases to about 60% at Rvir/3. In the disk, gravitational

4

This can happen if two torques have similar magnitudes but opposite directions.
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Figure 6.3.8: Evolution of the radius (le� panel) and the speci�c torques projected on

the direction of the mean sAM of the gas at r = 5Rvir, r = Rvir and r = Rvir/2 for halo

B (from left to right). Solid lines indicate negative values (spin down) and dashed lines

positive values (spin up). Particle are selected to cross Rvir/3 at t = 2 Gyr (z = 3.2)

(vertical dotted lines). The mean time at which the sAM is measured is shown as vertical

dashed lines. In all regions, pressure torques are negligible, as a result of averaging the

projection of a randomly oriented �eld (the pressure torques) onto a fairly smooth �eld

(the sAM).

torques are dominated by stellar gravitational torques. In the six halos, the net contribution of

pressure torques is negligible.

6.4 Discussion
At large radii, the evolution of the AM follows the tides imposed by the cosmic web, as explained

by the TTT (e.g. Codis et al., 2012). The gas then �ows on the forming galaxy via two di�erent

channels: the hot and cold accretion, in particular for massive enough galaxies at z & 2 (Birnboim

and Dekel, 2003; Dekel and Birnboim, 2006; Pichon et al., 2011; Nelson et al., 2013). The pre-

dominance of one or the other channels of accretion can be used to understand the formation of

disky galaxies and the internal evolution of the galaxy. Indeed, in cold �ows that result from cold

accretion, the gas is able to penetrate deep in the halo and can feed the galaxy with fresh gas, with

a steady AM orientation (Pichon et al., 2011; Stewart et al., 2013). In numerical simulations, it has

been observed that cold gas has a higher AM at larger radii, as measured by their spin parameter

(Kimm et al., 2011; Tillson et al., 2015; Danovich et al., 2015) which is up to one order of magnitude

larger than that of the DM. In the inner halo and the disk however, the spin parameter of the

cold-accreted gas is found to be only three times larger than that of the DM at the same location.

The nature of the torques acting to reduce the AM of the gas is still debated today. While Danovich

et al., 2015 argued that the dominant torques are gravitational torques regardless of the distance

to the galaxy, Prieto et al., 2017 instead found that the dominant torques were pressure torques. In

this work, I �nd that the pressure forces are dominant in the hot phase and are as important as the

DM gravitational forces in the outer halo, in particular in the ortho-radial direction. In the inner

halo, a transition occurs so that the dominant forces become stellar gravitational forces. I also

report a signi�cant “pressure ring” in the inner halo that may a�ect the kinematics of the infalling

gas in which pressure forces dominate over all forces in both the cold- and hot-accreted gas. This

pressure ring may impact the thermodynamical evolution of the gas, as well as to contribute to

mixing the cold-accreted material to the hot gas, e�ectively blurring the line between hot- and

cold-accreted material. The study of this pressure ring will be the topic of future work.

While pressure forces can act locally as the dominant forces, I report that their net contribution

to the evolution of the cold gas is negligible. Indeed, pressure forces do not possess any structure
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Figure 6.3.9: Absolute value of the torque ratios ri measured in the cold gas (see text

for details) as a function of time in di�erent halos for di�erent radial distance, as labelled.

Bottom le�: Mean value of the torque ratios, averaged over all six halos. After 1 Gyr,

there is no average evolution of the torque ratios at any radius.

over hundreds of parsecs, so that their individual contributions to the evolution of the cold gas

cancel out. On the contrary, gravitational forces, that depend on the distribution of matter on

larger scales, are able to coherently apply torques on the infalling material, resulting in most of

the spin-down signal.

The net e�ect of the gravitational forces is reported to be a spin-down of the accreted gas, as a

result of gravitational torques. Most of the spin-down of the hot gas happens before entering the

halo and is due to DM torques. One possible reason is the following: under the e�ect of gas infall,

the DM halo becomes slightly polarised which in turn creates a tidal �eld that will torque the hot

gas down. Using the ortho-radial gravitational forces reported in �gure 6.3.1, the typical angular

momentum of the gas upon its entry in the halo (∼ 104 km/s kpc) would be depleted in a time

tτ,DM(R = 100 kpc) ≈ 104 km/s kpc/10−1 km/s/Myr × 80 kpc ≈ 1 250 Gyr, which is about

twice the free-fall time of the halo tff = 500 Myr at z = 2. If the hot gas lingers in the outskirts

of the outer halo during two free-fall times, the DM gravitational torques are large enough to

get rid of most of the angular momentum before accretion. In our simulations, hot gas takes on

average (1 000± 500) Myr to fall from 3Rvir(z = 2) to Rvir(z = 2)/3 where Rvir(z = 2) is the

�nal virial radius of the halo at z = 2.

Interestingly, I �nd that, even though most of the AM has been lost before entering the halo,
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the orientation of the AM of the hot gas is well-conserved between Rvir and Rvir/3. This can

be explained either by the fact that the spin of the halo, which has been reported to be well

aligned with the �rst principal axis of the large scale tides (Danovich et al., 2012) do not reorient

signi�cantly the AM of hot gas (which is itself aligned with the �rst principal axis of the large

scale tides), or that the infall of the hot gas coincides with the loss of most, but not all, of its

angular momentum. In this scenario, the hot gas starts infalling at the sweet spot where most

of the angular momentum has been lost (so that the centrifugal force becomes negligible), but

before all of it has been removed. This problem will however require a more detailed analysis.

As reported in Rosdahl and Blaizot, 2012, the trajectory of the cold gas is di�erent and follows a

mostly radial (with a non-null impact parameters) almost free-fall trajectory. In our simulation, the

cold gas typically takes (500± 350) Myr to go from 3Rvir toRvir/3, so that the halo gravitational

torques are not large enough to reduce the AM of the cold gas. As the cold gas plunges into the

halo, the in�uence of the disk increases up to the point where torques become dominated by

stars. I report here that the location where the disk torques become important coincides with the

location where most of the AM of the cold gas has been lost. This may be an indication that the

disk is actually responsible for the spin-down of the cold gas. If so, one would need to understand

how the disk responds to an anisotropic accretion and more work is needed to understand in

details the origin of the torques originating from the disk. One can then suggest that both the

inner halo and the disk will then tend to be aligned to the mean orientation of the in�owing

material in a similar way. This may explain why galactic spin is well aligned with the internal

halo’s, while being only mildly aligned with the global halo spin.

Cornuault et al., 2018 suggested that cold �ows do not survive within the halo. They suggested

that they instead fragment into clouds while their internal pressure increases. In the process, the

kinetic energy of the gas is lowered as part of it is converted into turbulence and the gas mixes

much more e�ciently with the hot gas of the halo, e�ectively loosing the shielding e�ect usually

assumed for cold �ows. In this scenario, the pressure gradients observed in my simulations may

contribute to e�ciently mix the angular-momentum rich cold gas to the hot gas. This would

likely result to a di�usion of the AM of the cold gas into the hot medium and increase the relative

importance of pressure torques to the problem of the AM transport.

Using idealised simulations, Mandelker et al., 2016; Padnos et al., 2018; Mandelker et al., 2019

showed that cold �ows may also be sensitive to the Kelvin-Helmholtz instability. In particular, they

showed that thin-enough �laments are destroyed before reaching the galaxy. In this last case, the

cold gas would e�ectively lose its angular momentum to the hot halo before interacting with the

galaxy. Interestingly, these studies also suggested that cold �ows may entrain the neighbouring

hot gas as they fall in while slowing down the infall of the cold gas, which may result in an e�cient

mixing of the AM at the boundary of the cold �ows. Berlok and Pfrommer, 2019 suggested that

the mixing may be decreased if one considers magnetised �ows with �eld lines parallel to the

�ow, as a result of a magnetic tension working against the Kelvin-Helmholtz instability.

Nelson et al., 2015 studied the e�ect of AGN feedback on cold accretion. They showed

that feedback is able to signi�cantly increase the infall time. If the delay is large enough, DM

gravitational torques may have time to remove all AM from the cold gas before it enters the inner

halo — as is already the case with hot gas in the simulations presented in this dissertation. In

another study on the e�ect of AGN feedback on cold �ows, Dubois et al., 2013 showed that at

z ≥ 6, the AGN activity in massive halo is able to prevent cold �ows from reaching the disk

and signi�cantly decreases the cold gas mass in the inner halo. On large scales, AGN activity

increases the curvature of �laments and decreases their length. The exact e�ect of AGN feedback

will require further studies. It may lead to a revision of the results presented in this dissertation

depending on their ability to disrupt the cold �ow structures prior to accretion and delay the

infall. One possible way to study this would require running numerical simulations with di�erent
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Figure 6.5.1: Sketch of the evolution of the AM at large z (not to scale). Hot gas (red

dashed line) is spun-up by the cosmic web and loses most of its AM at the virial radius

in the shock. Cold gas (blue dashed line) is spun-up by the cosmic web and retains its

AM down to the inner halo. Between the inner halo and the disk, most of the AM is lost

due to interactions with the DM halo and the disk.

Using a set of high-resolution zoom-in simulations, I have studied the evolution of the AM of gas

accreted via the cold and the hot mode around six group progenitors at z & 2. I also presented new

numerical methods to extract the contributions of the di�erent forces and torques (gravitational

and pressure torques). My �ndings are the following:

i) the magnitude of the sAM of the cold gas is conserved down to the inner halo, the magnitude

of the sAM of the hot gas is lost outside the halo,

ii) the orientation of the sAM of the cold gas is conserved down to the inner halo,

iii) the sAM of the hot gas is signi�cantly less aligned to the large scale environment,

iv) the dominant local forces in the cold gas are pressure forces and DM gravitational forces in

the outer halo, and DM gravitational and stellar gravitational forces in the inner halo and

the disk,

v) though, the pressure forces lack a spatial structure, so that their net contribution averages

out in the cold gas,

vi) therefore, the dominant torques in the cold cold gas are gravitational torques: DM gravi-

tational torques dominate in the outer halo, stellar gravitational torques dominate in the

disk.

The results on the major torques are sketched on �gure 6.5.1. My �ndings indicate that the

acquisition of the AM for group progenitors at z & 2 is driven by the AM acquired at large-scale,

consistent with the �ndings that the spin of galaxies is aligned with their environment. Most of

the AM is able to �ow down to the inner halo where gravitational torques redistribute it to the
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DM and the disk component, e�ectively transporting AM from the scales of the cosmic web to the

scales involved in disk formation. These �ndings indicate that galaxy formation models aimed at

understanding AM acquisition should take into account the cold accretion mode, at least at high

redshift. I have underlined that AM acquisition is dominated at large scales by the interaction

with the cosmic web. In the halo, the evolution of the sAM of the cold �ows is dominated by

interactions with the inner halo and the disk. The sAM of the hot-accreted material is dominated

by its interaction with the halo.

This work is part of an ongoing research e�ort. As a signi�cant part of my work was devoted

to the development of numerical methods, I have only touched some aspects of the complex

angular momentum exchanges in the CGM. This fascinating topic will continue to motivate some

of my research in the upcoming years.

6.A Additional material
In this section, I provide additional material. Figures 6.A.1a and 6.A.1b present mass-weighted

projections of the magnitude of the pressure gradients and of the DM gravitational forces for halo

A. They complement �gure 6.3.1 by providing views in the xz and yz planes. In particular, the

structure of the pressure ring is clearly visible in the pressure plots and not visible at all in the

gravitational forces plots. Figures 6.A.2a and 6.A.2b present the evolution of the torques projected

on the AM vector of the galaxy at z = 2 for halos A and B. The evolution of the torques projected

on the axis of the galaxy are qualitatively similar for halos A and B.
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Figure 6.A.1: (a) Mass-weighted projections of the magnitude of pressure gradients

and (b) of the magnitude of DM gravitational forces for the hot gas (top rows) and the

cold gas (bottom rows) in halo A. From left to right in the xy, xz and yz plane. The

grey circle is the virial radius of the halo. Pressure forces have a smaller magnitude in

the cold gas than in the hot gas. DM gravitational forces have comparable magnitudes

in the cold and hot gas.
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Figure 6.A.2: Trajectories (grey lines) of cold accreted gas particles with a �rst infall

at z = 2.5 (vertical dotted line) in halo A (a) and B (b). Upper le�: The radial distance

to the galaxy, upper centre: The total gravitational torque, upper right: the pressure

torques, bottom le�: the DM gravitational torques, bottom centre: the stellar gravitational

torques and bottom right: the ratio of the DM to stellar gravitational torques. All the

torques are projected onto the normalised AM vector of the galaxy L̂?. Median (blue)

and mean (orange) values are shown as a function of time. DM is responsible to sAM

acquisition at large radii. Stars and DM are responsible for the decrease of sAM at

∼ 2Rvir > r > Rvir/3. In the inner halo, torques become dominated by stars.
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7. Conclusion

7.1 Closing remarks

One of the key value of natural science lays in its predictive power. Hence, in the context of

structure formation, a central question that theoretical cosmology must address is the following:

to what extent can today’s properties of galaxies be predicted from the initial Gaussian random

�eld from which they emerge? More speci�cally, how can one encode the initial conditions in a

compressed way to predict the fate of galaxies that will emerge from them?

Using an extension of the excursion set theory (Bond et al., 1991; Lacey and Cole, 1993;

Mo and S. D. M. White, 1996), I have shown in chapter 4 (Musso, Cadiou et al., 2018) that the

cosmic web, and in particular large scale �laments, biases the formation of dark matter halos.

The formalism predicts that the variables entering the assembly history of the halo, namely the

halo formation time and the accretion rate, are modulated by the cosmic web. As a result, at �xed

�nal mass, halos forming close to nodes of the cosmic web are found to accrete more and have

formed at later times, in agreement withN -body simulations for large-mass halos (R. K. Sheth and

Tormen, 2004; Gao et al., 2005; Wechsler et al., 2006; Dalal et al., 2008). This e�ect complements

other suggestions that the tides may be responsible for the assembly bias signal as it is purely

geometric: as halos grow by accreting material, they also probe larger scales whose statistical

structure is set by the cosmic web. I also argued that this provides a natural frame in which the

assembly signal is simply a spatial modulation, or stated di�erently, di�erent assembly histories

are to be expected at di�erent locations. This framework has since been used to show that, in

hydrodynamical simulations, the cosmic web has also an e�ect on the assembly of galaxies. In

Kraljic et al., 2018; Kraljic et al., 2019 (appendices B.1 and B.2), we reported that the speci�c star

formation rate and the velocity-to-velocity-dispersion ratio both present signi�cant modulations

along �laments, highlighting that, indeed, �lamentary structures can be used as a metric to

parametrise the assembly of dark matter halos and galaxies therein.

In this dissertation, I also highlighted a process entering galaxy and dark matter halo formation,

namely the coalescence of critical points of the cosmic web, whose theory was developed in

chapter 4. I computed the rate of merger events as a function of smoothing scale from the

initial cosmic landscape to forecast special events which impact the geometry of galactic infall,
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and in particular �lament disconnection. Using an extension of the theory to the mildly non-

linear regime, I showed that one can connect our predictions to results obtained from N -body

simulations. In particular, the formalism is able to detect halo merger events, but also �lament-

and wall-mergers in the Lagrangian initial conditions. I argued that these events, named “critical

events”, may be relevant parameters entering galaxy models, in particular to understand the

evolution of galaxy properties that depend on the geometry of the accretion (such as their spin or

their velocity-to-velocity-dispersion). This could readily be used to constrain further the assembly

of galaxies by providing variables describing the evolution of the environment.

In the current understanding of galaxy formation, the evolution of the baryons is driven by

the cosmic web on large scales, while at small scales complex interactions between the gas, stars

and AGNs and the dark matter halo drive most of the physics. While the impact of the cosmic

web on halo and galaxy formation can be studied to some extent from �rst principles as I have

demonstrated in chapters 3 and 4, the complex baryonic physics at play make the task much

more complex on smaller scales. I have presented a novel tracer particle scheme in chapter 5

(Cadiou et al., 2019) that is able to accurately trace the Lagrangian trajectories of gas elements

in the adaptive mesh re�nement code Ramses. As a �rst application, the method has then been

applied on a suite of hydrodynamical cosmological simulations to study the angular momentum

acquisition on z > 2 galaxies, presented in chapter 6. I have studied the formation of disk galaxies

at large redshift and showed that the information acquired by the gas at large scales is transported

to the inner regions of the halo and in the galaxy. In particular, cold �ows are able to retain

most of their angular momentum down to the inner halo. In the inner halo and around the disk,

complex gravitational torques redistribute the angular momentum to the inner halo and the stellar

component. I argue that this may lead to a good alignment of the inner halo and the galaxy, since

their angular momentum is partially driven by their interaction with cold �ows. This internal

alignment is also expected to re�ect the large-scale tidal �eld set by the cosmic web, as most of

the anisotropic information is transported to the internal regions.

As a �nal conclusion, I have shown that the cosmic web is able to in�uence the assembly of

dark matter halos. One can build theoretical models in which part of the assembly bias can simply

be interpreted as a large-scale environment modulation, which cannot be parametrised easily in

terms of the local properties of the �eld, and which apply to both for dark matter halos and galaxies.

I proposed a set of parameters, the critical events, that are suited to the compact description of the

evolution of the cosmic web and argued that the geometry of the accretion onto galaxies via cold

�ows, and its evolution, can have a signi�cant impact on the properties of galaxies, in particular

against the ones sensitive to the anisotropy of the �ows. This is in particularly highlighted by a

numerical study that showed that the angular momentum of the gas, set by the cosmic web, is

e�ectively transported down to the galaxy where complex interactions redistribute it. I suggest

that in order to capture e�ects beyond mass and density relations, models of galaxy and halo

formation should be augmented by parameters describing the non-local structure of the cosmic

web at large-scales in terms of its critical points (nodes, �lament and wall centres) but also in

terms of their evolution, as described by critical events within their Lagrangian patch.

7.2 Perspectives and applications of my work

Thanks to the novel tools (constrained excursion set theory, critical event theory, Monte Carlo

tracer particles) I have recently developed, our prospects of understanding the impact of the

cosmic web on galaxy formation is hopefully brighter. It should enable us to soon produce new

results in the context of galaxy formation and large scale structure hydrodynamics.
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7.2.1 Extensions of the constrained excursion set theory
On the theoretical side, the predictions on assembly bias have proven quite successful at providing

a physical understanding of the e�ect of the cosmic web on halo formation (Kraljic et al., 2018;

Kraljic et al., 2019, see appendices B.1 and B.2). There is however room for further improvement

to get a more re�ned model. One possible extension would require taking into account ellipsoidal

collapse (Hahn and Paranjape, 2014; Ludlow et al., 2014; Ramakrishnan et al., 2019). As a �rst step,

one could extend the work of chapter 4 with a barrier that depends on the mean tidal structure of

the �eld. While this would not provide a de�nitive answer, one would recover the predictions

of Musso et al., 2018 with an extra modulation coming from the mean tidal environment in the

form of a shifted, spatially-modulated barrier δc → δc(r), where r is the distance to the nearest

structure. This would likely have the consequence of delaying collapse in high-tide regions.

Another possible approach to the problem of the tides on the collapse of halos is to rely on a

Monte-Carlo sampling to explore the di�erent excursion trajectories constrained to their large-

scale environment. One could then seek the �rst-crossing given a barrier that is itself a random

variable of the smoothing scale (using for example the shear strength, Hahn et al., 2009; Castorina

et al., 2016; Borzyszkowski et al., 2017). In addition to explicitly taking into account ellipsoidal

collapse and the e�ect of tides, this would also enable us to use the �rst-crossing condition instead

of an approximation, so that the results could be extended to smaller masses. A detailed study

would also require taking into account the Zel’dovich displacement (in the spirit of the peak patch

theory, Bond and Myers, 1996), and in particular study the e�ect of a galaxy travelling from voids

to sheets, from sheets to �laments, and along �laments to nodes, as signi�cant relative velocities

can be acquired by the travelling galaxy which may explain the presence of quenched halos at

the geometrical centre of �laments (Borzyszkowski et al., 2017; Romano-Díaz et al., 2017; Garaldi

et al., 2018).

7.2.2 Following dust formation using Monte-Carlo sampling methods
The Monte Carlo tracer particle, described in chapter 5, have obviously a broad range of applica-

tions. They have already been used to follow the formation and disruption of clumps in Coma-like

clusters (Beckmann et al., 2019, appendix B.3). The problem of following the Lagrangian history of

elements in a Eulerian framework should also �nd applications in coupled dust grain-gas models.

In particular, bi-�uid models of strongly coupled dust and gas mixtures are di�cult to integrate

numerically. For Lagrangian-based methods they tend to produce spurious dust aggregates when

the grains are accumulated below the resolution length of the gas (Ayli�e et al., 2012). In AMR

codes, it was recently proposed to treat the dust-gas mixture as a single �uid with a di�usion

term �uid instead (Lebreuilly et al., 2019), yielding accurate results for strongly coupled (small)

grains. This method however requires one �uid per grain size bin, so that the treatment of a

large range of grain size quickly becomes tedious. In order to circumvent this problem, one could

modify the Monte Carlo approach of chapter 5 to follow individual dust grains with arbitrary

grain size distribution. One would have to modify the transition probability involved in the tracer

particle scheme (equation 5.1) to account for the relative drift of the dust grain with respect to the

gas. This approach should prove particularly useful in simulations where di�erent grain sizes can

form, as the bi-�uid approach fails in the small grain regime (where dust is strongly coupled to the

gas), while the dust-gas mixture approach fails in the large grain regime (where dust decouples

from the gas).

7.2.3 Applications beyond cosmology
The analysis of chapter 4 was mostly restricted to (quasi) Gaussian random �elds, because of their

relevance in cosmology and also because in this context the theory can be developed in some

details. However, any system involving random �eld whose (continuous) evolution is controlled
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by one parameter could in principle be investigated with this framework in order to identify

merger of ridges (though the speci�c role played by Gaussian smoothing would clearly generally

not hold). For instance, critical events in dust maps (such as Meisner and Finkbeiner, 2014; Planck

Collaboration, 2018b) could be used as an alternative statistics to quantify the properties of the

underlying turbulence, a process which is known to display self-similarities.

A wide range of important physical processes occur when rare events collide, hence boosting

probabilities and passing thresholds, which in the context of this work corresponds to mergers

of rare peaks (e.g. analysing dust map emission or disintegration events in Fermi maps). In this

context, the process of interest is the appearance of pairs of critical points as one “unsmooths”

the �eld: this will corresponds to the generation of pairs of critical points. Following the results

of section 4.A.3, the formalism could be extended to situations where the �eld whose evolution

is investigated corresponds to probability distributions living in higher dimensions (or on more

complex manifolds).

In the context of streaming of hierarchical images the set of critical events within a 2D image

characterises its multi-scale topology. It would therefore be of interest to send beforehand a

description of this set as a mean of prioritising which sub region of the image needs to be streamed

�rst because the topology of its excursion (i.e. the local parsimonious representation of the image

as iso-contours) has changed. This would allow the received image to acquire its most important

higher resolution features �rst.

7.2.4 Critical events as input to Machine learning and Bayesian inference
The physics of galaxies is largely driven by non-linear processes (gas cooling, feedback, star

formation). In order to capture these processes, we usually make use of numerical simulations

that reproduce the known physics and can later be used to learn which processes are key to

galaxy formation. In particular, I argue that some properties of galaxies, and in particular vector

quantities (the spin, see e.g. Obuljen et al., 2019) or those sensible to the recent accretion history

(v/σ, star formation rate) can be better understood if one takes into account the merger history

of the halo and its environment. Indeed, there is a long tradition of relying on merger trees of

dark halos extracted from simulations as a mean to predict the physical properties of galaxies

(with so-called semi-analytical models, see e.g. Benson, 2010, and reference therein). One of

the long term main motivations for the present work is to extend this strategy to the other two

merger trees (�laments and walls), and to rely on modern segmentation techniques to identify

which combination of events are most likely to lead to galaxies of a certain type to be produced in

cosmological simulations. This strategy is likely to be e�cient and rewarding, as the set of critical

events is a very strong compression of the initial conditions, and because once the segmentation

has been done, the subset of events which are in the Lagrangian patch of a proto-galaxy with

a given tag have physical meaning. For instance, recent disconnection of �laments at a given

smoothing scale are likely to impact gas infall at the redshift of corresponding smoothing scale,

hence associated galaxy star formation and disc reformation. The set of critical events represents a

useful e�ective topological compression of the initial conditions which will impact the upcoming

“dressed” mergers (i.e. the cosmic evolution of peaks and their �laments and walls). Note that the

exact relative con�guration of critical events in the smoothing-position space may be of relevance,

and is not fully captured by the sole knowledge of the one and two-point statistics. Since the link

between the galaxy formation and their properties is still poorly understood, a model agnostic

approach can be used to study the e�ect of critical events on galaxy formation.

Predicting galactic properties using machine learning
In order to assess this, one can rely on machine learning techniques. Let me illustrate the strategy

one could use using a catalogue of synthetic galaxies from a cosmological simulation. Let me

assume that a set of virtual galaxies has been classi�ed with a continuous parameter, e.g. based
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on their morphology via their kinematic properties, v/σ. This ratio is computed from the 3D

velocity distribution of stellar particles of each galaxy. In the frame of the angular momentum of

that galaxy, the velocity is decomposed into cylindrical components vr , vθ , vz , and the rotational

velocity of a galaxy v is de�ned as the mean of vθ of individual stars. The average velocity

dispersion of the galaxy σ2 = (σ2
r + σ2

θ + σ2
z)/3 is computed using the velocity dispersion of

each velocity component σr, σθ and σz . This ratio allows me to separate rotation-dominated

(v/σ � 1) from dispersion-dominated (v/σ � 1) galaxies. For each central galaxy identi�ed in

the simulation, one can identify their corresponding dark matter halo to trace the Lagrangian

patch of dark matter particles back into the ICs. This de�nes a connected gravitational patch that

contains all critical events causally connected to the �nal galaxy. Hence, the simulation provides

me with a set of relations for k patches and three types of critical events j ∈ [P,F ,W]

(
{∆rj,i, Rj,i, νj,i}i≤nj,k

)
j∈[P,F ,W]

→ (v/σ)k , (7.1)

where ∆rj,i is the relative position within the patch of the critical event i of type j measured w.r.t.

the centre of mass of the patch, νj,i is its contrast, and Rj,i the corresponding smoothing scale,

while v/σk is the velocity ratio of the patch k. Let me call Ek the l.h.s. of this relation. Standard

machine learning tools (random tree forest, stochastic gradient descent), allows me to build a

predictor, Pr(E) from a subset of (Ek → v/σk)k≤Ktrain
drawn randomly from the full sample.

From this training, one can do one of two things: i) use it as a predictor to associate (v/σ)k to

other patches for which we computed their set of events, Ek. ii) identify which features in this

event set is responsible for the corresponding value of v/σ.

The former approach would be useful to �nd regions of interest in the initial conditions,

therefore avoiding a costly try-and-error approach. For example, this could provide a likelihood of

�nding a galaxy with given morphology in the initial conditions, so that only regions of interest

are resolved with high resolution. This is usually tackled by running larger than necessary

simulations, in which only the regions of interest are kept a posteriori. While the approach

suggested here would still have a chance of failing, it could signi�cantly decrease the computation

volume required to simulate a given con�guration and could complement other approaches, such

as genetically modi�ed initial conditions (Roth et al., 2016; Rey and Pontzen, 2017).

The latter approach could be implemented over sets of simulations which implement di�erent

feedback recipes as a mean of disentangling the relative impact of environment and sub-grid

physics on the evolution of galaxies This could also provide useful insight to understand which

halos host early-growing SMBHs. Indeed, it was recently proposed (Huang et al., 2019) that

the structure of the initial conditions preconditions the early evolution of SMBHs in numerical

simulations, while another study showed that the environment has an impact on AGN properties

(Porqueres et al., 2018; Man et al., 2019). This problem is tightly coupled to the problem of feeding

galaxies with fresh gas, which, at high-redshift, is linked to the orientation and structure of the

local cosmic web via cold �lamentary accretion. Here I argue that critical events are useful tools

to study this class of problem, in particular at high redshifts.

Critical events as input to Bayesian framework
Let me illustrate how one could use critical events to study the susceptibility of a set of galactic

parameters to their cosmic web environment. Using a similar approach as described in the

previous paragraph, the sample can be decomposed as a set of inputs and output variablesX,Y ,

treated here as random variables

X
(0)
j = {Mj , ρj} , X

(1)
j =

{
{∆ri,j , Ri,j , νi,j , ki,j}i=1,...,Nj

}
j
, Yj = (v/σ)j . (7.2)

where ∆rj,i is the relative position within the patch, Ri,j is the smoothing scale, νi,j is the density

contrast and ki,j is the kind (k ∈ [P,F ,W]) of the critical event i. Here I have split the inputs
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between the variables commonly included in galaxy formation models, the mass of the halo Mj

and the density ρj , which I namedX
(0)
j . The input variableX

(1)
j contains the “augmented” past

history as encoded by the Nj critical events found in the Lagrangian patch of galaxy j. The

output variable is chosen here to be v/σ, but it could be any other galactic property, such as the

bulge mass or the SMBH mass. Using the concept of cross-entropy, one can then compute the

information gain on the distribution of v/σ when adding to the classical mappingX(0) 7→ Y the

augmented merger tree (X(0),X(1)) 7→ Y . The cross-entropy will tell us how many more bit of

(Shannon) information is gained by adding the information from the merger history of the cosmic

web in the gravitational patch of the galaxy. This can then be further extended by segmenting

X(1)
into subsets containing only halo mergers, �lament mergers and wall mergers to quantity

which event better encodes the parameter v/σ.

When co-analysing the evolution of galactic properties with critical point mergers, one could

relate the various (�lament, wall) mergers to special events in terms of change in connectivity

and feedback (e.g. the destruction of �laments by AGN activity, see Dubois et al., 2013). It could

also be used to explore the relation between spin �ip and with �laments or walls vanishing.

In this dissertation, I have provided new models and tools, which, in conjunction with my

numerical work, should prove fruitful for research in galaxy and halo formation theory, astronomy

and beyond.
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A. Notations and conventions

Table A.1 presents the di�erent notations and conventions used throughout the manuscript.
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Table A.1: Conventions and notations used throughout the manuscript

Name De�nition

Vectors r,X,Σ, . . .

Matrices A,X,Σ, . . .

Unitary vector x̂, r̂, . . .

Probability density function p(x)

Gaussian probability density function pG(x) =
1√

2πσ2
exp
(
−x2/2σ2

)

Spatial derivatives, Laplacian ∂i,∇2 ≡ δij∂i∂j
Divergence, curl operator ∇ · f,∇× f

Fourier transform f(k) =

∫
d3r f(r)eik·r

Expectation 〈Q〉 =

∫
dxQ(x)p(x)

2-point function ξ(r) = 〈δ(0)δ(r)〉
Kronecker symbol δij = 1 for i = j and 0 otherwise

Dirac distribution δD(x) ,

∫
dx δD(x) f(x) = f(0)

Heaviside step function ϑH(x) = 1 for x > 0 and 0 otherwise

Linear matter power spectrum P (k)

Linear density �eld smoothed on scale R δ(R)

Variance of linear density �eld on scale R σ2(R)

Critical density (spherical collapse) δc = 1.686

Peak rarity on scale R ν(R) = δ(R)/σ(R)
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B. Contributed publications

Outline
B.1 “Galaxy evolution in the metric of the cosmic web” (published in MNRAS) 189
B.2 “Galaxies flowing in the oriented saddle frame of the cosmic web” (published in

MNRAS) 216
B.3 “Dense gas formation and destruction in a simulated Perseus-like galaxy cluster

with spin-driven black hole feedback” (accepted in A&A) 245

In the context of my work, I contributed to the three papers presented in this chapter. The

�rst two (Kraljic et al., 2018, appendix B.1 and Kraljic et al., 2019, appendix B.2) stemmed from

my theoretical work presented in chapter 4. I contributed to a third one (Beckmann et al., 2019,

appendix B.3) by providing my tracer particle implementation presented in chapter 5.

B.1 “Galaxy evolution in the metric of the cosmic web” (published in MNRAS)

In this paper, the role of the cosmic web in shaping the properties of the cosmic web is explored.

The skeleton of the cosmic web is extracted from the spatial distribution of galaxies in the Galaxy

And Mass Assembly (GAMA) spectroscopic survey. As a comparison, the similar job is carried on

the Horizon-AGN simulation. The properties of galaxies are projected on the frame of the cosmic

web, namely they are computed as function of the distance to the closest �lament and the closest

node.

The paper shows that the cosmic web induces a segregation of galaxies. In particular most

massive galaxies are found close to �lament centres and the trend subsists for star forming

galaxies. At �xed mass, there are more passive galaxies, red galaxies and quenched galaxies close

to �lament centres than outside of it. The paper also shows that part of the segregation signal
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cannot be interpreted as the e�ect of the local density only, showing that the cosmic web has an

e�ect on galaxy properties beyond the mere mass and density relations.

Using the formalism developed in chapter 3, I have shown (section 7.2 of the paper) that one

can provide a theoretical explanation to this segregation signal. Given a large-scale �lamentary

structure, one can compute mass, density and accretion rate isocontours to show that they are

misaligned one with each other. Rephrasing, di�erent variables entering the assembly of DM

halos and their galaxies show distinct spatial dependences on the environment as set by cosmic

web. For example, it is expected from �rst principles that at �xed halo mass, the density maximum

is found closer to the �lament centre than the DM accretion rate peak. As a result, the cosmic

web systematically biases the di�erent variables responsible for galactic properties, so that they

become a function of their spatial location with respect to the cosmic web, on top of their mass

and density dependence.
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ABSTRACT
The role of the cosmic web in shaping galaxy properties is investigated in the Galaxy And
Mass Assembly (GAMA) spectroscopic survey in the redshift range 0.03 ≤ z ≤ 0.25. The
stellar mass, u − r dust corrected colour and specific star formation rate (sSFR) of galaxies are
analysed as a function of their distances to the 3D cosmic web features, such as nodes, filaments
and walls, as reconstructed by DisPerSE. Significant mass and type/colour gradients are found
for the whole population, with more massive and/or passive galaxies being located closer to the
filament and wall than their less massive and/or star-forming counterparts. Mass segregation
persists among the star-forming population alone. The red fraction of galaxies increases when
closing in on nodes, and on filaments regardless of the distance to nodes. Similarly, the star-
forming population reddens (or lowers its sSFR) at fixed mass when closing in on filament,
implying that some quenching takes place. These trends are also found in the state-of-the-art
hydrodynamical simulation HORIZON-AGN. These results suggest that on top of stellar mass
and large-scale density, the traceless component of the tides from the anisotropic large-scale
environment also shapes galactic properties. An extension of excursion theory accounting for
filamentary tides provides a qualitative explanation in terms of anisotropic assembly bias: at
a given mass, the accretion rate varies with the orientation and distance to filaments. It also
explains the absence of type/colour gradients in the data on smaller, non-linear scales.

Key words: large-scale structure of Universe – cosmology: observations – galaxies: evolu-
tion – galaxies: high-redshift – galaxies: statistics.

1 IN T RO D U C T I O N

Within the � cold dark matter (�CDM) cosmological paradigm,
structures in the present-day Universe arise from hierarchical clus-
tering, with smaller dark matter haloes forming first and progres-
sively merging into larger ones. Galaxies form by the cooling and

�E-mail: katarina.kraljic@lam.fr

condensation of baryons that settle in the centres of these haloes
(White & Rees 1978) and their spin is predicted to be corre-
lated with that of the halo generated from the tidal field torques
at the moment of proto-halo collapse (tidal torque theory, TTT;
e.g. Peebles 1969; Doroshkevich 1970; Efstathiou & Jones 1979;
White 1984). However, dark matter haloes, and galaxies residing
within them, are not isolated. They are part of a larger-scale pat-
tern, dubbed the cosmic web (Jõeveer, Einasto & Tago 1978; Bond,
Kofman & Pogosyan 1996), arising from the anisotropic collapse

C© 2017 The Author(s)
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of the initial fluctuations of the matter density field under the effect
of gravity across cosmic time (Zel’dovich 1970).

This web-like pattern, brought to light by systematic galaxy red-
shift surveys (e.g. De Lapparent, Geller & Huchra 1986; Geller &
Huchra 1989; Colless et al. 2001; Tegmark et al. 2004), consists
of large nearly-empty void regions surrounded by sheet-like walls
framed by filaments which intersect at the location of clusters of
galaxies. These are interpreted as the nodes, or high-density peaks
of the large-scale structure pattern, containing a large fraction of
the dark matter mass (Bond et al. 1996; Pogosyan et al. 1996). The
baryonic gas follows the gravitational potential gradients imposed
by the dark matter distribution, then shocks and winds up around
multistream, vorticity-rich filaments (Codis et al. 2012; Hahn,
Angulo & Abel 2015; Laigle et al. 2015). Filamentary flows, along
specific directions dictated by the geometry of the cosmic web,
advect angular momentum into the newly formed low mass galax-
ies with spins typically aligned with their neighbouring filaments
(Pichon et al. 2011; Stewart et al. 2013). The next generation of
galaxies forms through mergers as they drift along these filaments
towards the nodes of the cosmic web with a post merger spin pref-
erentially perpendicular to the filaments, having converted the or-
bital momentum into spin (e.g. Aubert, Pichon & Colombi 2004;
Navarro, Abadi & Steinmetz 2004; Aragón-Calvo et al. 2007b;
Codis et al. 2012; Libeskind et al. 2012; Trowland, Lewis & Bland-
Hawthorn 2013; Aragon-Calvo & Yang 2014; Dubois et al. 2014;
Welker et al. 2015).

Within the standard paradigm of hierarchical structure forma-
tion based on �CDM cosmology (Blumenthal et al. 1984; Davis
et al. 1985), the imprint of the (past) large-scale environment on
galaxy properties is therefore, to some degree, expected via galaxy
mass assembly history. Intrinsic properties, such as the mass of a
galaxy (and internal processes that are directly linked to its mass),
are indeed shaped by its build-up process, which in turn is cor-
related with its present environment. For instance, more massive
galaxies are found to reside preferentially in denser environments
(e.g. Dressler 1980; Postman & Geller 1984; Kauffmann et al. 2004;
Baldry et al. 2006). This mass-density relation can be explained
through the biased mass function in the vicinity of the large-scale
structure (LSS; Kaiser 1984; Efstathiou et al. 1988) where the en-
hanced density of the dark matter field allows the proto-halo to
pass the critical threshold of collapse earlier (Bond et al. 1991)
resulting in an overabundance of massive haloes in dense envi-
ronments. However, what is still rightfully debated is whether the
large-scale environment is also driving other observed trends such
as morphology-density (e.g. Dressler 1980; Postman & Geller 1984;
Dressler et al. 1997; Goto et al. 2003), colour-density (e.g.
Blanton et al. 2003; Baldry et al. 2006; Bamford et al. 2009) or star
formation-density (e.g. Hashimoto et al. 1998; Lewis et al. 2002;
Kauffmann et al. 2004) relations, and galactic ‘spin’ properties,
such as their angular momentum vector, their orientation or chiral-
ity (trailing versus leading arms).

On the one hand, there are evidences that the cosmic web af-
fects galaxy properties. Void galaxies are found to be less mas-
sive, bluer, and more compact than galaxies outside of voids (e.g.
Rojas et al. 2004; Beygu et al. 2016); galaxies infalling into clusters
along filaments show signs of some physical mechanisms operating
even before becoming part of these systems, that galaxies in the
isotropic infalling regions do not (Porter et al. 2008; Martı́nez,
Muriel & Coenda 2016); Kleiner et al. (2017) find systemati-
cally higher HI fractions for massive galaxies (M� > 1011 M�)
near filaments compared to the field population, interpreted as evi-
dence for a more efficient cold gas accretion from the intergalactic

medium; Kuutma, Tamm & Tempel (2017) report an environmental
transformation with a higher elliptical-to-spiral ratio when moving
closer to filaments, interpreted as an increase in the merging rate
or the cut-off of gas supplies near and inside filaments (see also
Aragon-Calvo, Neyrinck & Silk 2016); Chen et al. (2017) detect a
strong correlation of galaxy properties, such as colour, stellar mass,
age and size, with the distance to filaments and clusters, highlight-
ing their role beyond the environmental density effect, with red
or high-mass galaxies and early-forming or large galaxies at fixed
stellar mass having shorter distances to filaments and clusters than
blue or low-mass and late-forming or small galaxies, and Tojeiro
et al. (2017) interpret a steadily increasing stellar-to-halo mass ra-
tio from voids to nodes for low mass haloes, with the reversal of
the trend at the high-mass end, found for central galaxies in the
GAMA survey (Driver et al. 2009, 2011), as an evidence for halo
assembly bias being a function of geometric environment. At higher
redshift, a small but significant trend in the distribution of galaxy
properties within filaments was reported in the spectroscopic sur-
vey VIPERS (z � 0.7; Malavasi et al. 2017) and with photometric
redshifts (0.5 < z < 0.9) in the COSMOS field (with a 2D analysis;
Laigle et al. 2017). Both studies find significant mass and type seg-
regations, where the most massive or quiescent galaxies are closer
to filaments than less massive or active galaxies, emphasizing that
large-scale cosmic flows play a role in shaping galaxy properties.

On the other hand, Alpaslan et al. (2015) find in the GAMA data
that the most important parameter driving galaxy properties is stel-
lar mass as opposed to environment (see also Robotham et al. 2013).
Similarly, while focusing on spiral galaxies alone, Alpaslan et al.
(2016) do find variations in the star formation rate (SFR) distribution
with large-scale environments, but they are identified as a secondary
effect. Another quantity tracing different geometric environments
that was found to vary is the luminosity function. However, while
Guo, Tempel & Libeskind (2015) conclude that the filamentary
environment may have a strong effect on the efficiency of galaxy
formation (see also Benı́tez-Llambay et al. 2013), Eardley et al.
(2015) argue that there is no evidence of a direct influence of the
cosmic web as these variations can be entirely driven by the under-
lying local density dependence. These discrepancies are partially
expected: the present state of galaxies must be impacted by the ef-
fect of the past environment, which in turn does correlate with the
present environment, if mildly so, but these environmental effects
must first be distinguished from mass-driven effects which typically
dominate.

The TTT, naturally connecting the large-scale distribution
of matter and the angular momentum of galactic haloes (e.g.
Jones & Efstathiou 1979; Barnes & Efstathiou 1987; Heavens &
Peacock 1988; Porciani, Dekel & Hoffman 2002a,b; Lee 2004),
in its recently revisited, conditioned formulation (Codis, Pichon &
Pogosyan 2015) predicts the angular momentum distribution of the
forming galaxies relative to the cosmic web, which tend to first
have their angular momentum aligned with the filament’s direction
while the spin orientation of massive galaxies is preferentially in
the perpendicular direction. Despite the difficulty to model prop-
erly the halo-galaxy connection, due to the complexity, non-linearity
and multiscale character of the involved processes, modern cosmo-
logical hydrodynamic simulations confirm such a mass-dependent
angular momentum distribution of galaxies with respect to the cos-
mic web (Dubois et al. 2014; Welker et al. 2014, 2017). On galactic
scales, the dynamical influence of the cosmic web is therefore traced
by the distribution of angular momentum and orientation of galax-
ies, when measured relative to their embedding large-scale environ-
ment. The impact of such environment on the spins of galaxies has
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only recently started to be observed (confirming the spin alignment
for spirals and preferred perpendicular orientation for ellipticals;
Trujillo et al. 2006; Lee & Erdogdu 2007; Paz et al. 2008; Tempel
et al. 2013; Tempel & Libeskind 2013; Pahwa et al. 2016, but see
also Jones, van de Weygaert & Aragón-Calvo 2010; Cervantes-Sodi,
Hernandez & Park 2010; Andrae & Jahnke 2011, for contradictory
results). What is less obvious is whether observed integrated scalar
properties such as morphology or physical properties (SFR, type,
metallicity, which depend not only on the mass but also on the past
and present gas accretion) are also impacted.

Theoretical considerations alone suggest that local density as a
sole and unique parameter (and consequently any isotropic defini-
tion of the environment based on density alone) is not sufficient
to account for the effect of gravity on galactic scale (e.g. Mo, van
den Bosch & White 2010) and therefore capture the environmental
diversity in which galaxies form and evolve: one must also con-
sider the relative past and present orientation of the tidal tensor
with respect to directions pointing towards the larger-scale struc-
ture principal axes. At the simplest level, on large scales, gravity
should be the dominant force. Its net cumulative impact is encoded
in the tides operating on the host dark matter halo. Such tides may
be decomposed into the trace of the tidal tensor, which equals the
local density, and its traceless part, which applies distortion and ro-
tation to the forming galaxy. The effect of the former on increasing
scales has long been taken into account in standard galaxy forma-
tion scenarios (Kaiser 1984), while the effect of the latter has only
recently received full attention (e.g. Codis et al. 2015). Beyond the
above-discussed effect on angular momentum, other galaxy’s prop-
erties could in principle be influenced by the large-scale traceless
part of the tidal field, which modifies the accretion history of a halo
depending on its location within the cosmic web. For instance, the
tidal shear near saddles along the filaments feeding massive haloes
is predicted to slow down the mass assembly of smaller haloes
in their vicinity (Hahn et al. 2009; Borzyszkowski et al. 2017;
Castorina et al. 2016). Bond & Myers (1996) integrated the ef-
fect of ellipsoidal collapse (via the shear amplitude), which may
partially delay galaxy formation, in the Extended Press-Schechter
(EPS) theory. Yet, in that formulation, the geometry of the delay
imposed by the specific relative orientation of tides imposed by the
large-scale structure is not accounted for, because time delays are
ensemble-averaged over all possible geometries of the LSS. The
anisotropy of the large-scale cosmic web – voids, walls, filaments,
and nodes (which shape and orient the tidal tensor beyond its trace) –
should therefore be taken into account explicitly, as it impacts mass
assembly. Despite of the above-mentioned difficulty in properly de-
scribing the connection between galaxies and their host dark matter
haloes, this anisotropy should have direct observational signatures
in the differential properties of galaxies with respect to the cosmic
web at fixed mass and local density. Quantifying these signatures is
the topic of this paper. Extending EPS to account for the geometry
of the tides beyond that encoded in the density of the field is the
topic of the companion paper (Musso et al. 2017).

This paper explores the impact of the cosmic web on galaxy prop-
erties in the GAMA survey, using the Discrete Persistent Structure
Extractor code (DisPerSE; Sousbie 2011; Sousbie, Pichon & Kawa-
hara 2011) to characterize its 3D topological features, such as nodes,
filaments and walls. GAMA is to date the best data set for this kind
of study, given its unique spectroscopic combination of depth, area,
target density and high completeness, as well as its broad mul-
tiwavelength coverage. Variations in stellar mass and colour, red
fraction and star formation activity are investigated as a function of
galaxy distances to these three features. The rest of the paper is or-

ganized as follows. Section 2 summarizes the data and describes the
sample selection. The method used to reconstruct the cosmic web
is presented in Section 3. Section 4 investigates the stellar-mass and
type/colour segregation and the star formation activity of galaxies
within the cosmic web. Section 5 shows how these results compare
to those obtained in the HORIZON-AGN simulation (Dubois et al. 2014).
Section 6 addresses the impact of the density on the measured gradi-
ents towards filaments and walls. Results are discussed in Section 7
jointly with predictions from Musso et al. (2017). Finally, Section 8
concludes. Additional details on the matching technique and the
impact of the boundaries to the measured gradients are provided in
Appendices A and B, respectively. Appendix C investigates the ef-
fect of smoothing scale on the found gradients, Appendix D briefly
presents the HORIZON-AGN simulation, Appendix F provides tables
of median gradients and a short summary of predicted gradient
misalignments is presented in Appendix E.

Throughout the study, a flat �CDM cosmology with
H0 = 67.5 km s−1 Mpc−1, �M = 0.31 and �� = 0.69 is adopted
(Planck Collaboration XIII 2016). All statistical errors are com-
puted by bootstrapping, such that the errors on a given statistical
quantity correspond to the standard deviation of the distribution of
that quantity re-computed in 100 random samples drawn from the
parent sample with replacement. All magnitudes are quoted in the
AB system, and by log we refer to the 10-based logarithm.

2 DATA A N D DATA P RO D U C T S

This section describes the observational data and derived products,
namely the galaxy and group catalogues, that have been used in this
work.

2.1 Galaxy catalogue

The analysis is based on the GAMA survey1 (Driver
et al. 2009, 2011; Hopkins et al. 2013; Liske et al. 2015), a joint
European-Australian project combining multiwavelength photom-
etry (UV to far-IR) from ground and space-based facilities and
spectroscopy obtained at the Anglo-Australian Telescope (AAT,
NSW, Australia) using the AAOmega spectrograph. GAMA pro-
vides spectra for galaxies across five regions, but this work only
considers the three equatorial fields G9, G12 and G15 covering a to-
tal area of 180 deg2 (12 × 5 deg2 each), for which the spectroscopic
completeness is >98 per cent down to a r-band apparent magnitude
mr = 19.8. The reader is referred to Wright et al. (2016) for a com-
plete description of the spectro-photometric catalogue constructed
using the LAMBDAR2 code that was applied to the 21-band photo-
metric data set from the GAMA Panchromatic Data Release (Driver
et al. 2016), containing imaging spanning the far-UV to the far-IR.

The physical parameters for the galaxy sample such as the ab-
solute magnitudes, extinction corrected rest-frame colours, stellar
masses and specific star formation rate (sSFR) are derived using
a grid of model spectral energy distributions (SED; Bruzual &
Charlot 2003) and the SED fitting code LEPHARE3 (Arnouts
et al. 1999; Ilbert et al. 2006). The details used to derive these
physical parameters are given in the companion paper (Treyer et al.
in preparation).

1 http://www.gama-survey.org/
2 Lambda Adaptive Multi-Band Deblending Algorithm in R.
3 http://cesam.lam.fr/lephare/lephare.html
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Figure 1. Spatial distribution of whole galaxy population with mr < 19.8 in the GAMA field G12 in the redshift range 0.03 ≤ z ≤ 0.25 (grey points).
Overplotted are galaxy group members, colour coded by the size of their group. Only groups having five or more members are shown. The top and bottom
panels illustrate the galaxy group members before and after correcting for the FoG effect, respectively.

The classification between the active (star-forming) and passive
(quiescent) populations is based on a simple colour cut at u − r = 1.8
in the rest-frame extinction corrected u − r versus r diagram that is
used to separate the two populations. This colour cut is consistent
with a cut in sSFR at 10−10.8 yr−1 (see Treyer et al. in preparation).
Hence, in what follows, the terms red (blue) and quiescent (star-
forming) will be used interchangeably.

The analysis is restricted to the redshift range 0.03 ≤ z ≤ 0.25,
totalling 97 072 galaxies. This is motivated by the high galaxy
sampling required to reliably reconstruct the cosmic web. Be-
yond z ∼ 0.25, the galaxy number density drops substantially (to
2 × 10−3 Mpc−3 from 8 × 10−3 Mpc−3 at z ≤ 0.25, on average),
while below z ∼ 0.03, the small volume does not allow us to explore
the large scales of the cosmic web.

The stellar mass completeness limits are defined for the passive
and active galaxies as the mass above which 90 per cent of galaxies
of a given type (blue/red) reside at a given redshift z ± 0.004. This
translates into mass completeness limits of log(M�/M�) = 9.92
and log(M�/M�) = 10.46 for the blue and red populations at
z ≤ 0.25, respectively.

2.2 Group catalogue

Since the three-dimensional distribution of galaxies relies on the
redshift-based measures of distances, it is affected by their peculiar
velocities. In order to optimize the cosmic web reconstruction, one
needs to take into account these redshift-space distortions. On large
scales, these arise from the coherent motion of galaxies accompa-
nying the growth of structure, causing its flattening along the line of
sight, the so-called Kaiser effect (Kaiser 1987). On small scales, the
so-called Fingers of God (FoG; Jackson 1972; Tully & Fisher 1978)
effect, induced by the random motions of galaxies within virialized

haloes (groups and clusters) causes the apparent elongation of struc-
tures in redshift space, clearly visible in the galaxy distribution in
the GAMA survey (Fig. 1, top panel). While the Kaiser effect tends
to enhance the cosmic web by increasing the contrast of filaments
and walls (e.g. Subba Rao et al. 2008; Shi et al. 2016), the FoG effect
may lead to the identification of spurious filaments. Because the im-
pact of the Kaiser effect is expected to be much less significant than
that of the FoG (e.g. Subba Rao et al. 2008; Kuutma et al. 2017),
for the purposes of this work, we do not attempt to correct for it and
we focus on the compression of the FoG only. To do so, the galaxy
groups are first constructed with the use of an anisotropic Friends-
of-Friends (FoF) algorithm operating on the projected perpendicular
and parallel separations of galaxies, that was calibrated and tested
using the publicly available GAMA mock catalogues of Robotham
et al. (2011) (see also Merson et al. 2013, for details of the mock
catalogues construction). Details on the construction of the group
catalogue and related analysis of group properties can be found in
the companion paper (Treyer et al. in preparation). Next, the centre
of each group is identified following Robotham et al. (2011) (see
also Eke et al. 2004, for a different implementation). The method is
based on an iterative approach: first, the centre of mass of the group
(CoM) is computed; next its projected distance from the CoM is
found iteratively for each galaxy in the group by rejecting the most
distant galaxy. This process stops when only two galaxies remain
and the most massive galaxy is then identified as the centre of the
group. The advantage of this method, as shown in Robotham et al.
(2011), is that the iteratively defined centre is less affected by inter-
lopers than luminosity-weighted centre or the central identified as
the most luminous group galaxy. The groups are then compressed
radially so that the dispersions in transverse and radial directions are
equal, making the galaxies in the groups isotropically distributed
about their centres (see e.g. Tegmark et al. 2004). In practice, since
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the elongated FoG effect affects mostly the largest groups, only
groups with more than six members are compressed. Note that the
precise correction of the FoG effect is not sought. What is needed
for the purpose of this work is the elimination of these elongated
structures that could be misidentified as filaments.

Fig. 1 displays the whole galaxy population and the identified FoF
groups (coloured by their richness) in the GAMA field G12. The
top and bottom panels show the groups before and after correcting
for the FoG effect, respectively. For the sake of clarity, only groups
having at least five members are shown. The visual inspection re-
veals that most of the groups are located within dense regions, often
at the intersection of the apparently filamentary structures.

3 TH E C O S M I C W E B EX T R AC T I O N

With the objective of exploring the impact of the LSS on the evo-
lution of galaxy properties, one first needs to properly describe the
main components of the cosmic web, namely the high-density peaks
(nodes) which are connected by filaments, framing the sheet-like
walls, themselves surrounding the void regions. Among the vari-
ous methods developed over the years, two broad classes can be
identified. One uses the geometrical information contained in the
local gradient and the Hessian of the density or potential field (e.g.
Novikov, Colombi & Doré 2006; Aragón-Calvo et al. 2007a,b; Hahn
et al. 2007a,b; Sousbie et al. 2008a,b; Forero-Romero et al. 2009;
Bond, Strauss & Cen 2010a,b), while the second exploits the
topology and connectivity of the density field by using the water-
shed transform (Aragón-Calvo, van de Weygaert & Jones 2010)
or Morse theory (e.g. Colombi, Pogosyan & Souradeep 2000;
Sousbie et al. 2008a; Sousbie 2011). The theory for the former
can be built in some details, (see e.g. Pogosyan et al. 2009), shed-
ding some light on physical interpretation, while the latter avoids
shortcomings of a second-order Taylor expansion of the field and
provides a natural metric in which to compute distances to fila-
ments. Within these broad categories, some algorithms deal with
discrete data sets, while others require that the density field must
be first estimated (possibly on multiple scales). An exhaustive de-
scription of several cosmic web extraction techniques and a com-
parison of their classification patterns as measured in simulations
are presented in Libeskind et al. (2017). While this paper found
some differences between the various algorithms, which should in
principle be accounted for as modelling errors in this work, these
differences remain small on the scales considered.

3.1 Cosmic web with disperse

This work uses the Discrete Persistent Structure Extractor
(DisPerSE; see Sousbie et al. 2011, for illustrations in a cosmologi-
cal context), a geometric three-dimensional ridge extractor dealing
directly with discrete data sets, making it particularly well adapted
for astrophysical applications. It allows for a scale and parameter-
free coherent identification of the 3D structures of the cosmic web
as dictated by the large-scale topology. For a detailed description
of the DisPerSE algorithm and its underlying theory, the reader is
referred to Sousbie (2011); its main features are summarized below.

DisPerSE is based on discrete Morse and persistence theories.
The Delaunay tessellation is used to generate a simplicial complex,
i.e. a triangulated space with a geometric assembly of cells, faces,
edges and vertices mapping the whole volume. The Delaunay Tes-
sellation Field Estimator (DTFE; Schaap & van de Weygaert 2000;
Cautun & van de Weygaert 2011) allows for estimating the density

field at each vertex of the Delaunay complex. The Morse theory en-
ables to extract from the density field the critical points, i.e. points
with a vanishing (discrete) gradient of the density field (e.g. max-
ima, minima and saddle points). These critical points are connected
via the field lines tangent to the gradient field in every point. They in-
duce a geometrical segmentation of space, where all the field lines
have the same origin and destination, known as the Morse com-
plex. This segmentation defines distinct regions called ascending
and descending k-manifolds.4 The morphological components of
the cosmic web are then identified from these manifolds: ascending
0-manifolds trace the voids, ascending 1-manifolds trace the walls
and filaments correspond to the ascending 2-manifolds with their
extremities plugged on to the maxima (peaks of the density field).
In addition to its ability to work with sparsely sampled data sets
while assuming nothing about the geometry or homogeneity of the
survey, DisPerSE allows for the selection of retained structures on
the basis of the significance of the topological connection between
critical points. DisPerSE relies on persistent homology theory to
pair critical points according to the birth and death of a topolog-
ical feature in the excursion. The ‘persistence’ of a feature or its
significance is assessed by the density contrast of the critical pair
chosen to pass a certain signal-to-noise threshold. The noise level
is defined relative to the RMS of persistence values obtained from
random sets of points. This thresholding eliminates less significant
critical pairs, allowing to simplify the Morse complex, retaining
its most topologically robust features. Fig. 2 shows that filaments
outskirt walls, themselves circumventing voids. The filaments are
made of a set of connected segments and their end points are con-
nected to the maxima, the peaks of the density field where most
of clusters and large groups reside. Each wall is composed of the
facets of tetrahedra from the Delaunay tessellation belonging to
the same ascending 2-manifold. In this work, DisPerSE is run on
the flux-limited GAMA data with a 3σ persistence threshold. Fig. 3
illustrates the filaments for the G12 field, overplotted on the density
contrast of the underlying galaxy distribution, 1 + δ, where the lo-
cal density is estimated using the DTFE density estimator. Even in
this 2D projected visualization, one can see that filaments trace the
ridges of the 3D density field connecting the density peaks between
them.

3.2 Cosmic web metric

Having identified the major cosmic web features, let us now define
a new metric to characterize the environment of a galaxy, which
will be referred to as the ‘cosmic web metric’ and into which galax-
ies are projected. Fig. 4 gives a schematic view of this frame-
work. Each galaxy is assigned the distance to its closest filament,
Dskel. The impact point in the filament is then used to define the
distances along the filament towards the node, Dnode and towards
the saddle point, Dsaddle. Similarly, Dwall denotes the distance of
the galaxy to its closest wall. In this work, only distances Dnode,
Dskel and Dwall are used. Other investigations of the environment
in the vicinity of the saddle points are postponed to a forthcoming
work.

The accuracy of the reconstruction of the cosmic web fea-
tures is sensitive to the sampling of the data set. The lower the

4 The index k refers to the critical point the field lines emanate from (ascend-
ing) or converge to (descending), and is defined as its number of negative
eigenvalues of the Hessian: a minimum of the field has index 0, a maximum
has index 3 and the two types of saddles have indices 1 and 2.
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Figure 2. Illustration of the walls and filaments in the G12 field. For the sake of clarity and for the illustrative purposes, only the cosmic web features detected
above a persistence threshold of 5σ are shown. Filaments are coloured in black, with the most persistent ones (>6σ ) plotted in red, while walls are colour coded
randomly. Note how DisPerSE is capable of recovering the important features of the underlying cosmic field by identifying its (topologically) most-robust
features. In particular, it extracts filaments as a set of connected segments, which outskirt walls, themselves circumventing voids.

Figure 3. Illustration of the filamentary network (black lines) extracted with the DisPerSE code within the ±1.2◦ of the central declination of the G12 field.
The persistence threshold with which the filamentary network and the associated structures, used in this work and shown here, are extracted is 3σ . Also shown
is the density contrast of the underlying galaxy distribution, measured with the small-scale adaptive DTFE estimator (see the text) and averaged over cells of
2.3 × 2.3 Mpc2 (white colour is used for empty cells). In spite of the projection effects, the visual inspection reveals that filaments follow the ridges of the
density field which connect the peaks together.

sampling the larger the uncertainty on the location of the individ-
ual components of the cosmic web. To account for the variation
of the sampling throughout the survey, unless stated differently,
all the distances are normalized by the redshift-dependent mean
inter-galaxy separation 〈Dz〉, defined as 〈Dz〉 ≡ n(z)−1/3, where n(z)
represents the number density of galaxies at a given redshift z. For
the combined three fields of GAMA survey, 〈Dz〉 varies from 3.5 to
7.7 Mpc across the redshift range 0.03 ≤ z ≤ 0.25, with a mean value
of ∼5.6 Mpc.

4 G ALAXY PROPERTI ES WI THI N
THE C OSMIC W EB

In this section, the dependence of various galaxy properties, such
as stellar mass, u − r colour, sSFR and type, with respect to their
location within the cosmic web is analysed. First, the impact of the
nodes, representing the largest density peaks, is investigated. Next,
by excluding these regions, galaxy properties are studied within the
intermediate density regions near the filaments. Finally, the analysis
is extended to the walls.
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Figure 4. Schematic view of the ‘cosmic web’ metric in which the analysis
is performed. The position of a galaxy within the cosmic web is parametrized
by its distance to the closest filament, Dskel, and its distance to the closest
wall, Dwall. Dnode and Dsaddle represent the distances from the impact point
to the node and saddle along the corresponding filament, respectively.

4.1 The role of nodes via the red fractions

Let us start by analysing the combined impact of nodes and filaments
on galaxies through the study of the red fractions. The red fraction,
defined as the number of passive galaxies with respect to the entire
population, is analysed as a function of the distance to the nearest
filament, Dskel and the distance to its associated node, Dnode.

This analysis is restricted to galaxies more massive than
log (M�/M�) ≥ 10.46, as imposed by the mass limit complete-
ness of the passive population (see Section 2). The stellar mass
distributions of the passive and star-forming populations are not
identical, with the passive galaxies dominating the high mass end.
Therefore, to prevent biases in the measured gradients introduced
by such differences, the mass-matched samples are used. The de-
tailed description of the mass-matching technique can be found in
Appendix A1.

In Fig. 5 the red fraction of galaxies is shown as a function of Dskel

in three different bins of Dnode. While the fraction of passive galaxies
is found to increase with decreasing distances to both the filaments
and nodes, the dominant effect is the distance to the nodes. At fixed
Dskel, the fraction of passive galaxies sharply increases with de-
creasing distance to the nodes. Recalling that the mean inter-galaxy
separation 〈Dz〉 ∼ 5.6 Mpc, a 20–30 per cent increase in the fraction
of passive galaxies is observed from several Mpc away from the
nodes to less than ∼500 kpc. This behaviour is expected since the
nodes represent the loci where most of the groups and clusters reside
and reflect the well-known colour-density (e.g. Blanton et al. 2003;
Baldry et al. 2006; Bamford et al. 2009) and star formation-density
(e.g. Lewis et al. 2002; Kauffmann et al. 2004) relations. However,
the gradual increase suggests that some physical processes already
operate before the galaxies reach the virial radius of massive haloes.
At fixed Dnode, the fraction of passive galaxies increases with de-
creasing distance to filaments, but this increase is milder compared
to that with respect to nodes: an increase of ∼10 per cent is observed
regardless of the distance to the nodes. These regions with inter-
mediate densities appear to be a place where the transformation of
galaxies takes place as emphasized in the next section.

Figure 5. Red fraction of galaxies (the number of quiescent galaxies over
the entire population) as a function of Dskel for three different bins of
Dnode as indicated by the colour. Both distances are normalized by the
redshift-dependent mean inter-galaxy separation 〈Dz〉. Only galaxies with
log (M�/M�) ≥ 10.46 are considered. Star-forming and quiescent popula-
tions are matched in mass (see Section 4.2.1). The error bars are calculated
from 100 bootstrap samples. The fraction of red galaxies is found to increase
with decreasing distances both to the closest filament Dskel and to the node
of this Dnode. Recalling that 〈Dz〉 ∼ 5.6 Mpc, the fraction of passive galaxies
increases at given Dskel by ∼20 per cent from several tens of Mpc away from
the nodes (blue line) to less than ∼0.5 Mpc (red line). At fixed Dnode, the
increase of the red fraction with decreasing distance to filaments is milder,
of ∼10 per cent, regardless of the distance to the node.

4.2 The role of filaments

In order to infer the role played by filaments alone in the transfor-
mation of galactic properties, the impact of nodes, the high-density
regions has to be mitigated. By construction, nodes are at the inter-
section of filaments: they drive the well-known galaxy type-density
as well as stellar mass-density relations. To account for this bias,
Gay et al. (2010) and Malavasi et al. (2017) adopted a method
where a given physical property or distance of each galaxy was
down-weighted by its local density. Laigle et al. (2017) adopted a
more stringent approach by rejecting all galaxies that are too close
to the nodes. This method allows us to minimize the impact of
nodes, avoiding the difficult-to-quantify uncertainty of the residual
contribution of the density weighting scheme. We therefore adopt
the latter approach. As shown in Appendix B1, this is achieved by
rejecting all galaxies below a distance of 3.5 Mpc from a node.

4.2.1 Stellar mass gradients

Fig. 6 shows the normalized probability distribution functions
(PDFs) of the distance to the nearest filament Dskel in three stellar
mass bins for the entire population and star-forming galaxies alone
(top left-hand and right-hand panels, respectively). The medians of
the PDFs, shown by vertical lines, are listed together with the cor-
responding error bars in Table 1. The significance of the observed
trends is assessed by computing the residuals between the distri-
butions in units of σ (bottom panels), defined as �1−2/

√
σ 2

1 + σ 2
2 ,

where �1 − 2 is the difference between the PDFs of the populations
1 and 2, and σ 1 and σ 2 are the corresponding standard deviations.

For the entire population (left-hand panels), differences between
the PDFs of the three stellar mass bins are observed: the most
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Figure 6. Top row: Differential distributions of the distances to the nearest filament, Dskel (normalized by 〈Dz〉, the redshift-dependent mean inter-galaxy
separation) for the entire galaxy population (left-hand panel) and star-forming galaxies alone (right-hand panel) in three different stellar mass bins. Note that
these bins are different for the two populations: this is due to the stellar mass completeness limit that is different (see Section 2). To highlight an effect specific
to the filaments, the contribution of node is minimized (see the text for details). The vertical lines indicate the medians of the distributions and their values
together with associated error bars are listed in Table 1. The numbers of galaxies in different considered bins are indicated in each panel. The error bars are
calculated from 100 bootstrap samples. There is a mass segregation of galaxies with respect to filaments of the entire as well as star-forming population:
more massive galaxies tend to be preferentially located closer to the filaments compared to their lower-mass counterparts. Bottom row: Residuals in units of σ

between the two most extreme mass bins (purple line; 10.7 > log (M�/M�) ≥ 10.46 and log (M�/M�) ≥ 11.0 on the left-hand panel and 10.3 > log (M�/M�)
≥ 9.92 and log (M�/M�) ≥ 10.8 on the right-hand panel), and between the high and intermediate mass bins (orange solid line; log (M�/M�) ≥ 11.0 and
11.0 > log (M�/M�) ≥ 10.7 on the left-hand panel and log (M�/M�) ≥ 10.8 and 10.8 > log (M�/M�) ≥ 10.3 on the right-hand panel).

Table 1. Medians for the PDFs displayed in Figs 6–10.

Selectiona Bin Medianb

Dskel/〈Dz〉 Dwall/〈Dz〉
log(M�/M�) ≥ 11 0.379 ± 0.009 0.334 ± 0.005

All galaxies 11 > log(M�/M�) ≥ 10.7 0.456 ± 0.007 0.381 ± 0.004
10.7 > log(M�/M�) ≥ 10.46 0.505 ± 0.006 0.403 ± 0.004

Massc
log(M�/M�) ≥ 11 0.459 ± 0.012 0.385 ± 0.011

SF galaxies 11 > log(M�/M�) ≥ 10.4 0.534 ± 0.007 0.429 ± 0.006
10.4 > log(M�/M�) ≥ 9.92 0.578 ± 0.007 0.453 ± 0.007

Star-forming 0.504 ± 0.008 0.411 ± 0.006
Typed SF versus passivee

Passive 0.462 ± 0.007 0.376 ± 0.006

Notes. aPanels of Figs 6–10.
bMedians of distributions as indicated in Figs 6–10 by vertical lines; errors represent half width at half-maximum
of the bootstrap distribution, i.e. the distribution of medians from each of 100 bootstrap samples, fitted by a
Gaussian curve.
cFigs 6 and 9.
dFigs 7 and 10.
eOnly galaxies with stellar masses log(M�/M�) ≥ 10.46 are considered.

massive galaxies (log (M�/M�) ≥ 11) are located closer to the
filaments than the intermediate population (11 > log (M�/M�)
≥ 10.7), while the population with the lowest stellar masses
(10.7 > log (M�/M�) ≥ 10.46) is found furthest away from the
filaments. The significances of the difference between the most
massive and the two lowest stellar mass bins are shown in the bot-
tom panel. Between the most extreme stellar mass bins (purple
line), the difference exceeds 4σ close to the filament and 2σ at

larger distances. It is slightly less significant between the interme-
diate and lowest stella mass bins (orange line), but still in excess
of 2σ close to the filament. The differences between the PDFs can
be also quantified in terms of their medians, where the differences
between the highest and lowest stellar mass bins are significant at
an ∼10σ level (see Table 1). These results confirm previous claims
of a mass segregation with respect to filaments, where the most
massive galaxies are located near the core of the filaments, while
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Figure 7. Top: Differential distributions of the distances to the nearest
filament, Dskel (normalized by 〈Dz〉, the redshift-dependent mean inter-
galaxy separation) for star-forming and quiescent galaxies that have been
matched in mass (see the text for details). To highlight an effect specific
to the filaments, the contribution of node is minimized (see the text for
details). The vertical lines indicate the medians of the distributions and
their values, together with associated error bars, are listed in Table 1. The
numbers of galaxies in different considered bins are indicated in each panel.
The error bars are calculated from 100 bootstrap samples. Galaxies are
found to segregate, relative to filaments, according to their type: quiescent
galaxies tend to be preferentially located closer to the filaments compared
to their star-forming counterparts. Bottom: Residuals in units of σ between
the star-forming and passive galaxies.

the less massive ones tend to reside preferentially on their outskirts
(Laigle et al. 2017; Malavasi et al. 2017). As the impact of the nodes
has been minimized, it is therefore established that this stellar mass
gradient is driven by the filaments themselves and not by the densest
regions of the cosmic web.

The mass segregation is also found among the star-forming pop-
ulation alone (right-hand panels), such that more massive star-
forming galaxies tend to be closer to the geometric core of the
filament than their less massive counterparts. Note that the mass
bins for star-forming galaxies differ from mass bins used for the
entire population. The completeness stellar mass limit allows us to
decrease the lowest mass bin to log (M�/M�) = 9.92 when con-
sidering the star-forming galaxies alone (see Section 2). The signif-
icance of these stellar mass gradients between the extreme stellar
mass bins exceeds 4σ near the filaments, while the difference of the
medians reaches an ∼8σ level (see Table 1).

4.2.2 Type gradients

Let us now investigate the impact of the filamentary network on
the type/colour of galaxies. To do so, galaxies are split by type
between star-forming and passive galaxies based on the dust cor-
rected u − r colour as discussed in Section 2.1. As for the analysis
of the red fraction (Section 4.1), the sample is restricted to galax-
ies with log (M�/M�) ≥ 10.46 and the star-forming and passive
populations are matched in stellar mass. Fig. 7 shows the PDFs of

Figure 8. u − r colour (blue line) and sSFR (red line) of star-forming
galaxies as a function of Dskel. The y-axes indicate the amount by which
u − r colour and sSFR differ from the median values at given mass (see
the text for details). Only galaxies with log (M�/M�) ≥ 9.92 and far-away
from nodes (at Dnode >3.5 Mpc) are considered. Star-forming galaxies tend
to have higher u − r colour (tend to be redder) and lower sSFR when they
get closer to the filaments than their more distant counterparts.

the normalized distances Dskel within the mass-matched samples of
star-forming and passive populations, which by construction have
the same number of galaxies. Galaxies are found to segregate ac-
cording to their type such that passive galaxies tend to reside in re-
gions located closer to the core of filaments than their star-forming
counterparts. The significance of the type gradients between the two
populations exceeds 3σ near filaments while the difference between
the medians reaches an ∼4σ level (see Table 1).

4.2.3 Star formation activity gradients

To explore whether the impact of filaments on the star formation
activity of galaxies can be detected beyond the red fractions and type
segregation reported above, the focus is now on the star-forming
population alone through the study of their (dust corrected) u − r
colour and sSFR.

Both these quantities are known to evolve with stellar mass which
itself varies within the cosmic web (see above). To remove this mass
dependence, the offsets of u − r colour and sSFR, �u − r and
�sSFR, respectively, from the median values of all star-forming
galaxies at a given mass are computed for each galaxy. Fig. 8
shows the medians of �u − r and �sSFR as a function of Dskel.
Both quantities are found to carry the imprint of the large-scale
environment. At large distances from the filaments (Dskel ≥ 5 Mpc),
star-forming galaxies are found to be more active than the average.
At intermediate distances (0.5 ≤ Dskel ≤ 5 Mpc), star formation
activity of star-forming galaxies does not seem to evolve with the
distance to the filaments, while in the close vicinity of the filaments
(Dskel ≤ 0.5 Mpc), they show signs of a decrease in star formation
efficiency (redder colour and lower sSFR). The significance of these
results will be discussed in Section 7.

4.3 The role of walls in mass and type gradients

Let us now investigate the impact of walls on galaxy properties.
Figs 9 and 10 show the PDFs of the distances to the closest wall Dwall

for the same selections as in Figs 6 and 7, respectively. The distances
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Figure 9. Top row: As in Fig. 6, but for the distances to the nearest wall, Dwall. To minimize the contribution of nodes and filaments to the measured signal,
galaxies located closer to a node than 3.5 Mpc and closer to a filament than 2.5 Mpc are removed form the analysis. There is a mass segregation of galaxies
with respect to walls of the entire as well as star-forming population: more massive galaxies tend to be preferentially located closer to the filaments compared
to their lower-mass counterparts. Bottom row: Residuals in units of σ as in Fig. 6.

Figure 10. Top row: As in Fig. 7, but for the distances to the nearest wall,
Dwall. To minimize the contribution of nodes and filaments to the measured
signal, galaxies located closer to a node than 3.5 Mpc and closer to a filament
than 2.5 Mpc are removed from the analysis. Galaxies are found to segregate,
with respect to walls, according to their type: quiescent galaxies tend to be
preferentially located closer to the walls compared to their star-forming
counterparts. Bottom row: Residuals in units of σ as in Fig. 7.

are again normalized by the redshift-dependent mean inter-galaxy
separation 〈Dz〉. The values of medians with corresponding error
bars are listed in Table 1. As for filaments, one seeks signatures
induced by a particular environment solely, walls in this case. Given
that filaments are located at the intersections between walls, in
addition to the contamination by nodes, which is of concern for
filaments, one has to make sure that the contribution of filaments
themselves is minimized as well. Following the method adopted
in Section 4.2.1, Appendix B2 shows that this can be achieved by
removing from the analysis galaxies having distances to the nodes
smaller than 3.5 Mpc and distances to the closest filaments less than
2.5 Mpc.

The derived trends are qualitatively similar to those measured
with respect to filaments. Massive galaxies are located closer to
walls compared to their low-mass counterparts; star-forming galax-
ies preferentially reside in the outer regions of walls; and mass seg-
regation is present also among star-forming population of galaxies
with more massive star-forming galaxies having smaller distances
to the walls than low-mass counterparts. Since these walls typically
embed smaller-scale filaments, the net effect of transverse gradi-
ents perpendicular to these filaments should add up to transverse
gradients perpendicular to walls.

The significance of the measured trends, in terms of the residuals
between medians (see Table 1), is above 3σ for all considered
gradients, slightly lower than for the gradients towards filaments.
The deviations of ∼10σ and ∼5σ are detected between the highest
and lowest stellar mass bins among the whole and star-forming
population alone, respectively, while between the star-forming and
passive galaxies it reaches ∼4σ , as in the case of gradients towards
filaments.
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Table 2. Medians for the PDFs displayed in Fig. 11.

Selectiona Bin Medianb

Dskel (Mpc) Dwall (Mpc)

log(M�/M�) ≥ 10.8 1.34 ± 0.09 0.79 ± 0.04
Mass 10.8 > log(M�/M�) ≥ 10.4 1.73 ± 0.08 1.14 ± 0.03

10.4 > log(M�/M�) ≥ 10 1.97 ± 0.04 1.22 ± 0.02

−10.8 > log(sSFR/yr−1) 1.46 ± 0.07 1.02 ± 0.03
sSFRc −10.4 > log(sSFR/yr−1) ≥ −10.8 1.88 ± 0.06 1.18 ± 0.03

log(sSFR/yr−1) ≥ −10.4 2.0 ± 0.04 1.18 ± 0.02

Notes. aPanels of Fig. 11.
bMedians of distributions as indicated in Fig. 11 by vertical lines; errors are computed as in Table 1.
cOnly galaxies with stellar masses log(M�/M�) ≥ 10 are considered.

5 C O M PA R I S O N W I T H TH E H O R I Z O N-AG N

SIMULATION

In this section, a qualitative support for the results on the mass and
star-formation activity segregation is provided via the analysis of the
large-scale cosmological hydrodynamical simulation HORIZON-AGN

(Dubois et al. 2014). Note that the main purpose of such an analysis
is to provide a reference measurement of gradients in the context
of a large-scale ‘full physics’ experiment. The construction of the
GAMA-like mock catalogue is not performed because the geome-
try of HORIZON-AGN does not allow us to recover the entire GAMA
volume and the flux-limited sample requires a precise modelling of
fluxes in different bands.

A brief summary of some of the main features of the simulation
can be found in Appendix D. Here, the results on the mass and sSFR
gradients towards filaments and walls are presented. The HORIZON-
AGN simulation is analysed at low redshift (z ∼ 0.1), comparable
to the mean redshift studied in this paper, and the same analysis
is performed as in the GAMA data. The filamentary network and
associated structures are extracted by running the DisPerSE code
with the persistence threshold of 3σ .

Fig. 11 shows the mass (left-hand panels) and sSFR (right-hand
panels) gradients towards filaments (figure a) and walls (figure b) as
measured in the HORIZON-AGN simulation. The impact of the nodes
and filaments on the measured signal is minimized by removing
from the analysis galaxies that are closer to the node than 3.5 Mpc
and closer to the filament than 1 Mpc. The detailed description of
the method used to identify these cuts in distances can be found
in Appendix B1. Consistently with the measurements in GAMA,
galaxies in HORIZON-AGN are found to segregate by stellar mass, with
more massive galaxies being preferentially closer to both the fil-
aments and walls than their low-mass counterparts. Similarly, the
presence of the sSFR gradient, whereby less star-forming galax-
ies tend to be closer to the cores of filaments and walls than their
more star-forming counterparts, is in qualitative agreement with the
type/colour gradients detected in the GAMA survey. Note that the
three bins of sSFR are used to separate out the highly star-forming
galaxies, with log (sSFR/yr−1) ≥ −10.4, from passive ones, with
log (sSFR/yr−1) < −10.8, in order to compare with the type gradi-
ents in the observations. In the simulation, sSFR is a more reliable
parameter for type than for the colour.

The significance of the trends is measured, as previously, in terms
of the residuals between medians (see Table 1). For the gradients
towards filaments, the difference of �6σ is found between the
most extreme, both mass and sSFR, bins, while it drops to ∼2–3σ

between the intermediate and lowest bins. For the gradients towards
walls, the deviation between the most extreme bins is ∼10 and 4σ

for mass and sSFR bins, respectively, while there is only a little to no

difference between intermediate and lowest stellar mass and sSFR
bins, respectively. The gradients are slightly less significant than in
the GAMA measurements, most likely due to the low numbers of
galaxies per individual bins in HORIZON-AGN, but qualitatively similar
as in GAMA.

6 T H E R E L AT I V E I M PAC T O F D E N S I T Y

Let us now address the following questions: what is the specific role
of the geometry of the large-scale environment in establishing mass
and type/colour large-scale gradients? Are these gradients driven
solely by density, or does the large-scale anisotropy of the cosmic
web provide a specific signature?

A key ingredient in answering these questions is the choice of
the scale at which the density is inferred. The properties of galaxies
at a given redshift are naturally a signature of their past light-cone.
This light-cone in turn correlates with the galaxy’s environment: the
larger the scale is, the longer the look-back time one must consider,
the more integrated the net effect of this environment. This past
environment accounts for the total accreted mass of the galaxy, but
may also impact the geometry of the accretion history and more
generally other galactic properties such as its star formation effi-
ciency, its colour or its spin. At small scales, the density correlates
with the most recent and stochastic processes, while going to larger
scales allows taking the integrated hence smoother history of galax-
ies into account. Since this study is concerned about the statistical
impact of the large-scale structure on galaxies, it is natural to con-
sider scales large enough to average out local recent events they
may have encountered, such as binary interactions, mergers and
outflows. Therefore in the discussion below, the density is com-
puted at the scale of 8 Mpc, the ‘smallest’ scale at which the effect
of the anisotropic large-scale tides can be detected.

In practice, in order to try to disentangle the effect of density
from that of the anisotropic large-scale tides, the following reshuf-
fling method (e.g. Malavasi et al. 2017) is adopted. For mass gradi-
ents, 10 equipopulated density bins are constructed and in each of
them the stellar masses of galaxies are randomly permuted. By con-
struction, the underlying mass-density relation is preserved, but this
procedure randomizes the relation between the stellar mass and the
distance to the filament or the wall. For the type/colour gradients,
in each of 10 equipopulated density bins, 10 equipopulated stellar
mass bins are constructed. Within each of such bins, u − r colour
of galaxies are randomly permuted. Thus by construction, this pre-
serves the underlying colour-(mass)-density relation, but breaks the
relation between the colour/type and the distance to the particular
environment, the filament or wall.
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Figure 11. Top rows: Differential distributions of the distances as a function of stellar mass (left-hand panels) and sSFR (right-hand panels) for galaxies
in HORIZON-AGN. To minimize the contribution of nodes and filaments to the measured signal, galaxies located closer to a node than 3.5 Mpc and closer to a
filament than 1 Mpc are removed from the analysis. The vertical lines indicate the medians of the distributions (see Table 2 for the numerical values). Numbers
of galaxies in different considered bins are indicated in each panel. There is mass and sSFR segregation of galaxies with respect to both filaments and walls:
more massive and less star-forming galaxies tend to be preferentially located closer to the cores of filaments and walls compared to their lower-mass and more
star-forming counterparts, respectively. These results are in qualitative agreement with the measurements in GAMA. Bottom rows: Residuals in units of σ

between the two most extreme mass and sSFR bins, log (M�/M�) ≥ 10.8 and 10.4 > log (M�/M�) ≥ 10 on the left-hand panel and −10.8 > log (sSFR/yr−1)
and log (sSFR/yr−1) ≥ −10.4 on the right-hand panel, respectively. (a) Differential distributions of the distances to the nearest filament, Dskel. (b) Differential
distributions of the distances to the nearest wall, Dwall.

In order to account for the variation of the density through the
survey, the density contrast, defined as 1 + δ = n/n(z), where
n(z) corresponds to the mean redshift-dependent number density,
is used in logarithmic bins. The number density n is computed
in the Gaussian kernel and every time five reshuffled samples are
constructed.

In Fig. 12(a), the mass and type gradients towards filaments, as
measured in GAMA and previously shown in Figs 6 and 7, are

compared with the outcome of the reshuffling technique. The orig-
inal signal is found to be substantially reduced after the reshuffling
of masses and colours of galaxies. For the mass gradients, the de-
viation between the most extreme bins before reshuffling exceeds
3σ , while after the reshuffling, the signal gets reduced, with typical
deviations of ∼1σ . The original signal for the type/colour gradi-
ents is weaker than in the case of the mass gradients, however it
is similarly nearly cancelled out once the reshuffling method is
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(a)

(b)

Figure 12. Top rows: Differential distributions of the normalized distances to the nearest filament, Dskel as a function of stellar mass of the entire galaxy
population (left-hand panels), for star-forming galaxies only (middle panels) and as a function of galaxy’s type (right-hand panels) with reshuffling (Figure a)
and with density-matched samples (Figure b). In Figure (a), the distributions before applying the reshuffling method (solid lines) are compared to the results
after the reshuffling (dashed lines). Figure (b) illustrates the distributions for the galaxy samples that are matched so that their density distributions are the same
(see the text for details on the matching). The density estimators used in both the reshuffling and density matching corresponds to the (large-scale) density
computed in the Gaussian kernel at the scale of 8 Mpc. As previously, the contribution of nodes to the measured signal is minimized. The numerical values
of medians, shown as vertical lines, are listed in Table 3. The two methods yield qualitatively similar result: on the one hand when the large-scale density is
used in reshuffling, the signal is reduced (dashed lines, Figure a) suggesting that the measured gradients (solid lines, Figure a) are not driven by the density at
this scale, on the other hand, the gradients are measured within the samples that are matched in density at large scale. Bottom rows: Residuals in units of σ

between the highest and lowest mass bins (left-hand and middle panels) and between the star-forming and passive galaxies (right-hand panels). (a) Reshuffling.
(b) Density matching.

applied. The values of medians of the distributions after the reshuf-
fling can be found in Table 3. Qualitatively similar behaviour is
obtained for the gradients towards walls (not shown here). The
analysis in HORIZON-AGN provides a qualitative support for these re-
sults. In Appendix D2, Fig. D1(a), the same reshuffling method is
applied to simulated galaxies. The density used for this test is com-
puted in the Gaussian kernel at 5 Mpc. This scale corresponds to the
∼1.5× mean inter-galaxy separation in HORIZON-AGN, consistently
with the GAMA data.

Alternatively, to assess the impact of the density on the mea-
sured gradients within the cosmic web, one may want to use density
matching. The purpose of this method is to construct mass- and
colour-density matched samples, whereby galaxies with different
masses and/or colours have similar density distributions, in order to
make sure that the measured properties are not driven by their dif-
ferences (see Appendix A2 for details on the matching technique).
As shown in Fig. 12(b), the main result on the density-matching
technique leads to the same conclusions as the reshuffling method.
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Table 3. Medians for the PDFs displayed in Fig. 12: large-scale density

Selectiona Bin Medianb

Dskel/〈Dz〉
Originalc reshufflingd Matchinge

log(M�/M�) ≥ 11 0.379 ± 0.009 0.441 ± 0.009 0.379 ± 0.01
All galaxies 11 > log(M�/M�) ≥ 10.7 0.456 ± 0.007 0.463 ± 0.006 0.44 ± 0.009

10.7 > log(M�/M�) ≥ 10.46 0.505 ± 0.007 0.475 ± 0.006 0.486 ± 0.01
Masses

log(M�/M�) ≥ 11 0.459 ± 0.01 0.541 ± 0.015 0.459 ± 0.011
SF galaxies 11 > log(M�/M�) ≥ 10.4 0.534 ± 0.007 0.543 ± 0.007 0.514 ± 0.012

10.4 > log(M�/M�) ≥ 9.92 0.578 ± 0.007 0.552 ± 0.007 0.549 ± 0.012

Star-forming 0.503 ± 0.007 0.491 ± 0.007 0.498 ± 0.007
Types SF versus passivef

Passive 0.462 ± 0.007 0.476 ± 0.007 0.467 ± 0.006

Notes. aPanels of Fig. 12.
bMedians of distributions as indicated in Fig. 12 by vertical lines; errors are computed as in Table 1.
cAs in Table 1 for Dskel/〈Dz〉.
dReshuffling is done in bins of density computed at 8 Mpc (see the text for details).
eMedians for the density-matched sample, where the density considered is computed at 8 Mpc.
fOnly galaxies with stellar masses log(M�/M�) ≥ 10.46 are considered.

After matching galaxy populations in the large-scale density, mass
and type gradients towards filaments and walls are still detected,
suggesting that beyond the density, large-scale structures of the
cosmic web do impact these galactic properties.

7 D ISC U SSION

Let us first discuss the observational findings of the previous section
in the framework of existing work (Section 7.1) and then focus on
a recent extension of anisotropic excursion set which is developed
in the companion paper (Section 7.2). The latter will allow us to
explain why colour gradients prevail at fixed density.

7.1 Cosmic web metric: expected impact on galaxy evolution

In the current framework for galaxy formation, in which galaxies
reside in extended dark matter haloes, it is quite natural to split the
environment into the local environment, defined by the dark matter
halo and the global large-scale anisotropic environment, encom-
passing the scale beyond the halo’s virial radius. The anisotropy
of the cosmic web is already a direct manifestation of the generic
anisotropic nature of gravitational collapse on larger scales. It pro-
vides the embedding in which dark haloes and galaxies grow via
accretion, which will act upon them via the combined effect of
tides, the channeling of gas along preferred directions and angular
momentum advection on to forming galaxies.

The observations and simulations presented in Sections 4, 5 and 6
provide a general support for this scenario. While rich clusters and
massive groups are known to be environments which induce ma-
jor galaxy transformations, the red fraction analysis presented in
Section 4.1 (Fig. 5) reveals that the fraction of passive galaxies in
the filaments starts to increase several Mpc away from the nodes
and peaks in the nodes. This gradual increase suggests that some
‘pre-processing’ already happens before the galaxies reach the virial
radius of massive haloes and fall into groups or clusters (e.g. Porter
et al. 2008; Martı́nez et al. 2016). The above-mentioned morpholog-
ical transformation of elliptical-to-spiral ratio when getting closer
to the filaments (see also Kuutma et al. 2017) can be interpreted
as the result of mergers transforming spirals into passive ellipti-
cal galaxies along the filaments when migrating towards nodes as
suggested by theory and simulations (Codis et al. 2012; Dubois

et al. 2014). These findings show that filamentary regions, corre-
sponding to intermediate densities, are important environments for
galaxy transformation. This is also confirmed by the segregation
found in Sections 4.2 (Figs 6 and 7). More massive and/or passive
galaxies are found closer to the core of filaments than their less
massive and/or star-forming counterparts. These differential mass
gradients persist among the star-forming population alone. In ad-
dition to mass segregation, star-forming galaxies show a gradual
evolution in their star formation activity (see Fig. 8). They are bluer
than average at large distances from filaments (Dskel � 5 Mpc), in a
‘steady state’ with no apparent evolution in star formation activity
at intermediate distances (0.5 ≤ Dskel ≤ 5 Mpc) and they show signs
of decreased star formation efficiency near the core of the filaments
(Dskel � 0.5 Mpc). These results are in line with the picture where
on the one hand more massive/passive galaxies lay in the core of
filaments and merge while drifting towards the nodes of the cosmic
web. On the other hand, the low mass/star-forming galaxies tend to
be preferentially located in the outskirts of filaments, a vorticity-rich
regions (Laigle et al. 2015), where galaxies acquire both their angu-
lar momentum (leading to a spin parallel to the filaments) and their
stellar mass via essentially smooth accretion (Dubois et al. 2012b;
Welker et al. 2017, also relying on HORIZON-AGN). The steady state
of star-formation in these regions can reflect the right balance be-
tween the consumption and refuelling of the gas reservoir by the
cold gas controlled by their surrounding filamentary structure (as
shown by Codis et al. 2015, following Pichon et al. 2011, the out-
skirts of filaments are the loci of most efficient helicoidal infall of
cold gas). This may not be true anymore when galaxies fall in the
core of the filaments. The decline of star formation activity can, in
part, be due to the higher merger rate but also due to a quenching
process such as strangulation, where the supply of cold gas is halted
(Peng, Maiolino & Cochrane 2015). It could also find its origin in
the cosmic web detachment (Aragon-Calvo et al. 2016), where the
turbulent regions inside filaments prevent galaxies to stay connected
to their filamentary flows and thus to replenish their gas reservoir.

7.2 Link with excursion set theory

The distinct transverse gradients found for mass, density and type
or colour may also be understood within the framework of condi-
tional excursion set theory. Qualitatively, the spatial variation of the
(traceless part of the) tidal tensor in the vicinity of filaments will
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delay infall on to galaxies, which will impact differentially galac-
tic colour (at fixed mass), provided accretion can be reasonably
converted into star formation efficiency.

7.2.1 Connecting gradients to constrained excursion set

The companion paper (Musso et al. 2017) revisits excursion set
theory subject to conditioning the excursion to the vicinity of a
filament. In a nutshell, the main idea of excursion set theory is to
compute the statistical properties of the initial (over)density – a
stochastic variable – enclosed within spheres of radius R, the scale
which, through the spherical collapse model, can be related to the
final mass of the object (should the density within the sphere pass
the threshold for collapse). Increasing the radius of the sphere pro-
vides us with a proxy for ‘evolution’ (larger sphere, larger mass,
smaller variance, later formation time) and a measure of the impact
of the environment (different sensitivity to tides for different, larger,
spheres). The expectations associated with this stochastic variable
can be re-computed subject to the tides imposed by larger scale
structures, which are best captured by the geometry of a filament-
saddle point, S, providing the local natural ‘metric’ for a filament
(Codis et al. 2015). These large-scale tides will induce distinct
weighting in the conditional PDF(δ, ∂Rδ|S) for the overdensity δ,
and its successive derivatives with respect to scale, ∂Rδ etc. (so as to
focus on collapsed accreting regions). Indeed, the saddle will shift
not only the mean expectation of the PDFs but also importantly their
co-variances (see Musso et al. 2017, for details). The derived ex-
pected (dark matter) mean density ρ(r, θ , φ), Press-Schechter mass
M(r, θ , φ) and typical accretion rate Ṁ(r, θ, φ) then become explicit
distinct functions of distance r and relative orientation to the closest
(oriented) saddle point. Within this model, it follows that the orien-
tation of the mass, density and accretion rate gradients differ. The
misalignment arises because the various fields weight differently
the constrained tides, which will physically e.g. delay infall, and
technically involve different moments of the aforementioned con-
ditional PDF (see Appendix E for more quantitative information on
contour misalignment). This is shown in Fig. 13, which displays a
typical longitudinal cross-section of those three maps in the frame
of the saddle (with the filament along the Oz axis) in Lagrangian
space.5

This line of argument explains environmentally driven differen-
tial gradients, yet there is still a stretch to connect it to the observed
gradients. While there is no obvious consensus on the detailed ef-
fect of large-scale (dark matter) accretion on to the colour or star
formation of galaxies at fixed mass and density, one can expect
that the stronger the accretion, the stronger the AGN feedback, the
stronger the quenching. Should this (reasonable) scaling hold true,
the net effect in terms of gradients would be that colour gradients
differ from mass and density ones. This is qualitatively consistent
with the findings of this paper.

5 This companion paper does not capture the strongly non-linear process of
dynamical friction of sub clumps within dark haloes, nor strong deviations
from spherical collapse. We refer to Hahn et al. (2009), which captures
the effect on satellite galaxies, and to Ludlow, Borzyszkowski & Porciani
(2014), Castorina et al. (2016) and Borzyszkowski et al. (2017) which study
the effect of the local shear on haloes forming in filamentary structures.
This requires adopting a threshold for collapse that depends explicitly on
the local shear. The shear-dependent part of the critical density (and its
derivative) correlates with the shear of the saddle, and introduces an addi-
tional anisotropic effect on top of the change of mean values and variances
of density and slope.

Figure 13. Isocontours of constant typical redshift z = 0 mean density
(filled contours), mass (dotted lines) and accretion rate (dashed lines) in
the frame of a filament (along the Oz axis) in Lagrangian space (initial
conditions) from low (light colours) to high values (dark colours). The saddle
is at coordinate (0,0) while the induced peak and void are at coordinates
(0,±7) and (±8,0) h−1Mpc, respectively. As argued in the main text, this
figure shows that the contours, hence the gradients of the three fields, are not
parallel (the contours cross). The choice of scale sets the units on the x- and
z-axis (chosen here to be 5 h−1Mpc, while the mass and accretion rates are
computed for a local smoothing of 0.5 h−1Mpc). At lower redshift/smaller
scales, one expects the non-linear convergence of the flow towards the
filament to bring those contours together, aligning the gradients (see Fig. 14).

7.2.2 Gradient alignments on smaller non-linear scales

The above-presented Lagrangian theory clearly applies only on
sufficiently large scales so that dynamical evolution has not driven
the large-scale flow too far from its initial configuration. On smaller
scales, one would expect the same line of argument to operate in
the frame set by the saddle smoothed on the corresponding scale,
but with one extra caveat: the increased level of non-linearity will
have compressed the local filament transversally and stretched it
longitudinally, following the generic kinetic flow measured in N-
body simulation (e.g. Sousbie et al. 2008a), or predicted at the level
of the Zel’dovich approximation (Codis et al. 2015).

Consequently, the contours of constant dark matter density ρ, typ-
ical dark halo mass M and typical relative accretion rate Ṁ/M in
the frame of the saddle shown in Fig. 13 will be driven more parallel
to each other, hence the difference in the orientation of the density,
mass and accretion gradient will become smaller and smaller as
one considers smaller scales, and/or more non-linear dynamics (see
Fig. 14). As colour gradient at fixed mass, and mass gradient at fixed
density towards filaments originate from this initial misalignment,
it should come as no surprise that as one probes smaller scales, such
relative gradients disappear. When considering statistical expecta-
tions concerned with anisotropy (delayed accretion, acquisition of
angular momentum, etc.), the net effect of past interactions should
first be considered on the largest significant scale, beyond which
the universe becomes isotropic. Conversely, the level of stochastic-
ity should increase significantly on smaller scales, where one must
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Figure 14. Illustration of the Zel’dovich flow (green arrows) in the vicinity
of a filament (red cylinder) embedded in a wall (purple flattened cylinder),
with filament saddle at the centre. The non-linear evolution operating more
strongly on smaller scales will advect the contours presented in Fig. 13 along
the green arrows, bringing them more parallel to each other. Consequently
at these smaller scales, the mass and accretion gradients do not differ signif-
icantly from the density gradients. See Codis et al. (2015) and Musso et al.
(2017) for more details.

account for, e.g. the configuration of the last merger event, or the
last fly-by. Such a scenario is indeed supported by our findings in
both GAMA and HORIZON-AGN, presented in Appendices C and D2,
Figs C1 and D1, respectively, whereby the use of the small-scale
density tracer does not allow us to disentangle between the effects
of the local density and that of cosmic web, suggesting that at such
scale, they are closely correlated through the small-scale processes.

7.2.3 Relationship to wall gradients

When measured relative to the walls, galaxy properties are found
to exhibit the same trends as for filaments, in that more massive
and/or quiescent galaxies are found closer to the walls than their
low mass and/or star-forming counterparts. This result is again in
qualitative agreement with the idea of walls being, together with
the filaments, the large-scale interference patterns of primordial
fluctuations capable of inducing anisotropic boost in overdensity
together with the corresponding tides, and consequently imprinting
their geometry in the measured properties of galaxies. The gradients
measured for walls have the same origin as those inducing the
differential gradients near the filament-type saddles, but are sourced
by the geometry of the tides near the wall-type saddles (Codis
et al. 2015, Appendix B). The main difference between the two
saddles lies in the transverse curvatures, which is steeper for wall-
type saddles than for filament-type saddles (when considering the
mean, eigenvolume weighted, eigenvalues of the curvature tensor
with the relevant signatures) leading to weaker differences between
the different gradients when considering walls. This is consistent
with the findings of Section 4.3.

In closing, note that the (resp. Eulerian and Lagrangian) inter-
pretations presented in Sections 7.1 and 7.2 are complementary, but
fall short in explaining in details the origin of quenching. Neverthe-
less, in view of both observation and theory, the cosmic web metric
appears as a natural framework to understand galaxy formation
beyond stellar mass and local density.

8 SU M M A RY A N D C O N C L U S I O N S

This paper studies the impact of the large-scale environment on
the properties of galaxies, such as their stellar mass, dust corrected
u − r colour and sSFR. The discrete persistent structure extractor
(DisPerSE) was used to identify the peaks, filaments and walls in
the large-scale distribution of galaxies as captured by the GAMA
survey. The principal findings are the following.

(i) Mass segregation. Galaxies are found to segregate by stellar
mass, such that more massive galaxies are preferentially located
closer to the cores of filaments than their lower mass counterparts.
This mass segregation persists among the star-forming population.
Similar mass gradients are seen with respect to walls in that galax-
ies with higher stellar mass tend to be found closer to the walls
compared to galaxies with lower mass and persisting even when
star-forming population of galaxies is considered alone.

(ii) Type/colour segregation. Galaxies are found to segregate by
type/colour, with respect to both filaments and walls, such that
passive galaxies are preferentially located closer to the cores of
filaments or walls than their star-forming counterparts.

(iii) Red fractions. The fraction of passive galaxies increases with
both decreasing distance to the filament and to the node, i.e. at fixed
distance to the node, the relative number of passive galaxies (with
respect to the entire population) increases as the distance to the
filament decreases and similarly, at a given distance to the filament,
this number increases with decreasing distance to the node.

(iv) Star formation activity. Star-forming galaxies are found to
carry an imprint of large-scale environment as well. Their dust
corrected u − r and sSFR are found to be more enhanced and
reduced, respectively, in the vicinity of the filaments compared to
their outskirts.

(v) Consistency with cosmological simulations. All the found
gradients are consistent with the analysis of the HORIZON-AGN ‘full
physics’ hydrodynamical simulation. This agreement suggests that
what drives the gradients is captured by the implemented physics.

(vi) Connection to excursion set theory. The origin of the distinct
gradients can be qualitatively explained via conditional excursion
set theory subject to filamentary tides (Musso et al. 2017).

This work has focused on filaments, nodes and in somewhat lesser
details on walls. Similar observational results were recently reported
at high redshift by using the cosmic web filamentary structures in
the VIPERS spectroscopic survey (Malavasi et al. 2017) and while
using projected filaments in photometric redshift slices in the COS-
MOS field (Laigle et al. 2017). These observations are of intrin-
sic interest as a signature of galactic assembly; they also comfort
theoretical expectations which point towards distinct gradients for
colour, mass and density with respect to the cosmic web. The tides
of the large-scale environment play a significant specific role in the
evolution of galaxies, and are imprinted in their integrated physical
properties, which vary as a function of scale and distance to the dif-
ferent components of the cosmic web in a manner which is specific
to each observable.
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These observations motivate a theory which eventually should
integrate the anisotropy of the cosmic web as an essential ingredient
to (i) describe jointly the dynamics and physics of galaxies, (ii)
explain galactic morphological diversity, and (iii) mitigate intrinsic
alignment in upcoming lensing dark energy experiments, once a
proper modelling of the mapping between galaxies and their haloes
(allowing e.g. to convert the DM accretion rate into colour of galaxy)
becomes available.

Future large-scale spectrographs on 8 metre class telescopes
(MOONS;6 Cirasuolo et al. 2014; Cirasuolo & MOONS Consor-
tium 2016, PFS;7 Sugai et al. 2015) or space missions (WFIRST;8

Spergel et al. 2013, 2015, and Euclid;9 Laureijs et al. 2011, the deep
survey for the latter) will extend the current analysis at higher red-
shift (z ≥ 1) with similar samplings, allowing us to explore the role
of the environment near the peak of the cosmic star formation his-
tory, an epoch where the connectivity between the LSS and galaxies
is expected to be even tighter, with ubiquitous cold streams. Tomog-
raphy of the Lyman-α forest with PFS, MOONS, ELT-HARMONI
(Thatte et al. 2010) tracing the intergalactic medium will make the
study of the link between galaxies and this large-scale gas reservoir
possible.
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A P P E N D I X A : MATC H I N G T E C H N I QU E

A1 Mass matching

This Appendix provides details on the mass matching procedure.
First the mass distributions of the two populations are cut so that
they cover the same stellar mass range, i.e. they have the same
minimum and maximum value of stellar mass. Then, in each stellar
mass bin, the population with lower number of galaxies is taken as
the reference sample and Nmatch samples of galaxies are extracted
in the other population, such that their mass distribution is the same
as the one of the reference sample. In practice, for each galaxy in
the reference sample, the corresponding galaxy of the larger sample
is sought among galaxies whose mass difference with respect to the
reference mass is smaller than �M� in logarithmic space. If there
is no galaxy in larger sample satisfying this condition, the galaxy
of the reference sample is removed from the analysis. In each of
Nmatch samples, every galaxy of the larger sample is considered
only once, however repetitions are allowed across all samples. By
construction, after applying this procedure, one ends up with Nmatch

samples consisting of the same number of star-forming and passive
galaxies and having very similar stellar mass distributions.

If not stated differently, 20 mass-matched samples are typically
constructed using 10 equipopulated stellar mass bins for each and
choosing a value of 0.1 for �M� parameter. Varying the values
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of Nmatch, �M� and the number of stellar mass bins within the
reasonable range does not alter our conclusions.

A2 Density matching

This Appendix provides details on the density matching procedure.
First, let us describe how the mass-density matched samples are
constructed. The galaxy sample is first divided into three logarith-
mic stellar mass bins for which the density matched samples are to
be constructed. In each of the 10 equipopulated logarithmic over-
density (1+δ) bins, the reference sample is identified as that of
the previously constructed stellar-mass subsamples with the lowest
number of galaxies. Next, for each galaxy in the reference sample, a
galaxy is randomly chosen from each of two stellar mass bins hav-
ing the overdensity closest to the galaxy in the reference sample. In
practice, the nominal absolute difference in the log (M�/M�) val-
ues used to match galaxies is 0.1. If no suitable galaxy is found in
at least one of the two stellar mass bins, the galaxy of the reference
sample is removed from the analysis. This procedure is repeated
10 times, ending up with 10 samples of galaxies having the same
overdensity distributions in three different stellar mass bins.

Similarly, to construct type-density matched samples, the entire
galaxy sample is first divided into the subsamples of star-forming
and passive galaxies. Then, in each of the 10 equipopulated log-
arithmic overdensity (1+δ) bins, the reference sample (sample of
passive or star-forming galaxies) is identified as the one having the
lowest number of galaxies. We continue by randomly choosing a
galaxy from the larger sample with an overdensity and stellar mass
close to that of the galaxy from the reference sample. In practice,
we pair galaxies for which the distance in the two-parameter log-
arithmic space, defined by the stellar mass and the overdensity, is
minimal and smaller than 0.1. The procedure is again repeated 10
times in order to construct 10 samples of star-forming and passive
galaxies having their mass and density distributions close to each
other.

A P P E N D I X B : T H E I M PAC T O F C O S M I C
B O U N DA R I E S

It was stated in Sections 4.2.1 and 4.3 that the measured gradients
towards filaments (Figs 6 and 7) and walls (Figs 9 and 10) are
not simply due to gradients towards nodes in the former and due
to gradients towards nodes and filaments in the latter case. This
Appendix presents the performed tests that allowed us to reach
such a conclusion.

B1 Gradients towards filaments

Let us start by considering the gradients towards filaments. In order
to probe these gradients without being substantially contaminated
by the contribution from nodes, galaxies that are closer to nodes than
3.5 Mpc are removed from the analysis. The choice of this distance
dnode

min is motivated by the compromise between eliminating the most
of the gradient coming from nodes while keeping enough objects
to have a statistically significant sample. Note that the distance of
3.5 Mpc is greater than the typical size of groups, which is ∼ 1.5 Mpc
in the redshift range considered in this work, measured as a median
(or mean) projected group radius. The value of median (and mean)
is insensitive to the definition of the group radius (see Robotham
et al. 2011, for various definitions considered). In Fig. B1, the solid
lines show the mass gradients towards filaments for the entire sample
(left-hand panel) on the one hand and after excluding galaxies with
distances to the node Dnode ≤ 3.5 Mpc (right-hand panel).

The contribution of nodes to mass gradients towards filaments is
measured by randomizing distances to the filament, Dskel, in bins
of distances to the node, Dnode. By construction, gradients towards
nodes are preserved. 20 samples are constructed in each of which
this reshuffling method is applied in 20 equipopulated logarithmic
bins. As shown by the dashed lines in Fig. B1 and values of medians
listed in Table F1, the reshuffling cancels the gradients towards
filaments for dnode

min = 3.5 Mpc.

Figure B1. Top row: Differential distributions of the normalized distances to the nearest filament, Dskel. The solid lines show mass gradients for all galaxies
(left-hand panel) and after removing galaxies with distances to the node smaller than 3.5 Mpc (right-hand panel). The dashed lines illustrate mass gradients after
the reshuffling of Dskel of galaxies in bins of distances to the node Dnode. The vertical lines indicate the medians of the distributions and their values, together
with associated errors, are listed in Table F1. The reshuffling method cancels mass gradients towards filaments once galaxies at distances closer than 3.5 Mpc
from nodes are removed. Bottom row: Residuals in units of σ between the two most extreme mass bins (log (M�/M�) ≥ 11.0 and 10.7 > log (M�/M�) ≥
10.46) before (solid lines) and after (dashed lines) the reshuffling.
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Figure B2. Top row: Differential distributions of the normalized distances to the nearest wall, Dwall. The solid lines show mass gradients after removing
galaxies with distances to the node smaller than 3.5 Mpc (left) and after applying an additional criterion on the distance to the filament, such that galaxies with
distances to the filament smaller than 2.5 Mpc (right) are removed. The dashed lines illustrate mass gradient after reshuffling of Dskel of galaxies in bins of
distances to the node Dnode. As shown on the right-hand panel, these are almost completely cancelled after removing sufficiently large regions around nodes
and filaments. The vertical lines indicate the medians of the distributions and their values, together with associated errors, are listed in Table F2. Bottom row:
Residuals are in units of σ as in Fig. B1.

In addition, following Laigle et al. (2017), it can be shown that
in the regions sufficiently far away from nodes, gradients towards
nodes and those towards filaments are independent. It was checked
that the mass gradients towards nodes, present for the entire galaxy
sample, are substantially reduced once galaxies for which distances
to the node Dnode ≤ 3.5 Mpc are excluded. This time, the distances
to the node, Dnode, were randomized in bins of distances to the fil-
ament, Dskel, i.e. by construction, gradients towards filaments were
preserved. Again, 20 samples were constructed using 20 equipopu-
lated logarithmic bins. After reshuffling, weak gradients at the level
of at most 1σ are still present, but note that additional increase in
dnode

min does not reduce them further.
This analysis allows us to conclude that by removing from our

sample galaxies that are closer to nodes than 3.5 Mpc, the impact
of nodes to the measured gradients towards filaments is minimized,
and even if weak gradients towards nodes still exist, these are in-
dependent of gradients towards filaments, i.e. gradients towards
filaments and gradients towards nodes can be disentangled.

Let us finish this section with two remarks. First, note that dis-
tances to the node considered here are 3D euclidian distances. Curvi-
linear distances along the filaments could have been used instead
(as illustrated in Fig. 4). This alternative choice of the distance does
not alter our conclusions. Secondly, instead of using distances to
the node Dnode, one could have considered distances normalized by
the redshift-dependent mean inter-galaxy separation, Dnode/〈Dz〉.
These two approaches give consistent results not only qualitatively,
but also quantitatively.

B2 Gradients towards walls

As with filaments, when measuring the gradients towards walls,
one should investigate whether the gradient is not dominated by
other component of the environments. As filaments are regions
where walls intersect, these represent on top of nodes an additional
source of contamination for the measured gradients towards walls.

Fig. B2 shows the mass gradients towards walls for the galaxy
sample outside the zone of influence of nodes parametrized by
dnode

min = 3.5 Mpc (left-hand panel) and after applying an additional
criterion by excluding galaxies with distances to the closest filament
Dskel ≤ dskel

min with dskel
min = 2.5 Mpc (right-hand panel). The contribu-

tion of filaments to the mass gradients towards walls is measured
by randomizing distances to the wall, Dwall, in bins of distances to
the filament, Dskel. By construction, the gradients towards filaments
are preserved. Here 20 samples are constructed in each of which
the reshuffling method is applied in 20 equipopulated logarithmic
bins. As shown by the dashed lines in Fig. B2 and values of medi-
ans listed in Table F2, the reshuffling cancels the gradients towards
walls for dskel

min = 2.5 Mpc.
Following the method used in Appendix B1, it was verified (but

not shown here) that the mass gradients towards filaments after
randomization of the distances Dskel in bins of distances to the
nearest wall Dwall are substantially reduced. Only a very weak mass
gradient (at a 1σ level at most) is detected after randomization even
for dskel

min = 2.5 Mpc. Similarly to what was found in Section B1,
increasing this parameter does not induce any substantial reduction
of the gradient. Thus this distance was chosen as the limit for the
exclusion region around filaments.

APPENDI X C : SMALL-SCALE
DENSI TY-COSMI C WEB R ELATI ON

In this Appendix, the impact of the small-scale density estimator
on the mass and type/colour gradients is presented. The density
used here is DTFE, i.e. the density computed at the smallest pos-
sible scale.10 As in Section 6, the two methods, the reshuffling and
density-matching, are applied.

10 There is no specific scale associated with the DTFE: it is a local adaptive
method which determines the density at each point while preserving its
multiscale character.
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(a)

(b)

Figure C1. Top rows: As in Fig. 12, but using the DTFE density for both methods, reshuffling (Figure a) and density matching (Figure b). The numerical
values of medians, shown as vertical lines, are listed in Table F3. When the small-scale density, DTFE in this case, is used in the reshuffling method, the
randomized (dashed lines) and original signal (solid lines) are nearly identical. Similarly, all gradients are almost completely erased, as expected. Bottom rows:
Residuals are in unit of σ as in Fig. 12. (a) Reshuffling. (b) Density matching.

Fig. C1 shows the differential distributions of the distances to the
nearest filament, Dskel (normalized by 〈Dz〉, for the same selections
as in Fig. 12. The contribution of the nodes to the measured signal is
minimized, by removing from the analysis galaxies located closer to
a node than 3.5 Mpc. Star-forming and passive galaxies have been
matched in mass, as described in Appendix A1. The vertical lines
indicate the medians of the distributions, whose values, together
with the error bars, are listed in Table F3.

In Figure (a), the mass and type gradients are shown before (solid
lines, as in 12) and after (dashed lines) applying the reshuffling
of galaxies in the bins of overdensity (1+δ), where the number
density corresponds to the DTFE density. The result conforms to
the expectations. The reshuffling does not remove the observed mass

and type/colour gradients, i.e. the distributions before and after the
reshuffling are almost identical, suggesting that at the small scale,
traced by DTFE, the density and cosmic web are closely correlated
through the small-scale processes.

Figure (b) illustrates the PDFs for samples that have been matched
in overdensity (1 + δ), as described in Appendix A2, where the
density considered is DTFE. The density-matching technique yields
qualitatively similar result than the above used reshuffling in that al-
most no mass and type gradients are detected when galaxies matched
in the DTFE density.

Qualitatively same results are obtained for both methods when
applied to the measurements of gradients with respect to the walls
(not shown).
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A P P E N D I X D : TH E H O R I Z O N-AG N S IM U L ATI ON

This Appendix is dedicated to presenting the large-scale cosmolog-
ical hydrodynamical simulation HORIZON-AGN (Dubois et al. 2014).
First, some of the main features of the simulation are briefly summa-
rized. The reshuffling method is then implemented on the simula-
tion, as defined in Section 6, and shown to yield qualitatively similar
results to those obtained in GAMA for both large- and small-scale
density tracers.

D1 Simulation summary

The detailed description of the HORIZON-AGN simulation11 can be
found in Dubois et al. (2014), here only its brief summary is given.
The cosmological parameters used in the simulation correspond
to the �CDM cosmology with total matter density �m = 0.272,
dark energy density �� = 0.728, amplitude of the matter power
spectrum σ 8 = 0.81, baryon density �b = 0.045, Hubble con-
stant H0 = 70.4 km s−1 Mpc−1 and ns = 0.967 compatible with the
WMAP-7 data (Komatsu et al. 2011).

The simulation was run with the Adaptive Mesh Refinement code
RAMSES (Teyssier 2002) in a box of length Lbox = 100 h−1 Mpc
containing 10243 dark matter (DM) particles, with a DM mass
resolution of MDM,res = 8 × 107 M�, and initial gas resolution of
Mgas,res = 1 × 107 M�.

The collisionless DM and stellar components are evolved using a
particle-mesh solver. The dynamics of the gaseous component are
computed by solving Euler equations on the adaptive grid using a
second-order unsplit Godunov scheme.

The refinement is done in a quasi-Lagrangian manner starting
from the initial coarse grid down to �x = 1 proper kpc (seven levels
of refinement) as follows: each AMR cell is refined if the number of
DM particles in a cell is more than 8, or if the total baryonic mass
in a cell is eight times the initial DM mass resolution. This results
in a typical number of 7 × 109 gas resolution elements (leaf cells)
in the HORIZON-AGN simulation at z = 0.

Heating of the gas from a uniform UV background takes place
after redshift zreion = 10 following Haardt & Madau (1996). Gas is

11 http://www.horizon-simulation.org

allowed to cool down to 104 K through H and He collisions with
a contribution from metals using a Sutherland & Dopita (1993)
model.

The conversion of gas into stars occurs in regions with
gas density exceeding ρ0 = 0.1 H cm−3 following the Schmidt
(1959) relation of the form ρ̇∗ = ε∗ρg/tff , where ρ̇∗ is the SFR
mass density, ρg the gas mass density, ε∗ = 0.02 the con-
stant star formation efficiency, and tff the local free-fall time of
the gas.

Feedback from stellar winds, supernovae type Ia and type II are
included into the simulation with mass, energy and metal release.
HORIZON-AGN simulation takes also into account the formation of
black holes (BHs) that can grow by gas accretion at a Bondi–Hoyle–
Lyttleton rate capped at the Eddington accretion rate when they form
a tight enough binary. The AGN feedback is a combination of two
different modes (the so-called quasar and radio mode) in which
BHs release energy in the form of heating or jet when the accretion
rate is, respectively, above and below 1 per cent of Eddington, with
efficiencies tuned to match the BH-galaxy scaling relations at z = 0
(see Dubois et al. 2012a, for details).

Galaxies are identified using the updated method (Tweed
et al. 2009) of the AdaptaHOP halo finder (Aubert et al. 2004)
directly operating on the distribution of stellar particles. Only galac-
tic structures with a minimum of Nmin = 100 stellar particles are
considered, which typically selects objects with masses larger than
2 × 108 M�.

D2 Density reshuffling

Let us finally present the impact of the reshuffling method, as defined
in Section 6, and the choice of the density tracer in the HORIZON-
AGN simulation.

Fig. D1 illustrates that the result of reshuffling depends on the
scale at which the density is computed. As expected, when using
the small-scale density tracer, such as e.g. the DTFE density (Figure
a), both mass and sSFR gradients are almost unchanged, while on
sufficiently large scales, the gradients tend to cancel out (Figure b).
The numerical value of the scale at which this happens is ∼5 Mpc.
This is again in a qualitative agreement with the scale required in
the GAMA survey, corresponding to the ∼1.5× mean inter-galaxy
separation.
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Figure D1. Top rows: As in Fig. 11 for the distances to the nearest filament, Dskel. The contribution of the nodes is minimized by removing galaxies located
within 3.5 Mpc around them from the analysis. The dashed lines correspond to the distributions after the application of the reshuffling method using two
different density tracers, a large (Figure a) and small-scale (Figure b) estimators. The numerical values of medians, shown as vertical lines, are listed in
Table F4. In qualitative agreement with the results obtained with the observed data, in order to cancel the gradients, density at sufficiently large scale has to be
considered. This corresponds to 5 Mpc in the HORIZON-AGN simulation, representing ∼ 1.5× mean inter-galaxy separation, again in agreement with the value
found in observations. Bottom rows: As in Fig. 11 before (solid lines) and after (dashed lines) the reshuffling. (a) Reshuffling using the density computed in
the Gaussian kernel at the scale of 5 Mpc. (b) Reshuffling using the DTFE density.

APPEN D IX E: G R A D I E N T M I S A L I GNM E NTS

In the context of conditional excursion set theory subject to a sad-
dle S at some finite distance (r, θ , φ) from a forming halo, let us
consider the Hessian of the potential, qij ≡ ∂2ψ/∂ri∂rj , smoothed
on the saddle scale RS and normalized so that 〈tr2(q)〉 = 1. The
anisotropic shear is given by the traceless part q̄ij ≡ qij − δij tr q/3,
which deforms the region by slowing down or accelerating the

collapse along each axis. At finite separation, this traceless shear
modifies in an anisotropic way the statistics of the smooth mean den-
sity (and of its derivative with respect to scale). The variations are
modulated by Q = ∑

i,j r̂i q̄ij r̂j , with r̂i = ri/r , i.e. by the relative
orientation of the separation vector, r in the frame set by the tidal ten-
sor of the saddle. This extra degree of freedom, Q(θ, φ), provides a
supplementary vector space, beyond the radial direction, over which
to project the gradients, with statistical weight depending on each
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specific observable (mass, accretion rate, etc.). These quantities
have thus potentially different iso-surfaces from each other and
from the local mean density, a genuine signature of the impact of
the traceless part of the tidal tensor. Indeed, for each observable, the
conditioning on S introduces a further dependence on the geome-
try of the environment (the height of the saddle and its anisotropic
shear q̄ij ) and on the position r of the halo with respect to the saddle
point. This dependence arises because the saddle point condition
modifies the mean and variance of the stochastic process (δ, ∂Rδ) –
the height and slope of the excursion set trajectories – in a position-
dependent way, making it more or less likely to form haloes of given
mass and assembly history within the environment set by S. The
expectation of the process becomes anisotropic throughQ, and both
mean and variance acquire distinct radial dependence through the
relevant correlation functions ξαβ defined below in equation (E8).

For instance, considering the typical mass, M� and accretion
rate, Ṁ�, at scale R, straightforward trigonometry shows that cross-
product of their gradients reads

(
∂Ṁ�

∂r

∂M�

∂Q − ∂Ṁ�

∂Q
∂M�

∂r

)
∇̃Q , (E1)

where ∇̃ = (∂/∂θ, (1/sin θ )∂/∂φ). The companion paper (Musso
et al. 2017) shows that the Taylor expansion in the anisotropy for
the angular variation, Q, of M� and Ṁ� at fixed distance r from the
saddle scale like

�M� ∝ ξ20(r)Q(θ, φ) , (E2)

and

�Ṁ� ∝
[
ξ ′

20(r) − σ − ξ ′ · ξ

σ 2 − ξ · ξ
ξ20(r)

]
Q(θ, φ) , (E3)

in terms of the variance

σ 2(R) =
∫

dk
k2P (k)

2π2
W 2(kR) , (E4)

and the radius-dependent vectors

ξ (r) ≡ {ξ00(r),
√

3ξ11(r)r/R�,
√

5ξ20(r)} , (E5)

ξ ′(r) ≡ {ξ ′
00(r),

√
3ξ ′

11(r)r/R�,
√

5ξ ′
20(r)} , (E6)

where

R2
� ≡

∫
dk

P (k)

2π2

W 2(kRS )

σ 2
S

, (E7)

with P(k) the underlying power spectrum, W(k) the top hat filter in
Fourier space, σS = σ (RS ), while the finite separation correlation
functions, ξαβ (r, R, RS ) and ξ ′

αβ (r, R, RS ) are defined as

ξαβ ≡
∫

dk
k2P (k)

2π2
W (kR)

W (kRS )

σS

jα(kr)

(kr)β
, (E8)

ξ ′
αβ ≡

∫
dk

k2P (k)

2π2
W ′(kR)

W (kRS )

σS

jα(kr)

(kr)β
, (E9)

where jα(x) are the spherical Bessel functions of the first kind and
prime denote derivate with respect to σ . Note that equation (E3)
clearly highlights the shifted variance, σ 2 − ξ · ξ , which contributes
to the difference between �M� and �Ṁ�. From equation (E3), since
the square bracket is not proportional to ξ 20 as in equation (E2), it
follows that the cross-product in equation (E1) is non-zero, which
in turn implies that the contours of mass and accretion rate differ.

A P P E N D I X F: M E D I A N S O F D I S T R I BU T I O N S

This Appendix gathers tables of medians with corresponding error
bars used in previous sections.

Table F1. Medians of Dskel/〈Dz〉 for Fig. B1.

Selectiona Mass bin Medianb

Dskel/〈Dz〉
Before reshufflingc After reshuffling

log(M�/M�) ≥ 11 0.27 ± 0.01 0.33 ± 0.02
All galaxies 11 > log(M�/M�) ≥ 10.7 0.36 ± 0.01 0.37 ± 0.01

10.7 > log(M�/M�) ≥ 10.46 0.40 ± 0.01 0.38 ± 0.01

log(M�/M�) ≥ 11 0.38 ± 0.01 0.46 ± 0.02
dnode

min = 3.5 Mpc 11 > log(M�/M�) ≥ 10.7 0.46 ± 0.01 0.47 ± 0.01
10.7 > log(M�/M�) ≥ 10.46 0.51 ± 0.01 0.47 ± 0.01

aPanels of Fig. B1.
bMedians of distributions as indicated in Fig. B1 by vertical lines; errors are computed as in Table 1.
cRandomization of Dskel in bins of Dnode.

Table F2. Medians of Dwall/〈Dz〉 for Fig. B2.

Selectiona Mass bin Medianb

Dwall/〈Dz〉
Before reshufflingc After reshuffling

log(M�/M�) ≥ 11 0.234 ± 0.005 0.258 ± 0.011
dnode

min = 3.5 Mpc 11 > log(M�/M�) ≥ 10.7 0.279 ± 0.003 0.278 ± 0.005
10.7 > log(M�/M�) ≥ 10.46 0.295 ± 0.003 0.292 ± 0.004

log(M�/M�) ≥ 11 0.334 ± 0.007 0.379 ± 0.028
dnode

min = 3.5 Mpc, dskel
min = 2.5 Mpc 11 > log(M�/M�) ≥ 10.7 0.381 ± 0.004 0.386 ± 0.011

10.7 > log(M�/M�) ≥ 10.46 0.403 ± 0.004 0.398 ± 0.008

aPanels of Fig. B2.
bMedians of distributions as indicated in Fig. B2 by vertical lines; errors are computed as in Table 1.
cRandomization of Dwall in bins of Dskel.
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Table F3. Medians for the PDFs displayed in Fig. C1: small-scale density

Selectiona Bin Medianb

Dskel/〈Dz〉
Originalc reshufflingd Matchinge

log(M�/M�) ≥ 11 0.379 ± 0.009 0.397 ± 0.009 0.378 ± 0.01
All galaxies 11 > log(M�/M�) ≥ 10.7 0.456 ± 0.007 0.459 ± 0.006 0.393 ± 0.009

10.7 > log(M�/M�) ≥ 10.46 0.505 ± 0.006 0.495 ± 0.006 0.406 ± 0.008
Masses

log(M�/M�) ≥ 10.8 0.459 ± 0.012 0.489 ± 0.013 0.458 ± 0.011
SF galaxies 10.8 > log(M�/M�) ≥ 10.3 0.534 ± 0.007 0.541 ± 0.008 0.479 ± 0.01

10.3 > log(M�/M�) ≥ 9.92 0.578 ± 0.007 0.567 ± 0.007 0.494 ± 0.006

Star-forming 0.504 ± 0.008 0.508 ± 0.007 0.495 ± 0.006
Types SF versus passivef

Passive 0.462 ± 0.007 0.458 ± 0.007 0.504 ± 0.006

aPanels of Fig. C1.
bMedians of distributions as indicated in Fig. C1 by vertical lines; errors are computed as in Table 1.
cAs in Table 1 for Dskel/〈Dz〉.
dReshuffling is done in bins of DTFE density (see the main text for more details).
eMedians for the density-matched sample, where the density considered is DTFE.
fOnly galaxies with stellar masses log(M�/M�) ≥ 10.46 are considered.

Table F4. Medians for the PDFs displayed in Fig. D1

Selectiona Bin Medianb

Dskel [Mpc]
Originalc after reshufflingd

DTFE G5Mpc

log(M�/M�) ≥ 10.8 1.34 ± 0.09 1.26 ± 0.08 1.72 ± 0.1
Mass 10.8 > log(M�/M�) ≥ 10.4 1.73 ± 0.08 1.71 ± 0.06 1.82 ± 0.06

10.4 > log(M�/M�) ≥ 10 1.97 ± 0.04 2.0 ± 0.05 1.86 ± 0.04

−10.8 > log(sSFR/yr) 1.46 ± 0.07 1.61 ± 0.07 1.74 ± 0.08
sSFR −10.4 > log(sSFR/yr) ≥ −10.8 1.88 ± 0.06 1.89 ± 0.06 1.81 ± 0.06

log(sSFR/yr) ≥ −10.4 2.0 ± 0.04 1.9 ± 0.05 1.91 ± 0.06

aPanels of Fig. D1.
bMedians of distributions as indicated in Fig. D1 by vertical lines; errors are computed as in Table 1.
cAs in Table 2 for Dskel (corresponding to the solid lines in Fig. D1).
dReshuffling is done in the bins of the DTFE density and the density computed at the scale of 5 Mpc (corresponding
to the dashed lines in Figures a and b, respectively).

This paper has been typeset from a TEX/LATEX file prepared by the author.
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216 Chapter B. Contributed publications

B.2 “Galaxies flowing in the oriented saddle frame of the cosmic web” (published
in MNRAS)
In this follow-up of Kraljic et al., 2018, we have used the virtual galaxies of Horizon-AGN to

further study the spatial distribution of galactic properties as a function of their location in the

frame of the cosmic web. The properties of galaxies in the simulation have been plotted in the

same frame as the one used throughout section 4.5.3. Namely, the galactic properties have been

plotted as a function of their distance to the nearest �lament centre and their angle with respect

to the �lament orientation. The key result of the paper is a con�rmation that galactic properties

are spatially modulated by the cosmic web. In particular, it has been found that after having

removed the mean stellar mass, halo mass and density e�ects, maps of the properties of galaxies

still show a modulation with respect to the cosmic web.

Theoretically, I showed (appendix F of the paper) that one can qualitatively recover the spatial

signal observed in numerical simulations if one takes into account the displacement �eld induced

by Zel’dovich boost (see section 2.1.2.3). Indeed, the mean �ow around �lamentary structures

squeezes isocontours in the direction transverse to the �lament and stretches them towards nodes.

This result, already highlighted in Musso, Cadiou et al., 2018 has been shown to qualitatively

reproduce the spatial distribution of halo mass in the simulation (see �gures E1 and E2).

While theoretical predictions seem to be able to forecast the assembly of DM halos, signi�cant

improvements need to be made to relate this to the evolution of their host galaxies. This is in

particular relevant to the study of satellite galaxies which are in�uenced by the activity of their

more massive neighbours. This work showed that the cosmic web provides a natural frame

in which complex e�ects driving the formation of galaxies can be studied (AGN feedback, gas

stripping). Following the results of chapter 3 and chapter 4, I suggest that the frame of the cosmic

web will prove useful to understand assembly bias, but can also be used as an ingredient entering

halo and galaxy models.
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6East African Institute for Fundamental Research (ICTP-EAIFR), KIST2 Building, Nyarugenge Campus, University of Rwanda, Kigali, Rwanda
7International Centre for Radio Astronomy Research and ASTRO 3D, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009,
Australia
8Laboratoire d’Astrophysique de Marseille, Aix Marseille Univ, CNRS, LAM, 38 Rue Frédéric Joliot Curie, F-13013 Marseille, France
9Korea Institute for Advanced Study, Quantum Universe Center, 85 Hoegiro, Dongdaemun-gu, Seoul 02455, Republic of Korea
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ABSTRACT
The strikingly anisotropic large-scale distribution of matter made of an extended network
of voids delimited by sheets, themselves segmented by filaments, within which matter flows
towards compact nodes where they intersect, imprints its geometry on the dynamics of cos-
mic flows, ultimately shaping the distribution of galaxies and the redshift evolution of their
properties. The (filament-type) saddle points of this cosmic web provide a local frame in
which to quantify the induced physical and morphological evolution of galaxies on large
scales. The properties of virtual galaxies within the HORIZON-AGN simulation are stacked
in such a frame. The iso-contours of the galactic number density, mass, specific star forma-
tion rate (sSFR), kinematics, and age are clearly aligned with the filament axis with steep
gradients perpendicular to the filaments. A comparison to a simulation without feedback
from active galactic nuclei (AGNs) illustrates its impact on quenching star formation of cen-
trals away from the saddles. The redshift evolution of the properties of galaxies and their
age distribution are consistent with the geometry of the bulk flow within that frame. They
compare well with expectations from constrained Gaussian random fields and the scaling
with the mass of non-linearity, modulo the redshift-dependent impact of feedback processes.
Physical properties such as sSFR and kinematics seem not to depend only on mean halo
mass and density: the residuals trace the geometry of the saddle, which could point to other
environment-sensitive physical processes, such as spin advection, and AGN feedback at high
mass.

Key words: methods: analytical – methods: numerical – galaxies: evolution – galaxies: for-
mation – galaxies: interactions – galaxies: kinematics and dynamics.

1 IN T RO D U C T I O N

Galaxies form and evolve within a complex network, the so-called
cosmic web (Bond, Kofman & Pogosyan 1996), made of filaments
embedded in sheet-like walls, surrounded by large voids and inter-
secting at clusters of galaxies (Jõeveer, Einasto & Tago 1978). Do

� E-mail: kat@roe.ac.uk

the properties of galaxies, such as their morphology, retain a mem-
ory of these large-scale cosmic flows from which they emerge?
The importance of interactions with the larger scale environment
in driving their evolution has indeed recently emerged as central
tenet of galaxy formation theory. Galactic masses are highly depen-
dent on their large-scale surrounding, as elegantly explained by the
theory of biased clustering (Kaiser 1984; Efstathiou et al. 1988),
such that high-mass objects preferentially form in overdense envi-
ronment near nodes (Bond & Myers 1996; Pogosyan et al. 1996).

C© 2018 The Author(s)
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Conversely, what are the signatures of this environment away from
the nodes of the cosmic web?

While galaxies grow in mass when forming stars from intense gas
inflows at high redshift, they also acquire spin through tidal torques
and mergers biased by these anisotropic larger scales (e.g. Aubert,
Pichon & Colombi 2004; Peirani, Mohayaee & de Freitas Pacheco
2004; Navarro, Abadi & Steinmetz 2004; Aragón-Calvo et al. 2007;
Codis et al. 2012; Libeskind et al. 2012; Stewart et al. 2013; Trow-
land, Lewis & Bland-Hawthorn 2013; Aragon-Calvo & Yang 2014,
for dark matter (DM), and Pichon et al. 2011; Dubois et al. 2014;
Welker et al. 2014, in hydrodynamical simulations). This should
in turn have a significant impact on galaxy properties including
morphology, colour, and star formation history of galaxies.

As a filament is formally the field line that joins two maxima of
the density field through a filament-type saddle point1 (Pogosyan
et al. 2009), studying the expected properties of galaxies in the
vicinity of filament-type saddle points is a sensible choice. Indeed,
Tidal Torque Theory (Peebles 1969; Schaefer 2009) was recently
revisited (Codis, Pichon & Pogosyan 2015b) in the context of
such anisotropic environments, biased by the presence of a fila-
ment within a wall, which is most efficiently represented by this
point process of filament-type saddles.2 It predicts the alignment
of the angular momentum distribution of the forming galaxies with
the filament’s direction, and perpendicular orientation for massive
population. Since spin plays an important role in the physical and
morphological properties of galaxies, a signature is also expected
in the properties of galaxies as a function of the longitudinal and
transverse distances to this saddle.

Most of the previous theoretical work on the impact of the
anisotropy of the environment on galactic assembly history focused
on DM haloes. In the emerging picture of halo assembly history, at
a given mass, haloes that are sufficiently far from the potential wells
of other haloes can grow by accretion from their neighbourhood,
leading to a correlation between the accretion rate of haloes and the
density of their environment (e.g. Zentner 2007). Haloes that are
close to more massive structures are on the other hand expected to be
stalled and their growth may stop earlier, as their mass inflow is dy-
namically quenched by anisotropic tides generated in their vicinity
(e.g. Dalal et al. 2008; Hahn et al. 2009; Ludlow, Borzyszkowski &
Porciani 2014; Borzyszkowski et al. 2017; Paranjape, Hahn & Sheth
2018a). Individual properties of DM haloes, such as their mass, for-
mation time, or accretion, are thus expected to be affected by the
exact position of haloes within the large-scale anisotropic cosmic
web (e.g. Lazeyras, Musso & Schmidt 2017). Such expectations are
complementary to the recent work of Musso et al. (2018) whose
analytical prediction of the mass, accretion rate, and formation time
of DM haloes near proto-filaments (identified as saddle points of
the gravitational potential field) confirms that the anisotropy of the
cosmic web is a significant ingredient to describe jointly the dy-
namics and physics of haloes. Their model predicts that at fixed
mass, mass accretion rate, and formation time of haloes also vary
with orientation and distance from the saddle.

Theoretical predictions on the impact of the anisotropic tides of
the cosmic web on the specific properties of galaxies embedded in
those haloes are hampered by the complexity of baryonic processes

1Where the gradient of the density field is null and the density Hessian has
two negative eigenvalues.
2The constrained misalignment between the tidal and the inertia tensors in
the vicinity of filament-type saddles simply explains the distribution of spin
directions and its mass dependent flip.

and the lack of knowledge of detailed physics driving them. Some
attempts were recently made by Alam et al. (2018) and Paranjape,
Hahn & Sheth (2018b) which compared the observed clustering and
quenching properties of galaxies in the Sloan Digital Sky Survey
(SDSS) with corresponding measurements in mock galaxy cata-
logues. These studies focused on whether the cosmic web leaves an
imprint on the galaxy clustering beyond the effects of halo mass, by
constructing mock catalogues using a halo occupation distribution
in such a way that dependencies of galaxy properties on the tidal
anisotropy and isotropic overdensity are driven by the underlying
halo mass function across the cosmic web alone. As such prescrip-
tion qualitatively reproduces the main observed trends, and quanti-
tatively matches many of the observed results, they concluded that
any additional direct effect of the large-scale tidal field on galaxy
formation must be extremely weak.

In this work, the adopted approach is different in that it focuses
directly on galaxies, their physical properties and redshift evolution
as measured in the large-scale cosmological hydrodynamical simu-
lation HORIZON-AGN (Dubois et al. 2014, 2016). The main purpose
of this paper is to show how the 3D distribution of the physical
properties of these synthetic galaxies reflects the (tidal) impact of
the cosmic web on the assembly history of galaxies. It is partly
motivated by recent studies carried in the VIPERS, GAMA, and
COSMOS surveys (Malavasi et al. 2017; Kraljic et al. 2018; Laigle
et al. 2018) which showed that the colour and specific star formation
rate (sSFR) of galaxies are sensitive to their proximity to the cos-
mic web at fixed stellar mass and local density. This paper focuses
specifically on the distribution of the galaxy properties stacked in
the oriented frame of the filament on large (∼Mpc) scales. The nat-
ural choice of frame for stacking is defined by filament-type saddle
points connecting two nodes by one filament (in contrast to nodes
which are typically places where the connectivity of filaments is
higher).

This paper is organized as follows. Section 2 shortly describes the
simulation and the detection of filaments within. Section 3 presents
the galactic maps near the saddle, focusing first on the transverse
and longitudinal (azimuthally averaged) maps, and then their 3D
counterparts, while Section 4 shows their redshift evolution. Sec-
tion 5 relates our finding to the properties of weakly non-Gaussian
random fields near saddles. Some observational implications of our
work together with the comparison with theoretical predictions are
discussed in Section 6. Section 7 wraps up.

Appendix A explores the robustness of our finding with- re-
spect to smoothing and choice of filament tracer, Appendix B dis-
cusses the redshift evolution of the geometry of filaments, Ap-
pendix C presents complementary 2D maps, and Appendix D quan-
tifies the position-in-the-saddle frame efficiency of AGN feedback.
Appendix E sketches the derivation of the theoretical results pre-
sented in the main text. Appendix F presents the geometry of the
bulk galactic velocity flow in the frame of the saddle. Finally, Ap-
pendix G motivates statistically the mediation of mass and density
maps over tides. Throughout this paper, by log , we refer to the
10-based logarithm and we loosely use log M as a short term for
log (M/M�) and log ρ for log(ρ/M� h−2 Mpc3).

2 N U M E R I C A L M E T H O D S

Let us briefly review the main numerical tools used in this work
to study the properties of virtual galaxies within the frame of the
saddle.
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Galaxies in the saddle frame of the cosmic web 3229

2.1 Hydrodynamical simulation

The details of the HORIZON-AGN simulation3 can be found
in Dubois et al. (2014), here, only brief description is provided.
The simulation is performed with the adaptive mesh refinement
code RAMSES (Teyssier 2002) using a box size of 100 h−1 Mpc
and adopting a � cold dark matter (�CDM) cosmology with to-
tal matter density �m = 0.272, dark energy density �� = 0.728,
baryon density �b = 0.045, amplitude of the matter power spec-
trum σ 8 = 0.81, Hubble constant H0 = 70.4 km s−1 Mpc−1, and
ns = 0.967 compatible with the WMAP-7 data (Komatsu 2011).
The total volume contains 10243 DM particles, corresponding to
a DM mass resolution of MDM,res = 8 × 107 M�. The initial gas
resolution is Mgas,res = 1 × 107 M�. The refinement of the initially
coarse 10243 grid down to �x = 1 proper kpc is triggered in a quasi-
Lagrangian manner: if the total baryonic mass reaches 8 times the
initial DM mass resolution, or the number of DM particles becomes
greater than 8 in a cell, resulting in a typical number of 7 × 109 gas
resolution elements (leaf cells) at redshift zero.

The gas heating from a uniform ultraviolet background that takes
place after redshift zreion = 10 is modelled following Haardt &
Madau (1996). Gas is allowed to cool down to 104 K through H
and He collisions with a contribution from metals (Sutherland &
Dopita 1993). Star formation follows a Schmidt relation in regions
of gas number density above n0 = 0.1 H cm−3 and ρ̇∗ = ε∗ρg/tff ,
where ρ̇∗ is the star formation rate mass density, ρg the gas mass
density, ε∗ = 0.02 the constant star formation efficiency, and tff

the local free-fall time of the gas. Feedback from stellar winds,
supernovae type Ia and type II are included into the simulation with
mass, energy and metal release (see Kaviraj et al. 2017, for further
details).

The HORIZON-AGN simulation includes the formation of black
holes (BHs) that can grow by gas accretion at a Bondi-capped-at-
Eddington rate and coalesce when they form a tight enough binary.
Energy of BHs can be released in a heating or jet mode (respec-
tively ‘quasar’ and ‘radio’ mode) when the accretion rate is respec-
tively above and below one per cent of Eddington, with efficiencies
tuned to match the BH–galaxy scaling relations at redshift zero (see
Dubois et al. 2012, for further details).

In order to assess the impact of active galactic nuclei (AGNs)
feedback on galaxy properties in the frame of saddle, this analysis
also relies on the HORIZON-NOAGN simulation, which was per-
formed with identical initial conditions and sub-grid modelling, but
without BH formation, thus without AGN feedback (Dubois et al.
2016; Peirani et al. 2017).

2.2 Galaxy properties

The identification of galaxies is performed using the most mas-
sive sub-node method (Tweed et al. 2009) of the ADAPTAHOP halo
finder (Aubert et al. 2004) operating on the distribution of star
particles with the same parameters as in Dubois et al. (2014).
Only structures with a minimum of Nmin = 100 star particles
are considered, which typically selects objects with masses larger
than 2 × 108 M�. For each redshift output analysed in this paper
(0.05 < redshift <2) catalogues containing up to ∼350 000 haloes
and ∼180 000 galaxies are produced.

For each galaxy, its V/σ , stellar rotation over dispersion, is ex-
tracted from the 3D distribution of velocities. This is meant to

3See http://www.horizon-simulation.org

provide a kinematic proxy for morphology. The total angular mo-
mentum (spin) of stars is first computed in order to define a set
of cylindrical spatial coordinates (r, θ , z), with the z-axis ori-
ented along the spin of galaxy. The velocity of each individual
star particle is decomposed into cylindrical components vr, vθ , vz,
and the rotational velocity of a galaxy is V = v̄θ , the mean of vθ

of individual stars. The average velocity dispersion of the galaxy
σ 2 = (σ 2

r + σ 2
θ + σ 2

z )/3 is computed using the velocity dispersion
of each velocity component σ r, σ θ , and σ z.

2.3 Saddle frame identification

In order to quantify the position of galaxies relative to the cos-
mic web, a geometric 3D ridge extractor called DISPERSE4 (Sousbie
2011; Sousbie, Pichon & Kawahara 2011) is run on the full volume
gas density distribution over 5123 cells with a 3σ persistence thresh-
old. This density distribution is smoothed with a Gaussian kernel
with smoothing length of 0.8 comoving Mpc h−1. The orientation
and distribution of galaxies can be measured relative to the direction
of the closest filament’s segment. In particular, the code identifies
saddle points along those filaments. This is a costly method to iden-
tify saddle points, but it provides us with a local preferred polarity
in the frame of the density Hessian (positively towards the larger
of the two maxima). It was checked that the distributions presented
below are relatively insensitive to the choice of smoothing length
(see Appendix A). It was also checked there that these results do
not show a strong dependence on the tracer (DM or gas density)
used to compute the skeleton.

3 SA D D L E S TAC K S I N 2 D A N D 3 D

With the aim of studying the geometry of the galaxy distribution
around filaments, stacking centred on the saddle points of filaments
is applied. When stacking, two different strategies are explored.
First, stacks are produced centred on the saddle, and physical prop-
erties of galaxies are binned as a function of transverse and longi-
tudinal distances away from the skeleton. These properties are also
stacked in 3D in the local frame set by the direction of the filament
at the saddle and the 2D inertia tensor in the plane perpendicular
to the filament. The former method avoids the flaring induced by
the drift of the curved filaments away from the saddle, only asso-
ciate one saddle to each galaxy and stacks azimuthally, while the
latter one allows us to probe the transverse anisotropic geometry of
filaments at the saddle.

3.1 Azimuthally averaged stellar mass and number density

Let us start by considering azimuthally averaged 2D maps in
the frame defined by the saddle and its steepest ascent direction,
and study the cross-sections of galactic number density and stel-
lar mass in the vicinity of the saddle point. In order to infer
the variation of galaxy properties beyond its stellar mass, stel-
lar mass will be fixed by considering three bins, defined as low
(9.0 ≤ log M� ≤ 9.05), intermediate (9.69 ≤ log M� ≤ 9.75), and
high (10.93 ≤ log M� ≤ 11.99) stellar mass bins. These bins corre-
spond to the first, middle, and last 27-quantiles of the stellar mass
distribution of all galaxies at a given redshift above the stellar mass

4The code DISPERSE, which stands for Discrete-Persistent-Structure-
Extractor algorithm is publicly available at the following URL http:
//www.iap.fr/users/sousbie/disperse/.
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3230 K. Kraljic et al.

Figure 1. The galaxy number counts in low (left), intermediate (middle), and high (right) stellar mass bins (see the text for definition), as labelled (in square
brackets), at redshift zero in the frame of the closest saddle. The vertical axis corresponds to the distance from the saddle along the skeleton, while the
horizontal axis corresponds to the transverse direction to the skeleton. The upward direction is defined as the direction of the node with the highest density.
The white horizontal line represents the smoothing length used in the analysis. The sub-panels on the top and the right of each panel show the marginalized
1D distributions of R and z, respectively. Note that the behaviour of the gradient of the number density of galaxies changes with stellar mass, noticeably in
high-mass bin. As expected, high-mass galaxies are more tightly clustered near the filament axis and near nodes (right-hand panel) compared to their lower
mass counterparts (middle and left-hand panels).

limit of 109 M�. Each of such constructed stellar mass bin con-
tains ∼3500 galaxies. The smoothing scale applied to the profiles is
0.4 Mpc h−1.5

Figs 1 and 2 show the galactic number counts at low, intermediate,
and high stellar mass, and mean stellar mass for all galaxies above
the stellar mass limit, respectively, at redshift zero in the frame of
the saddle. In that frame, the vertical axis corresponds to the dis-
tance from the saddle point along the skeleton, upwards towards the
densest node, while the horizontal axis corresponds to the transverse
direction. Note that the length of filaments is not constant, however
its distribution is quite narrow with median length of ∼5.5 Mpc h−1

at redshift zero (see Appendix B, Fig. B1). Iso-contours clearly dis-
play a dependence both on the radial distance from the saddle point
and the orientation with respect to the filament’s direction. At fixed
distance from the saddle point, the number of galaxies is enhanced
in the direction of the filament, i.e. they are more clustered in the
filaments than in the voids. The gradient of the number density of
galaxies is also found to change with stellar mass. The high-mass
galaxies are more tightly clustered near the filament axis and tend
to be further away from saddles along the filament compared to
their low-mass counterparts. Saddle points are, as expected, local
minima of both galaxy number counts and stellar mass in the direc-
tion along the filament towards the nodes, and local maxima in the
perpendicular direction. Thus, galaxies in filaments tend to be more
massive than galaxies in voids and within filaments, while the stellar
mass of galaxies increases with increasing distance from the saddle

5Changing the smoothing scale used to produce the maps to 0.2 and 0.8
Mpc h−1 leads to qualitatively similar conclusions. The smoothing impacts
mostly the position of maxima in the transverse direction. At low values,
these tend to be offset from the filament’s axis because of the smoothing of
the skeleton itself.

Figure 2. Mean stellar mass in the frame of the closest saddle for the entire
galaxy population with masses in the range 109– 1012 M� at redshift zero.
The white curves correspond to the contours of the galaxy number counts,
while the white crosses represent the peaks in galactic number density on
axis. More massive galaxies are further away from the saddle (respectively,
closer to the saddle) than the low-mass population in longitudinal (respec-
tively, transverse) direction.

point in the direction toward nodes. This effect is stronger in the
direction perpendicular to the filament, where the relative variation
of the mean stellar mass is about a factor of 2 higher compared to
that along the filament.

MNRAS 483, 3227–3254 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/483/3/3227/5212316 by U
PM

C
 user on 22 July 2019



Galaxies in the saddle frame of the cosmic web 3231

Figure 3. 3D structure of the neighbourhood of filaments at redshift zero. The galaxy number counts in the frame of the saddle for masses in the range 109–
1012 M� (left) are shown together with two 2D cross-sections, longitudinal and transverse, of the filament at the saddle (right). The flattened flaring away from
the saddle reflects the co-planarity of filamentary bifurcation within the wall. The top–bottom asymmetry reflects the orientation of the skeleton.

The mass gradients shown on Fig. 2 can be qualitatively under-
stood within peak and excursion set theories (see Section 5 and
Codis et al. 2015b; Musso et al. 2018).

3.2 3D stacks of stellar mass and number density

Let us now investigate the 3D structure of the neighbourhood of fila-
ments by stacking galaxies relative to a 3D-oriented local reference
frame, with its origin defined by the position of the saddle point and
its axes defined as follows: the z-axis corresponds to the direction of
the filament at the saddle, and the x- and y-axes represent major and
minor principal axes of the inertia tensor in the plane perpendicular
to the filament axis at the saddle point, respectively.6

In order to increase the signal-to-noise ratio, galaxies are
stacked by flipping them with respect to the filament axis to pro-
duce longitudinal cross-sections, and with respect to both prin-
cipal axes of the inertia tensor in the case of transverse cross
sections.

The 3D distribution of galaxies in such defined frame is shown
in Fig. 3 (left-hand panel) together with planes representing 2D
cross-sections, longitudinal and transverse, as used in the analysis
(right-hand panel). In practice, individual cross-sections are ob-
tained by projecting galaxies within ±1 and ±0.75 Mpc h−1 from
the plane passing through the saddle point for longitudinal and trans-
verse cross-sections, respectively. Note the flaring near the nodes
which arises because the typical saddle is flattened (the two negative

6In practice, the 2D inertia tensor is computed by considering galaxies
within ± 1 (Mpc h−1) around the saddle point and projected into the plane
perpendicular to the filament and passing through the saddle. Note that
changing the volume of the considered region within a factor of a few does
not have a strong impact on orientation.

eigenvalues of the Hessian differ, while the corresponding eigen-
vectors are aligned when stacking), and the Hessian remains corre-
lated away from the saddle. Correspondingly, the skeleton bifurcates
within that plane (Pogosyan et al. 2009; Codis, Pogosyan & Pichon
2018). The top–bottom asymmetry reflects the fact that higher den-
sity contours are drawn near the more prominent peak (which is
traced by the orientation of the skeleton).

As in the case of azimuthally averaged cross-sections, three stel-
lar mass bins are defined as low (9.0 ≤ log M� ≤ 9.05), interme-
diate (9.7 ≤ log M� ≤ 9.77), and high (10.96 ≤ log M� ≤ 11.99)
stellar mass bins, containing ∼10 000 and ∼1000 galaxies, for lon-
gitudinal and transverse cross-sections, respectively. The upward
direction along z-axis corresponds to the direction of the node with
highest density, and the smoothing scale applied to the profiles is
0.4 Mpc h−1, as previously.

The cross-sections of galactic number counts, stellar mass, spe-
cific star formation rate, sSFR =SFR/M∗, where SFR is computed
over a time-scale of 50 Myr, V/σ , and age will be studied in the
vicinity of the saddle. Figs 4 and 5 show the galaxy number counts
in three different stellar mass bins, and mean stellar mass for all
galaxies above the stellar mass limit, respectively, at redshift zero in
the longitudinal (top panels) and transverse (bottom panels) planes
in the frame of the saddle. Once again, iso-contours clearly de-
pend on both the radial distance from the saddle and the orien-
tation with respect to the filament’s direction. Galaxies are found
to be more clustered in filaments than in voids at all masses, i.e.
at fixed distance from the saddle point, the number of galaxies
is enhanced in the direction of the filament. What changes with
stellar mass is the behaviour of the gradients with the most mas-
sive galaxies being more tightly clustered near the filament axis
compared to their lower mass counterparts. As in the case of az-
imuthally averaged cross sections, mass gradients seen in Fig. 5
(left-hand panels) can be also understood in the context of con-
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3232 K. Kraljic et al.

Figure 4. The galaxy number counts at redshift zero in the frame of the saddle for low (left), intermediate (middle), and high (right) stellar mass bins (see
the text for definition), as labelled (in square brackets), in the longitudinal (top) and transverse (bottom) planes at the saddle. The vertical axis on top panels
corresponds to the direction of the skeleton at the saddle (upwards toward the node with the highest density), while the horizontal axis corresponds to the major
principal axis in the transverse direction. The sub-panels on the top and the right of each panel show the marginalized 1D distributions along respective axes.
The white dashed contours represent the galaxy number counts with the horizontal axis corresponding to the minor principal axis in the transverse direction at
the saddle. The black crosses represent the peaks in galactic density on axis and the white horizontal line represents the smoothing length used in the analysis.
The projection is carried over ±1 Mpc h−1 for the longitudinal slice and ±0.75 Mpc h−1 away from the saddles transversally. The strength of the gradient of
the galaxy number density changes with stellar mass. As expected, the high-mass galaxies are more tightly clustered near the filament axis and near nodes
(right-hand panel) compared to their low-mass counterparts (left-hand and middle panels).

strained random field and excursion set theory, as discussed in
Section 5.

Interestingly, the distribution of most massive galaxies around
the saddle points in the transverse direction is axisymmetric up to
the distance of ∼1 Mpc h−1, while the iso-contours of lower mass
galaxies are more flattened (in the direction of x-axis corresponding
to the major axis of the inertia tensor in the transverse cross section)
and extended to larger distances from the saddle. This behaviour is
a manifestation of the mass dependence of galaxy’s connectivity:
higher mass galaxies in denser environments are expected to be
fed by numerous filaments, while lower mass galaxies are typically
embedded in a single filament (Codis et al. 2018).

3.3 Longitudinal and transverse sSFR cross-sections

Let us now focus on sSFRs. Fig. 6 (top row) shows the mean
stellar mass-weighted sSFR at redshift zero in HORIZON-AGN. Iso-
contours display qualitatively similar behaviour in all stellar mass
bins in the direction perpendicular to the filament, for which the
saddle point represents the maximum of sSFR. In the direction along
the filament, the behaviour is more complex: at high stellar mass
sSFR increases with increasing distance from the saddle towards the

nodes, but while the maximum of sSFR overlaps with the position of
the low-density node, it is located closer to the saddle in the direction
of the densest node, as will be discussed below. The sSFR then
decreases in this direction in the vicinity of the node and beyond.
With decreasing stellar mass, the maximum of sSFR moves closer
to the saddle point, until it overlaps with the saddle point for lowest
stellar mass bin.

A general trend of decreasing sSFR with increasing stellar mass
is clearly recovered, with most massive galaxies having their sSFR
substantially reduced in particular in the vicinity of the densest
node, where the average sSFR value can be up to 10 times lower
compared to their low-mass counterparts. Indeed AGN feedback
is an important ingredient for the formation of the more massive
galaxies, suppressing star formation so as to reproduce the observed
high end of the galaxy luminosity function. By comparing the iso-
contours of mean stellar mass-weighted sSFR in HORIZON-AGN
and HORIZON-NOAGN (bottom row of Fig. 6), the two main specific
consequences of AGN feedback can be identified. First, and not
surprisingly, when AGN feedback operates, the overall sSFR is
reduced, mostly in the high stellar mass bin (the mean sSFR in
the highest stellar mass bin changes by a factor of ∼3, while in
the lowest stellar mass bin, it remains ∼1.15). Secondly, AGN
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Galaxies in the saddle frame of the cosmic web 3233

Figure 5. Mean galaxy stellar mass (left), sub-halo mass (middle), and host halo mass (right) in the frame of the saddle for masses in the range 109–1012 M�
at redshift zero, in the longitudinal (top panels) and transverse (bottom panels) planes at the saddle. The vertical axis corresponds to the direction of the skeleton
at the saddle (upwards toward the node with the highest density), while the horizontal axis corresponds to the major principal axis in the transverse direction.
The white contours correspond to the galaxy number counts with the horizontal axis corresponding to the major principal axis in the transverse direction at the
saddle. The white cross represents the peak in galactic density on axis. More massive galaxies are further away from the saddle than the low-mass population
in the longitudinal direction, while they are closer to the saddle transversally. As expected, more massive galaxies are also residing in more massive haloes.
Note in particular that the iso-contours of stellar mass are very similar to those of sub-halo mass, while the iso-contours of host halo mass, the shape of which
differ from the two others, show much more resemblance to the iso-contours of density (as discussed in Section 6). The peak of maximum mass is further away
from the saddle than the counts.

feedback modifies the shape of sSFR iso-contours. This effect is
most prominent amongst most massive galaxies7 in the vicinity of
the densest node that represents the maximum of the sSFR in the
direction along the filament from the saddle when AGN feedback
is absent. A similar effect is seen at low and intermediate stellar
mass, albeit less pronounced. Overall, the reduced star formation
activity of galaxies due to AGN feedback in the densest environment
translates into an offset of the maximum of the mean stellar mass-
weighted sSFR away from the node. This clearly demonstrates the
importance of the AGN feedback and its ability not only to reduce
the star formation activity of individual objects, but also to modify
their distribution on larger scales in the vicinity of high-density
regions such as nodes, corresponding to galaxy groups and clusters,

7Note that the highest stellar mass bin is not identical in the two simulations.
This is due to the difference in the stellar mass distributions, such that at
high stellar mass end, there are more galaxies in HORIZON-NOAGN than in
HORIZON-AGN that also tend to be more massive (see also Beckmann et al.
2017). However, considering the same stellar mass bins does not impact our
results. Another difference is in the halo-to-stellar mass relation, especially
at the high-mass end. It was checked that the medians of halo masses in
the highest stellar mass bin considered in this work are comparable in both
simulations.

consistently with our findings of AGN feedback being most efficient
near nodes at high stellar mass (see Appendix D).

3.4 Centrals and satellite differential counts

In order to gain a better understanding of what processes regu-
late sSFR of galaxies in their anisotropic environment, galaxies are
next split into centrals and satellites (respectively the most mas-
sive galaxy within 10 per cent the current virial radius of halo,
or sub-halo). Making this separation is further motivated by more
straightforward comparison with theoretical prediction of Musso
et al. (2018, that is strictly applicable to central galaxies alone, as
the effect of the large-scale tidal field on the low-mass objects is not
accounted for). Fig. 7 shows stellar mass-weighted sSFR for centrals
(top panels) and satellites (bottom panels) separately in both sim-
ulations, HORIZON-AGN (leftmost panels) and HORIZON-NOAGN
(rightmost panels) in low and high stellar mass bins. Not surpris-
ingly, the low-mass end is dominated by the population of satellites,
while central galaxies dominate the highest stellar mass bins. What
is more interesting is the distinct response of centrals and satel-
lites in terms of their sSFR as a function of the exact position within
the cosmic web (in both HORIZON-AGN and HORIZON-NOAGN) and
more surprisingly, the distinct impact of AGN feedback on the sSFR
of these two populations.
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3234 K. Kraljic et al.

Figure 6. Mass-weighted sSFR in the frame of the saddle at redshift 0 for low (left), intermediate (middle), and high (right) stellar mass bins, as labelled, in the
longitudinal and transverse planes at the saddle, in HORIZON-AGN (topmost panels) and HORIZON-NOAGN (bottommost panels). The vertical axis corresponds
to the direction of the skeleton at the saddle (upwards toward the node with the highest density), while the horizontal axis corresponds to the major principal
axis in the transverse direction at the saddle. The white contours and the white crosses correspond to the galaxy number counts and the peak in galactic density
on axis, respectively. The saddle represents maximum of sSFR in transverse direction at all masses and regardless of the presence of the AGN feedback. What
does change is the star formation activity in particular of the most massive galaxies, where AGN feedback substantially reduces the values of sSFR. Moreover,
note that at high-mass end, the sSFR iso-contours are modified by AGN feedback in the vicinity of the densest node, such that in the longitudinal direction away
from the saddle, the maximum of sSFR is offset from the densest peak. Overall, the sSFR iso-contours display a stellar mass dependence in the longitudinal
direction in that at low-mass (respectively, high-mass) sSFR is maximum (respectively, minimum) at the saddle and it decreases (respectively, increases) in the
direction towards the nodes.
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Galaxies in the saddle frame of the cosmic web 3235

Figure 7. Mass-weighted sSFR in the frame of the saddle at redshift 0 for low and high stellar mass bins, as labelled, in the longitudinal and transverse planes
at the saddle, shown for centrals (top row) and satellites (bottom row) separately with (left) and without (right) AGN feedback. The vertical axis corresponds
to the direction of the skeleton at the saddle (upwards toward the node with the highest density), while the horizontal axis corresponds to the major principal
axis in the transverse direction at the saddle. The white contours and the white crosses correspond to the galaxy number counts and the peak in galactic density
on axis, respectively. AGN feedback has the strongest impact on high-mass centrals and in the vicinity of the densest node (compare panel 1b with 2b and
with panel 1d), where it modifies the shape of the sSFR iso-contours as already noticed for the entire high-mass population (see Fig. 6). At low stellar mass,
satellites are generally less star forming compared to centrals, but note also that the sSFR iso-contours of centrals and satellites are also different. For satellites,
the maximum of sSFR is located between the saddle and the peak in the direction along the filament towards the densest node (compare panel 1a with panel
1c or panel 2a with panel 2c).

AGN feedback seems to have a stronger impact on centrals which
are closer to the denser node (compare panel 1b with 2b and 1d with
2d). At high mass, AGN feedback quenches much less efficiently
star formation in satellites than it does in centrals (compare panel
1b with 1d), where it distorts the shape of the sSFR iso-contours in
the vicinity of the denser node. High-mass satellites seem to feel
the impact of both the AGN feedback and environmental processes,
in particular in dense regions, but less so than the centrals (compare
panel 1d with 2d). A possible explanation for massive satellites
being less affected by the AGN feedback (compared to centrals at
the same stellar mass) could be the tidal influence of their main halo
(Hahn et al. 2009) which reduces accretion and merger rate onto
the satellite. As mergers trigger bursts of AGN activity, this induces
less star formation.

At low stellar mass, as expected, AGN feedback does not seem
to have a strong impact on the sSFR of both satellites and centrals

(compare panel 1a with 2a and 1c with 2c). At low stellar mass,
sSFR iso-contours are different for satellites and centrals: (i) satel-
lites have lower sSFR compared to centrals of the same mass, in
the direction both perpendicular to the filament, and along the fil-
ament towards the nodes, and (ii) the shape of sSFR iso-contours
is different for satellites and centrals, in particular in the vicinity of
denser node, in that for satellites, the sSFR reaches its maximum
before reaching the densest node in the direction along the fila-
ment (compare panel 1a with 1c or 2a with 2c). Presumably, satel-
lite specific processes, such as e.g. strangulation, are driving this
difference.8 Note that the sSFR contours for massive centrals in the

8Strangulation (Larson, Tinsley & Caldwell 1980), together with mergers
(Toomre & Toomre 1972), are traditionally considered as group-specific
processes impacting star formation activity of satellites. Other environmental

MNRAS 483, 3227–3254 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/483/3/3227/5212316 by U
PM

C
 user on 22 July 2019



3236 K. Kraljic et al.

HORIZON-NOAGN simulation (see panel 2b) are, as expected, in
qualitative agreement with the DM accretion predicted by Musso
et al. (2018, see Section 6 for a more detailed discussion).

3.5 Longitudinal and transverse kinematic/age cross-sections

Let us finally focus on the kinematics, quantified by the ratio of rota-
tion to dispersion-dominated velocity, V/σ , and the age of galaxies
in the frame of the saddle. The observational proxies of these quan-
tities would be morphology and colour, respectively. Higher V/σ
typically characterizes disc-dominated morphologies, while lower
V/σ indicates the presence of a substantial bulge component. The
age of galaxies corresponds to the mean ages that are given by the
mass-weighted age of star particles belonging to each galaxy. Fig. 8
shows iso-contours of V/σ (top panels) and age (bottom panels) as a
function of stellar mass at redshift zero. Again, the contours exhibit
both radial and angular gradients with respect to the saddle point. At
all stellar mass bins, galaxies tend to have higher V/σ in the vicinity
of the saddle point that decreases in the orthogonal direction away
from the saddle, while in the direction along the filament towards
the nodes it first increases, reaches its maximum before getting to
the densest node and decreases afterwards. This effect is strongest
for highest mass galaxies. In terms of quantitative comparison of
V/σ at different stellar mass, galaxies in the lowest stellar mass bin
have the lowest V/σ , while intermediate-mass galaxies show the
largest V/σ values. V/σ of the most massive galaxies is lower com-
pared to intermediate stellar masses, but higher than at lowest stellar
mass end. This can be explained by the presence of few massive
disc-dominated galaxies present in the HORIZON-AGN simulation
and higher fraction of ellipticals at low-mass end compared to ob-
servations. Indeed, as shown in Dubois et al. (2016), the maximum
probability of finding discs in HORIZON-AGN is in the stellar mass
range of 1010–1011 M�.

Similarly, age gradients display clear radial and angular depen-
dence with respect to the saddle point at all stellar mass bins, how-
ever, with qualitatively different behaviour. In the transverse direc-
tion, saddle point is still maximum of the age at all stellar mass,
while in the direction along the filament away from the saddle, age
increases all the way beyond the node. Interestingly, in this aspect,
age gradients are similar to stellar mass gradients with the oldest
and most massive galaxies being located closer to the node in the
direction of the filament, and in the vicinity of the filament in the
orthogonal direction. This is consistent with the redshift evolution
of the stacks as discussed now.

4 R E D SHIFT EVO L U T IO N

Let us now examine the evolution of galaxy properties with redshift.
When comparing different epochs one may either consider the fate
of a given set of galaxies, or quantify the cosmic evolution of the
galactic population as a whole.

Fig. 9 shows galaxy number counts in low (left-hand column),
intermediate (middle column), and high (right-hand column) stellar
mass bins at redshifts two (topmost rows) and one (bottommost

quenching processes, mostly operating in clusters include galaxy harassment
(Moore et al. 1996) or ram pressure stripping of gas (Gunn & Gott 1972).
However, in this work, we are not attempting to address the processes
impacting satellite population in particular.

rows),9 while Fig. 10 shows the mean stellar mass of the entire
population above the mass limit at these redshifts, as indicated.10

The corresponding redshift zero maps are shown on Figs 4 and 5,
respectively.

At each redshift, more massive galaxies are more tightly clustered
in the filaments than in the voids, and near the nodes than near the
saddles. Part of this redshift evolution is simply due to the mass
evolution of objects. In other words, one could fix the level of
non-linearity by considering mass bins that evolve with redshift
following the non-linear mass for instance and then consider the
residual redshift evolution. This procedure would allow to focus on
the same class of objects across redshifts.

On Fig. 9, one can follow the progenitors of a given class of
objects by fixing the level of non-linearity which is equivalent to
move approximatively along the diagonal (by adding Fig. 4), i.e.
to focus on less massive objects at high redshift. As galaxies grow
in mass, i.e. as non-linear gravitational clustering proceeds (the
local dynamical clocks being set by inverse square root of the local
density), they also become more concentrated towards the filaments
and nodes (see Appendix E2). For instance, comparing the bottom
right transverse cross-section at redshift one and zero (from Fig. 4),
the vicinity of the saddle is less populated by massive objects as
these have drifted towards the nodes. This redshift evolution is
consistent with the global flow of galaxies first towards the filaments
and then along them (as quantified kinematically in Appendix F),
and with the fact that galaxies accumulate mass with cosmic time.

For a population as a whole, in the close vicinity of the saddle,
the breadth of the filament broadens with cosmic time as shown in
Fig. 11, comparing the filament’s thickness for all galaxies above
the stellar mass limit at redshifts two and zero. Specifically, the full
width at half-maximum (FWHM) of the transverse galaxy num-
ber counts profiles was computed at different positions along the
filament’s direction. As argued in the next section, the measured
increase of the filament’s width with cosmic time is consistent with
the theoretical expectations.

Finally, Fig. 12 shows the redshift evolution of stellar mass-
weighted sSFR. Again, it is interesting to note that the global sSFR
traces the level of non-linearity of the collapse of structures: at
high-redshift, low-mass population (top left panel) has the highest
sSFR, whereas the high-mass low-redshift population (bottom right
panel) is the most quenched. This is also reflected in the position of
maximum of sSFR, which drifts with cosmic time i.e. with the level
of non-linearity of the field. The peak of sSFR seems to occur further
from the denser nodes towards the saddle as a function of cosmic
time. Hence, for the sSFR at least two processes compete: advection
with the main flow and star formation activity which is impacted by
the proximity to AGNs and the local dynamical time-scale (but see
Section 6.6 below).

5 TH E O R E T I C A L P R E D I C T I O N S

Let us briefly present the theoretical framework which will allow us
to interpret the measurements presented in Sections 3 and 4. This
will involve predictions for DM and halo density cross-sections in

9The skeleton and stellar mass bins are constructed as for redshift zero, see
Sections 2.3 and 3.2, respectively. Consequently, the stellar mass bins are
not identical at different redshifts, but they still contain comparable number
of galaxies.
10Note that these cross-sections are in qualitative agreement with az-
imuthally averaged counterparts (see Appendix C).
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Galaxies in the saddle frame of the cosmic web 3237

Figure 8. Stellar mass weighted V/σ (topmost panels) and age (bottommost panels) for low (left), intermediate (middle), and high (right) stellar mass bins as
labelled, in the longitudinal and transverse planes at the saddle. The vertical axis corresponds to the direction of the skeleton at the saddle (upwards toward the
node with the highest density), while the horizontal axis corresponds to the major principal axis in the transverse direction at the saddle. The white contours
and the white crosses correspond to the galaxy number counts and the peak in galactic density on axis, respectively. The behaviour of the number density of
galaxies changes with stellar mass for both physical properties, but much more dramatically for V/σ . The shape of iso-contours are qualitatively different,
while the maximum of V/σ along the filament in the upward direction is located in between the saddle point and the density peak, age increases with increasing
distance away from the saddle towards the nodes, and beyond. Transverse gradients are similar, both in terms of shape of iso-contours and in that the saddle
point is maximum for both quantities in radial direction.
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3238 K. Kraljic et al.

Figure 9. Redshift evolution of the galaxy number counts in the frame of the saddle, in the longitudinal and transverse planes at the saddle. Low (left-hand
column), intermediate (middle column), and high (right-hand column) stellar mass bins are shown at redshifts 2 (topmost panels) and 1 (bottommost panels),
respectively. The white dashed contours represent the galaxy number counts with the horizontal axis corresponding to the minor principal axis in the transverse
direction at the saddle. The corresponding redshift zero maps are shown on Fig. 4. High-mass galaxies are more clustered near the filaments and nodes at all
redshifts considered compared to their lower mass counterparts. Note that as galaxies grow in mass with time, they follow the global flow of matter, reflected
by the increased distance between the saddle point and two respective nodes at lower redshift.
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Galaxies in the saddle frame of the cosmic web 3239

Figure 10. Mean galaxy stellar mass in the frame of the saddle, in the longitudinal and transverse planes at the saddle, for all masses in the range 109.0–
1012.0 M� at redshifts two (left-hand column) and one (right-hand column). The redshift zero maps are shown on Fig. 5. At a given mass, the corresponding
(coloured) contours get further away from the filament axis with cosmic time. Transverse cross-sections (bottom panels) of number counts (white contours)
become more elongated with decreasing redshift, while longitudinally (top panels), they are further away from the saddle at lower redshift: the filaments
become more elliptical and thicken with cosmic time (see Fig. 11 for quantitative estimate of this effect).

the frame of the saddle, and their expected non-linear evolution with
cosmic time.

5.1 Constrained random fields

For Gaussian cosmological initial conditions, peak theory (Bardeen
et al. 1986) can be adapted to predict the mean (total) matter density
maps around saddles. Appendix E derives this mean initial matter
distribution marginalized to the constraint of a saddle point of ar-
bitrary geometry (height and curvatures) when the direction of the
largest (positive) eigenvalue of the Hessian, i.e. the direction of the
filament, is fixed together with its orientation. This last require-
ment is achieved by imposing that the coordinate of the gradient
of the gravitational potential along the filament is always nega-
tive. The resulting oriented map of the density distribution around
saddles is shown in Fig. 13 (left-hand and middle panels). As ex-
pected, more mass is found close to the filament axis and in the
direction of the most attractive potential well (towards the top of
the map). Fig. 13 (right-hand panel) also presents the expected
mass distribution of DM haloes within the frame of the saddle
when the Press–Schechter threshold for collapse is decreased by
the mean density (following the prescription described in Codis
et al. 2015b).

5.2 Expected redshift evolution

Different approaches can be used to incorporate the non-linear evo-
lution in the theoretical predictions, e.g. by doing a Zel’dovich
boost of the mean density map predicted from excursion set
theory, or by incorporating the gravity induced non-Gaussianity
of the distribution using a perturbative approach as sketched
in Appendix E. Both predict that gravitational clustering dis-
torts and enhances the contours of the matter density field
within the frame of the saddle, with a scaling proportional to
σ (M�,redshift), the mass- and redshift-dependent scale of non-
linearity. The net effect will depend on what is held fixed while
stacking. At fixed rareness, which is essentially achieved when
focusing on the more massive objects, filaments will collapse
with cosmic time and therefore get thinner and more concen-
trated (see Fig. E1). On the other hand, when the entire popu-
lation of galaxies is considered at each redshift, filaments typi-
cally get thicker, because less rare and therefore less-connected
and less-biased objects form at low redshift and dominate the
population.

While the realm of these predictions is limited (in redshift and
range of tracers), it none the less allows us to understand the trend
at the level of gravity-driven processes, and highlight by contrast
the contribution of AGN or stellar feedback. We refer to Codis et al.
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3240 K. Kraljic et al.

Figure 11. Thickness of the filaments, defined as the FWHM of the Gaus-
sian fit of the transverse galaxy number counts profiles marginalized over x-
(panel a) and y-axes (panel b) at different positions along the filament’s di-
rection (z-axis on the longitudinal cross-sections) at redshifts 2 and 0, in red
and blue, respectively, for all galaxies in the mass range 109– 1012 M�. The
transverse projections are carried over 0.2 Mpc h−1 longitudinally (along
the z-axis). As previously, the upward direction along the z-axis corre-
sponds to the direction of the skeleton at the saddle toward the node with
the highest density. When considering the entire population of galaxies,
the cross-sections of filaments in the vicinity of the saddle point (at z = 0
Mpc h−1) grow with time. For the sake of clarity, only measurements at red-
shifts zero and two are shown, however, their redshift evolution is consistent
throughout. Note also that the widths are computed in comoving coordi-
nates: the growth at low redshifts is much stronger in physical coordinates.
See also Appendix B (Fig. B2) for the thickness of the filaments and its
redshift evolution at distances extending more faraway from saddle.

(2015b, their section 4) and Laigle et al. (2015, their section 5)
for predictions for the expected angular momentum and vorticity
distributions and their evolution in the frame of the saddle, which
will prove useful when discussing V/σ maps (and less directly sSFR
maps, which are sensitive to the recent accretion of cold gas).

6 IN TER PRETATI O N A N D DI S C U SSI O N

Let us now discuss the findings of Sections 3 and 4 in the context
of existing surveys and structure formation models (Section 5).

6.1 Complementary top-down approach to galaxy formation

Let us start by putting the adopted approach and the results
of this work in the classical context of structure formation
models. Traditionally, galaxy formation and evolution is stud-
ied in the hierarchical framework where galaxies are considered
as evolving in (sub)-haloes possibly embedded in larger haloes
(e.g. Kauffmann, White & Guiderdoni 1993; White 1996). Dynam-
ically, this means that we can associate two typical time-scales

(or ‘clocks’) to each encapsulated environment. This approach is
justified in the well-established bottom–up scenario of structure for-
mation. One can address the impact of the isotropic environment on
the scales of haloes, or equivalently the local density (i.e. the trace
of the Hessian of the gravitational potential) while considering the
merger tree history of individual haloes (and thus galaxies residing
within).11 Such scenario has proven quite successful in explaining
many observed properties of galaxies, via the so-called halo model
(Cooray & Sheth 2002) – in particular against isotropic statistics
(e.g. two-point functions). In this classical view, the impact of the
larger anisotropic scales set by the cosmic web is ignored because
it is assumed that these scales do not couple back down to galactic
scales. Yet this view fails to capture e.g. spin alignments which
are specifically driven by scale coupling to the cosmic web (Codis
et al. 2015a), nor does it fully take into account how the light-
cone of a given galaxy is gravitationally sensitive to the larger scale
anisotropies.

By contrast, Musso et al. (2018) recently investigated the impact
of the large-scale anisotropic cosmic web on the assembly history of
DM haloes within the framework of extended excursion set theory,
accounting for the effect of its large-scale tides. They derived the
typical halo mass, typical accretion rate, and formation time of DM
haloes as a function of the geometry of the saddle. These quantities
were predicted to vary with the orientation and distance from saddle
points, such that haloes in filaments are less massive than haloes in
nodes, so that at equal mass, they have earlier formation times and
smaller accretion rates at redshift zero, the effect being stronger in
the direction perpendicular to the filament. These findings suggest
that on top of the mass and local mean density, the tides of the
larger scale environment also impact haloes’ properties through a
third time-scale.

The approach adopted here follows up and assesses specifically
the impact of this large-scale environment on galaxy properties, and
in particular the top–down relevance of the imposed tides (captured
by the traceless part of the Hessian of the gravitational potential) on
galaxy assembly. In other words, the aim here is to identify proper-
ties of galaxies which are specific to their relative position within the
saddle frame. To do so, the analysis is carried out at fixed stellar mass
and quantified at additional fixed (sub)-halo mass and anisotropic
density (through the analysis of stacked re-oriented residual maps,
see below), instead of the conventional galaxy–halo–group mass
isotropic perspective. This framework does not invalidates past re-
sults expressed in terms of group and halo masses – which remain
the dominant effect impacting galaxy formation, but complements
them at first- or second-order corrections.12 Qualitatively, the aim
is to understand the impact of the stretching and twisting imposed
by those tides above and below the impact of the density. As shown
in Section 5.2, it also provides as a bonus a good understanding
of the bulk flows within that frame, which enlightens the geometry
of filaments’ iso-contours traced by galaxies at fixed mass or fixed
cosmic age.

11The local density is indeed strongly correlated with the group halo mass,
as can be seen by comparing e.g. Figs 5 and 15.
12In fact one could indeed alternatively extend the classical framework by
adding the larger scale group distribution, i.e. the cosmic web traced by
DM haloes as an extra ‘hidden variable’ driving galactic assembly. Below
that scale, the statistics is isotropic, while beyond it one has to define how
ensemble average should be carried. The frame of its saddles is chosen here
as a proxy for this web so as to be able to stack galactic distributions while
taking its effect into account.
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Galaxies in the saddle frame of the cosmic web 3241

Figure 12. Mass-weighted sSFR in the frame of the saddle, in the longitudinal plane. Low (left-hand column), intermediate, (middle column), and high
(right-hand column) stellar mass bins are shown at redshifts two (top), and one (bottom), respectively. The redshift zero map is shown on the top panel of
Fig. 6. sSFR decreases with cosmic time at all stellar masses independently of the relative position with respect to the saddle. Interestingly, the peak of sSFR
drifts away from the densest node as a function of cosmic time or increasing mass (i.e. level of non-linearity).

6.2 Observational signature for the impact of the cosmic web

The idea that galaxy properties, such as their stellar mass, colour,
or sSFR are also driven specifically by the anisotropy of the cosmic
web has only recently started to be explored in observations (e.g.
Eardley et al. 2015; Alpaslan et al. 2016; Tojeiro et al. 2017).
Stellar mass and colour or sSFR gradients have been reported at
low (e.g. Chen et al. 2017), intermediate (z � 0.25; Kraljic et al.
2018), and higher redshifts (z ∼ 0.7–0.9; Chen et al. 2017; Malavasi
et al. 2017; Laigle et al. 2018), with more massive and/or less
star-forming galaxies being found closer to the filaments compared
to their lower mass and/or higher star-forming counterparts. The
focus in this paper is on 2D and 3D cross-sections at fixed stellar
mass, allowing to explore more complex geometric environment
of the filamentary network. The (marginalized) 1D distributions
(over distance along the filament) are in qualitative agreement with
the above-mentioned observed stellar mass and colour or sSFR
gradients with respect to filaments. Marginalizing over the distance
perpendicular to the axis of the filaments yields gradients along the
filament, such that at fixed orthogonal distance from the filament,

more massive and/or less star-forming galaxies are preferentially
located in the vicinity of the node. Such a signature was found by
Kraljic et al. (2018) in terms of red fractions, who reported the
increasing fraction of passive galaxies with decreasing distances
both to the filaments and nodes, with the dominant effect being the
distance to the nodes. These gradients should now be measured in
the 3D distribution of galaxies inferred from large galaxy redshift
surveys, such as e.g. SDSS (York et al. 2000) or GAMA (Driver
et al. 2009, 2011), providing a large statistical sample of galaxies
and for which additional information about the properties of group
haloes is available.

In terms of redshift evolution of sSFR, note that while at redshift
above one the sSFR of galaxies increases in the direction along the
filament away from the saddle and reaches its maximum near the
node – in the region where the density is typically highest, this max-
imum is shifted away from the nodes towards the saddle at redshift
one and below (top panels of Figs 6 and 12). Qualitatively similar
behaviour, known as the reversal of the star formation–density rela-
tion at high redshift, was tentatively identified in observations (e.g.
Elbaz et al. 2007; Cooper et al. 2008; Hwang et al. 2010, but see
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3242 K. Kraljic et al.

Figure 13. Mean predicted maps of the DM distribution around a saddle point of arbitrary shape and height. The direction of the filament is fixed to be
along the vertical axis for left- and right-hand panels (perpendicular to the plane of the figure in the middle panel) and the top–bottom symmetry is broken by
imposing that the most attractive peak is at the top. Left-hand panel: predicted distribution of the density fluctuation for Gaussian random fields ν (in units
of the variance). Middle panel: corresponding transverse cross-section with the same colour coding. Right-hand panel: corresponding log of the non-linear
mass when the threshold for collapse in the Press–Schechter mass is decreased by the mean density obtained on the left-hand panel. Its numerical counterpart
measured in HORIZON-AGN is shown on Fig. E2 at low and high redshifts (see also Fig. E1 for a prediction).

e.g. Patel et al. 2009; Ziparo et al. 2014, for contradictory results).13

Overall, our results suggest that in order to understand the complex
behaviour of galaxies’ properties, one may need to take into ac-
count the large-scale environment where tides are expected to play
an important role, beyond that of density.

Note finally that a possible reason for the recent non-detection
of Alam et al. (2018) and Paranjape et al. (2018b) with the SDSS
resolution is that the ensemble average of the non-linearly evolved
galactic properties predicted from angular-averaged fields does not
differ by much from the ensemble and angular average of the non-
linearly evolved galactic properties from anisotropic fields. To a
good approximation, angular-averaging and dynamical non-linear
evolution commute, which has of course been the basis of the suc-
cess of the spherical collapse model.14 One has to compute expecta-
tion in the frame of the filament to underline the differences, which
is precisely the purpose of this paper.

6.3 Inferred age, mass, and counts statistics

The findings presented in this work, based on the analysis of galaxy-
related gradients in the frame of saddle, are in qualitative agreement
with the predictions of Musso et al. (2018) and those of Section 5:
the iso-contours of studied galaxy properties show dependence on
both the distance and orientation with respect to the saddle point
of the cosmic web. Specifically, galaxies tend to be more massive
closer to the filaments compared to voids, and inside filaments near
nodes compared to saddles (Figs 1–5). Similarly and equivalently
(given the duality between mass and cosmic evolution discussed in
Appendix E2), Figs 9–11 show that as galaxies grow in mass, they

13Elbaz et al. (2007) specifically found evidence of this reversal for massive
galaxies, such that the sSFR increases with increasing galaxy density at
redshift ∼one.
14This is in fact seen even at the level of the one-point function: one needs to
invoke a moving barrier (Sheth & Tormen 2002), i.e. corrections to spherical
collapse to match the measured mass function of dark haloes.

become more clustered near filaments and nodes with cosmic time,
the width of the filaments narrows for a given mass bin, while the
evolution of the entire population is consistent with broadening of
the filaments, as expected from the theory of rare events (Bernardeau
1994). The number counts maxima are closer to the saddles than the
stellar mass maxima as the former is dominated by the less-massive
and more-common population, forming more evenly within the
frame of the cosmic web, so that they have not had time to drift
to the nodes. Consistently, older galaxies (Fig. 8) are preferentially
located near the nodes of the comic web when comparing their
distribution in the direction along the filaments, and in the vicinity
of filaments in the perpendicular direction. These age gradients are
seemingly at odds with the formation time of haloes predicted by
Musso et al. (2018), where haloes that form at the saddle point
assemble most of their mass the earliest. However, note that the
formation time of haloes does not necessarily trace galactic age
as inferred from the mean age of the stellar population. Indeed,
our findings reflect the so-called downsizing (Cowie et al. 1996)
of both galaxies and haloes (e.g. Neistein, van den Bosch & Dekel
2006; Tojeiro et al. 2017), such that oldest galaxies tend to be most
massive, and galaxies in high-mass haloes are older (they formed
their stars earlier).

Note finally that the theoretical predictions in Musso et al. (2018)
are made at fixed halo mass, while the analysis presented so far in
this work is performed at fixed stellar mass. However, the halo mass
used in their study is physically closer to a sub-halo mass than a
host halo mass,15 and is therefore more strongly correlated with
the stellar mass of galaxies which justifies further the qualitative
comparison at this stage. As anticipated in Section 6.1, additional
fixed sub-halo mass and density will be taken into account through
the analysis of residuals (see Section 6.5).

15The formalism adopted in Musso et al. (2018) does not capture the strongly
non-linear processes operating on satellite galaxies.
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6.4 The impact of AGN feedback

Relating the predicted specific accretion gradients of DM haloes
to galaxies’ observables requires some assumptions. One can in
principle translate DM accretion gradients into sSFR gradients by
considering the role of baryons in the accretion and feedback cy-
cle. In the current framework of galaxy formation and evolution,
galaxies acquire their gas by accretion from the large-scale cosmic
web structure. The average growth rate of the baryonic component
can be related to the cosmological growth rate of DM haloes, from
which follows that higher star formation rate corresponds to higher
DM accretion rate, providing that the SFR follows the gas supply
rate. At high redshift, the vast majority of galaxies are believed to
grow by acquiring gas from steady, narrow, and cold streams (e.g.
Kereš et al. 2005; Ocvirk, Pichon & Teyssier 2008; Dekel et al.
2009). Using these arguments, it should follow that at high redshift,
the stronger the accretion, the higher the sSFR of galaxy. Such a
scenario is consistent with the gradients of the DM accretion rates
found by Musso et al. (2018), where high-mass haloes that form
in the direction of the filament tend to have higher accretion rates
than haloes with the same mass that form in the orthogonal direc-
tion. This qualitatively agrees with the sSFR gradients in the frame
of saddle at high redshift (Fig. 12) and in the simulation without
AGN feedback (Fig. 6) at redshift zero, where galaxies with highest
sSFR at fixed stellar mass tend to be located in the vicinity of the
node in the direction along the filament, and near the saddle in the
orthogonal direction.

In the presence of BHs, it is reasonable to expect at low redshift
that the stronger the accretion, the stronger the AGN feedback, thus
the stronger the quenching of star formation. This should result in
an overall reduced sSFR, a behaviour that is indeed found when
comparing the sSFR iso-contours between the HORIZON-AGN and
HORIZON-NOAGN simulations. Interestingly, Figs 6, 7, and 12 also
show that the shape of the sSFR iso-contours is modified in the pres-
ence of AGN feedback such that, at the high-mass end, galaxies with
highest sSFR seem to be offset from the highest density nodes of the
cosmic web (see also Appendix D which quantifies the difference
of sSFR between HORIZON-AGN and HORIZON-NOAGN). Satellites
are much less impacted by AGN feedback than centrals, and their
sSFR is mostly affected by the environment of groups and clusters.

6.5 Evidence for other processes driving galaxy formation

Closer inspection specifically shows that the iso-contours of sSFR,
V/σ (Figs 6 and 8) on the one hand, and stellar mass (Fig. 5) on
the other differ from one another. This suggests that there may exist
hidden processes driving galactic physics (beyond mass and local
density).

Let us attempt to quantify their nature. Fig. 14 displays the host’s
halo mass (respectively, sub-halo’s mass for satellites defined as the
current virial mass of the sub-halo) in the frame of the saddle, in the
longitudinal cross-section at redshift zero for different stellar mass
bins (see also Fig. 5). Not surprisingly, galaxies with higher stellar
mass are found to live in more massive DM haloes. These halo mass
gradients are in agreement with Section 5’s theoretical prediction
and reflect what was already seen for the stellar mass gradients of
the entire galaxy population, i.e. saddle points represent maxima of
the halo mass in the direction perpendicular to the filament, while
they are minima in the direction along the filament towards nodes
independently of stellar mass. Note that in a given stellar mass bin,
halo mass increases towards filaments and nodes, i.e. the M�/Mh

ratio is decreasing along those directions. Strikingly, there is little

change in the shape of these halo mass gradients when varying
stellar mass. This is strongly indicative that stellar mass is at first
order only a function of DM mass (at a given position within the
cosmic web).16 This is in sharp contrast with Fig. 6 (respectively,
Fig. 8), which shows that the sSFR (respectively, V/σ ) contours do
vary significantly across stellar mass bins and have also distinct
shapes compared to Fig. 14.

Besides halo mass, density is another obvious candidate for a
variable that could drive the observed sSFR (respectively, V/σ ) dis-
tributions in the frame of the saddle. Fig. 15 shows the density in
the frame of the saddle, in the longitudinal cross-section at redshift
zero for different stellar mass bins (see also Fig. 5). This density is
computed on the scale of 0.8 Mpc h−1, at which the skeleton was
defined (and where the corresponding level of anisotropy was de-
fined). Not surprisingly, galaxies with higher stellar mass are found
to live in denser regions. These maps are again in agreement with
Section 5’s theoretical prediction and are qualitatively similar to
what was already seen for the halo mass gradients, i.e. saddle points
represent maxima of the density in the direction perpendicular to
the filament, while they are minima in the direction along the fila-
ment towards nodes independently of stellar mass. As for halo mass,
there is little change in the shape of these maps versus stellar mass.
This in turn may indicate that there exist other position-dependent
variables which impact sSFR (respectively, V/σ ).

Let us attempt to quantify this effect by calibrating from the full
simulation the mapping ˆsSFR(Mh, ρ), defined as the median sSFR
at given Mh and local density ρ (and M� given that the mapping is
defined in a given stellar mass bin), where ρ is computed on the
scale of 0.8 Mpc h−1. To do this, the median sSFR is computed in
bins of log Mh and log ρ constructed adaptatively such that each of
10 equipopulated bins of Mh is further divided in eight equipopu-
lated bins of log ρ, in a given stellar mass bin. This median relation
is then used in a 2D interpolation to obtain a relation ˆsSFR(Mh, ρ)
that can be applied to each galaxy (see Appendix G for details).
Should the physical process driving star formation only depend on
mean density and mass,17 this operation would reproduce exactly
Fig. 6. What is found instead is that at given stellar mass, there is
a clear position-dependent discrepancy between the two, as shown
in Fig. 16.18 This figure displays the difference of the mean sSFR
measured at the given position, and the mean sSFR estimated using
the above-defined mapping, in highest stellar mass bin, normalized
by the median sSFR (computed over the whole saddle region). This
discrepancy is indicative that the impact of the saddle accounts for
at least a fraction of the dispersion from the median sSFR−Mh−ρ

16A tight correlation between the stellar and halo mass of galaxies in the
current framework of galaxy formation (Rees & Ostriker 1977; Fall &
Efstathiou 1980) is expected based on abundance matching (e.g. Conroy &
Wechsler 2009; Moster, Naab & White 2013; Rodrı́guez-Puebla et al. 2017)
and confirmed with more direct measurements using e.g. satellite kinematics
(e.g. van den Bosch et al. 2004; More et al. 2009) or weak lensing (e.g.
Moster et al. 2010; Han et al. 2015; van Uitert et al. 2016).
17Note that we cannot rule out that position-dependent shape of the PDF of
the distribution of sSFR, halo mass and density accounts for some residuals,
as one would not expect the averaging and the mapping to fully commute,
see Appendix G.
18We also computed maps of the density smoothed on 2 and 3 Mpc h−1. This
had little impact on the equivalent of Fig. 16, while significant residuals are
found at the lower stellar mass bin, as expected since the smaller the mass
the smaller the scale and the smaller the correlation with the field smoothed
on larger (fixed) scale. This is consistent with the findings of Kraljic et al.
(2018).
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3244 K. Kraljic et al.

Figure 14. Stellar mass-weighted halo mass in the frame of the saddle at redshift zero for low (left), intermediate (middle), and high (right) stellar mass bins,
as labelled, in the longitudinal plane at the saddle. The shape of iso-contours does not change dramatically with stellar mass and not surprisingly, galaxies with
highest stellar masses live in most massive haloes. Note that low values for halo mass result from the smoothing of mean values in sparsely occupied regions.

Figure 15. Stellar mass-weighted density in the frame of the saddle at redshift zero for low (left), intermediate (middle), and high (right) stellar mass bins, as
labelled, in the longitudinal plane at the saddle. As for halo mass (see Fig. 14), the shape of iso-contours does not change dramatically with stellar mass and
not surprisingly, galaxies with highest stellar masses live in densest regions.

relation (middle and right-hand panels), either because of the im-
posed local tides and/or because of the scatter in density imposed by
this saddle (which might also be position-dependent). Interestingly,
when the same transformation is applied to galactic age, no signifi-
cant residuals are found (left-hand panel). This suggests that mean
stellar mass and age, which are integrated quantities, do not seem
to be very sensitive to anything but mean dark halo mass and mean
density. Appendix G discusses in more details how to statistically
disentangle mass, density, and tidal effects.

6.6 Is spin advection one of the residual processes?

In closing, let us speculate on the nature of the physical process
which may be responsible for the residual scatter – having removed
some of the effect of mean mass and local density, while rely-
ing on our saddle-centred stacks to identify processes that may be
driven by anisotropy. As already mentioned, the (radial) distance
to the node quenching from AGN feedback is an obvious candi-

date for the amplitude of the residual maps. Nevertheless, it had
long been known that angular momentum stratification – undoubt-
edly built from anisotropic tides – is a key underlying property
driving morphology of galaxies, which correlates with their star
formation efficiency. Angular momentum acquisition is controlled
by the large-scale tidal tensor, which imprints its torque along the
galaxy’s lightcone. The induced tides not only impact the assembly
and accretion history of the host, but also the filamentary flow of
cold gas connecting to the host, hence its coherent gas supply. It has
recently been shown (Welker et al. 2015) following galaxies that
the quadrupolar vorticity-rich large-scale filaments are indeed the
loci where low- and intermediate-mass galaxies steadily acquire
angular momentum via quasi-polar cold gas accretion, with their
angular momentum aligned with the host filament (see Fig. 17 for
the high-mass bin which has the most significant alignment signal
at low redshift, and Laigle et al. 2015): galaxies are expected to
accrete more efficiently cold gas when their angular momentum is
aligned with the preferential direction of the gas infall, i.e. aligned
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Galaxies in the saddle frame of the cosmic web 3245

Figure 16. Age, sSFR, and V/σ residuals, from left to right, having removed the mean stellar mass, halo mass, and density effects, respectively by binning and
considering the median mapping (see the text for details), in terms of fraction of the median values in the frame of the saddle at redshift zero for high stellar
mass bin, in the longitudinal plane at the saddle. The red dashed contours and the red crosses correspond to the galaxy number counts and the peaks in galactic
density on axis, respectively and the red horizontal lines represent the smoothing length used in the analysis. The sub-panels on the top show the distributions
of the three parameters, age, sSFR, and V/σ (in colours), as a function of halo mass, Mh and local density ρ (computed on the scale of 0.8 Mpc h−1, at which
the skeleton and the corresponding level of anisotropy were defined), respectively, with number counts overplotted in black. Interestingly, the residuals for
sSFR and V/σ display an excess at finite distance between the saddle and the nodes, which points towards the expected loci of maximum spin up and limited
AGN quenching. Conversely, the age residuals are very small (�3 per cent) relative to the values of residuals obtained for sSFR and V/σ , consistently with the
observation that the age, halo mass, and local density gradients show many similarities (compare bottom panel of Figs 8, 14, and 15, respectively).

with the filament (Pichon et al. 2011; Stewart et al. 2011). This has
typical local kinematic signatures in terms of (i) spin and (ii) vortic-
ity orientation as predicted by Codis et al. (2015b), and as measured
in HORIZON-AGN with respect to the direction of its closest filament
(Fig. 17), and (iii) in terms of internal kinetic anisotropy in the ve-
locity dispersion of dark haloes (Faltenbacher & White 2009). The
V/σ of galaxies increases as they drift along the filament without
significant merger, as they align themselves to the saddle’s tides
(Fig. 17).

The efficiency of star formation, as traced by sSFR, also depends
on the infalling rate and impact parameter of the cold gas in the
circumgalactic medium. Hence, one also expects star formation ef-
ficiency to be strongest wherever the alignment is tightest. The locus
of this induced excess of star formation and/or V/σ should there-
fore have measurable signatures in observations when quantified in
the metric of the filament (as discussed e.g. in Codis et al. 2015b,
equation 40, in terms of loci of maximum cold gas advection at
some finite distance from the saddle along the filament). There is
a hint of such excess in the residuals shown in Fig. 16 in terms of
both sSFR and V/σ (which should co-evolve). While quenching is
also playing a significant position-dependent role for the high-mass
population, its impact on the lower mass galaxies will be less signif-
icant. Fig. 18 shows indeed that for the lower mass bins, the residual
maps peak significantly on axis, which supports the idea that the
efficiency of angular momentum advection is a relevant process.
This is worth emphasizing, given the above-given theoretical prej-
udices based on following galaxies in the flow (Welker et al. 2015),
and on the orientation of galaxies traced by their spin’s orientation
distribution in the vicinity of the filament axis, predicted to exhibit
a point-reflection symmetric structure (Codis et al. 2015b) as mea-

sured in Fig. 17. While this discussion is more speculative, recall in
any case that most properties of the galactic population measured
within the frame of saddles presented in the previous section –
including redshift evolution and filament thickening/thinning – can
be understood when accounting for their cosmic advection with the
bulk flow along and transverse to the filament. The present study
clearly highlighted that an improved model for galaxy properties
should also explicitly integrate the diversity of the topology of the
large environment on multiple scales (following, e.g. Hanami 2001)
and quantify the impact of its anisotropy on galactic mass assembly
history, and more generally on the kinematic history of galaxies.
The details of how the kinematics impact star formation remains to
be understood. The vorticity-rich kinematics of the large-scale flow
is neither strictly coherent nor fully turbulent. Does the offset of
merger and accretion rate imposed by the large-scale turbulent flow
explain the residual environment dependence in observed physical
properties (Aragon-Calvo, Neyrinck & Silk 2016), or is the helicity
of gas inflow within filaments prevalent in feeding galactic discs
coherently (Pichon et al. )?

7 C O N C L U S I O N S

This paper investigated the properties of virtual galaxies in the
neighbourhood of filament-type saddle points of the cosmic web.
These properties were measured within the frame set by the principal
axes of the saddle in the HORIZON-AGN simulation. The impact of
AGN feedback was assessed by comparing to results obtained in
the HORIZON-NOAGN simulation. The principal findings are the
following:
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3246 K. Kraljic et al.

Figure 17. Stellar mass-weighted cosine of angle between the spin of the
galaxy and the direction of the filament (top panel) and between the vorticity
of the gas at the position of the galaxy and the direction of the filament
(bottom panel) for highest stellar mass bin at redshift zero. Transverse cross-
sections comprise galaxies with z-coordinate between 1 and 2.5 Mpc h−1

for the spin and between 0.5 and 1.8 Mpc h−1 for the vorticity, where the
signal is most significant. The vorticity is computed on the gas distribution
at the resolution and smoothing length used to define the skeleton, and
interpolated at the position of galaxies. The map is normalized so that the
integrated amplitude in each quadrant is preserved while smoothing. The
white contours and the white crosses correspond to the galaxy number counts
and the peaks in galactic density, respectively. Note the quadrupolar (point-
reflection symmetric) structure of the spin’s orientation distribution in the
vicinity of the filament axis, in qualitative agreement with the prediction of
Codis et al. (2015b) for DM. The distribution of the vorticity of the gas is
also in qualitative agreement with this prediction and with the measurement
of Laigle et al. (2015, their appendix A), which focused on cooling runs
(without star formation). The tilt in the plane of symmetry of the vorticity
map is likely to be driven by shot noise.

(i) The iso-contours of the galactic number density, mass, sSFR,
V/σ , and age in the saddle’s frame display a clear alignment with the
filament axis and stronger gradients perpendicular to the filaments,
quantifying the impact of the cosmic web in shaping galaxies.

(ii) High-mass galaxies are more clustered around filaments and
within filaments around nodes compared to their low-mass counter-
parts. As expected, the filament’s width of the whole galaxy pop-
ulation grows with cosmic time (as it becomes dominated by less
rare galaxies). Conversely, at fixed mass, it decreases with cosmic
time at the saddle.

Figure 18. V/σ residuals in HORIZON-AGN (left-hand panel) and HORIZON-
NOAGN (right-hand panel), having removed the mean stellar mass, halo
mass, and density effects, respectively by binning and considering the me-
dian mapping (see the text), in the lowest stellar mass bin at redshift zero.
The red dashed contours and the red crosses correspond to the galaxy num-
ber counts and the peaks in galactic density on axis, respectively and the
red horizontal lines represent the smoothing length used in the analysis. The
two maps are qualitatively similar, as expected for this mass bin where AGN
feedback should not have a strong impact, and none the less, the amplitude
of the map is ∼14 per cent, concentrated along the filament’s axis.

(iii) In addition to reducing the overall sSFR of galaxies, AGN
feedback also impacts the shape of the sSFR iso-contours, in par-
ticular for high-mass galaxies and in the vicinity of the nodes of the
cosmic web. AGN feedback quenches centrals more efficiently than
satellites. Satellite strangulation seems to occur within the filaments
and nodes of the cosmic web.

(iv) While the dominant effect of the cosmic web on galaxy
formation seems to be captured by the distance to cosmic nodes,
the full 3D geometry of the web, in particular its saddle points,
provides a natural oriented frame for stacking galaxies, showing
significant effects of the environment beyond solely the distance
to nodes. Hence, galaxies do retain a memory of the large-scale
cosmic flows from which they emerged.

(v) The redshift evolution of the galactic counts and the age
distribution of galaxies are consistent with a drift of the popula-
tion towards the filaments and along them (see Appendix F). The
cosmic evolution of the sSFR reflects both this drift and the trig-
gering of quenching as centrals become massive enough to trigger
AGN feedback near the peaks of the cosmic web. The geometry
of the stacks and their cosmic evolution compare favourably to ex-
pectations for constrained Gaussian random fields in the weakly
non-linear regime.

(vi) The maps of V/σ and sSFR (and their residuals) are consis-
tent with the role played by feedback and angular momentum in
shaping galaxies, beyond that played by mass and density, and its
connection with the geometry of the cosmic web, as described by
Codis et al. (2015b) and Laigle et al. (2015) (in a Lagrangian and an
Eulerian framework, respectively). The point-reflection symmetric
distribution of the orientation of the spin of galaxies and vorticity of
the gas presented in this paper is also in agreement with this picture.
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Galaxies in the saddle frame of the cosmic web 3247

(vii) At high mass and low redshift, AGN feedback coupled
with advection of galaxies along filaments induces some level of
anisotropy in the distribution of galaxy properties (sSFR, V/σ , and
age) which is partially degenerate with the effect of how angular
momentum of galaxies is acquired from the large-scale vorticity of
the anisotropic environment.

(viii) While sSFR responds to the saddle frame over and above
what is expected from halo mass and local density, other indicators
such as stellar age do not.

Overall, all distributions are consistent with the geometry of the flow
in the vicinity of saddles, including quenching by AGN feedback,
strangulation of satellites near the nodes, and possibly time delays
induced by asymmetric tides on local and intermediate scales. They
complement the findings of Kraljic et al. (2018), which also showed
that galaxy properties occupy more than a 2D manifold (in physical
parameter space such as age, sSFR, V/σ , etc.), but at the expense of
not resolving the 3D distribution of fields in the frame of the saddle,
which was the adopted strategy here.19 This strategy allows us to
suggest that one extra degree of freedom is the angular momentum
acquired from the anisotropy of the cosmic web.

The signal-to-noise ratio in the counts is in the current analy-
sis limited by the number of galaxies in the simulated box and
by the choice of sampling the population in 3D. In order to e.g.
probe the transverse asymmetry of saddles (reflecting the relative
depth and distance to neighbouring voids and wall saddles), the
present study could be followed up using simulations with better
statistics so that the counts may be orientated with respect to the
connecting walls and voids. A larger sample would also allow us
to quantify the effect of non-linearities when constructing residual
maps, as discussed in Appendix G. It would also be of interest
to stack observationally measurable quantities such as colour or
metallicity. These predictions could then be directly compared to
observations from upcoming spectroscopic surveys such as 4MOST
(de Jong et al. 2012), DESI (DESI Collaboration et al. 2016), PFS
(Takada et al. 2014), MSE (McConnachie et al. 2016), integral field
spectroscopy such as MANGA (Bundy et al. 2015), SAMI (Croom
et al. 2012), Hector (Bland-Hawthorn 2015) or in projection using
photometric redshifts with DES (Rykoff et al. 2016), Euclid (Lau-
reijs et al. 2011), WFIRST (Spergel et al. 2013), LSST (LSST Dark
Energy Science Collaboration 2012), KiDs (de Jong et al. 2013),
following the pioneer work of Laigle et al. (2018) in the COSMOS
field. Connecting the present findings with work on spin orientation
(Codis et al. 2015b) in the frame of the saddle may also prove use-
ful to mitigate the effect of intrinsic alignment (e.g. Joachimi et al.
2011; Chisari et al. 2015). Investigating the distribution and sur-
vival of filaments on much smaller scales as they enter dark haloes
is also of interest and will be the topic of future work (Ford et al. in
preparation).
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APPENDI X A : VALI DATION

Let us briefly study how the measured distributions presented in the
main text are impacted by the smoothing length of the gas density
distribution and the type of tracer used to extract the skeleton. Re-
sults are presented in the frame of the saddle using the curvilinear
coordinates (see Section 3.1), but qualitatively similar conclusions
are obtained for 3D distributions. Fig. A1 shows the galaxy number
counts for the entire galaxy population with masses in the range
109.0–1012.0 M� at redshift zero, using, after rescaling, the same
smoothing length as in the main text (left) and twice as big (right).

Figure A1. Galaxy number counts in the frame of the saddle (curvilin-
ear coordinates) for all masses in the range 109.0–1012.0 M� at redshift
zero (left) compared to the smoothing twice as big (right). Note that the
R- and z-axes have been rescaled by the smoothing length. Similarity of the
contours suggest that the measured distributions are relatively insensitive to
the choice of the smoothing length.
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Figure A2. Galaxy number counts in the frame of the saddle (curvilinear
coordinates) in low (left) and high (right) stellar mass bins at redshift zero,
using the DM as a skeleton tracer. Similarity between these contours and
those obtained using gas (see Fig. 1) suggest that the measured distributions
are relatively insensitive to the choice of the tracer used to construct the
skeleton.

Similarity of these iso-contours suggests that as expected, the mea-
sured distributions are relatively insensitive to the level of smoothing
applied.

Fig. A2 shows the galaxy number counts in low (left) and high
(right) stellar mass bins at redshift zero, using the DM particles
as a tracer of the cosmic web. These iso-contours that should be
compared with left- and right-hand panels of Fig. 1, suggest again
only a weak dependence of results on the choice of the tracer (i.e.
gas or DM). Note none the less that the skeleton built directly from
galaxies using persistence is significantly different, as it becomes
multiscale in nature. The corresponding complication is beyond the
scope of this paper and will be explored elsewhere.

APP EN D IX B: FI L A MENTS’ L E N G T H
A N D W I D T H

Fig. B1 shows the probability distribution of the length of filaments
at redshift two and zero. The length of filaments decreases with time,
in agreement with the expected evolution of matter distribution in
the �CDM universe with accelerated expansion at redshift �1 and

Figure B1. Probability distribution function of the length of filaments at
redshift two (red) and redshift zero (blue). The vertical lines correspond to
the medians of distributions.

Figure B2. Thickness of the filaments, defined as the FWHM of the Gaus-
sian fit of the transverse galaxy number counts profiles as in Fig. 11. When
considering the entire population of galaxies, the cross-sections of filaments
in the vicinity of the saddle point (at z = 0 Mpc h−1) grow with time, while
in the vicinity of nodes (z ∼ 2.5 and −1.5 Mpc h−1 for highest and lowest
density nodes, respectively), they get thinner.

as measured by Sousbie et al. (2008) for the DM. As universe
expands, more low-mass objects form leading to the formation of
filaments on smaller scales that eventually merge together while
longer filaments are stretched. Because larger scale filaments are
less numerous than filaments on small scales, the net result is a shift
of the median length towards lower values at lower redshift.

Fig. B2 shows the thickness of the filaments as a function of the
position in the direction along the filament and is complementary to
Fig. 11 in that it extends to the vicinity of the nodes. Regions near
the nodes (in both upper and lower directions from the saddle, corre-
sponding to the nodes of highest and lowest densities, respectively)
are getting thinner with time.

APPENDI X C : A ZI MUTHALLY AVERAGED
SECTI ONS

All distributions presented in Section 3 – considering the stacks in
3D, and Section 4 presenting their redshift evolution – are in qual-
itative agreement with azimuthally averaged maps in 2D, adopting
curvilinear coordinates as in Section 3.1. Let us here focus on red-
shift evolution alone. Fig. C1 shows the galaxy number counts and
mean stellar mass in the frame of the saddle using curvilinear co-
ordinates, at redshifts two and one, complementing Fig. 1. The
redshift evolution of both number counts and mean stellar mass is
in qualitative agreement with the results obtained when considering
stacks in 3D (see Section 4) and consistent with the global flow
of matter towards the filament first and along them afterwards (see
Sousbie et al. 2008, for the DM flow).

MNRAS 483, 3227–3254 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/483/3/3227/5212316 by U
PM

C
 user on 22 July 2019



3250 K. Kraljic et al.

Figure C1. Left-hand and middle panels: redshift evolution of the galaxy number counts in low (left-hand column), intermediate (middle column), and high
(right-hand column) stellar mass bins, in the frame of the saddle (curvilinear coordinates) at redshift two (top row) and one (bottom row), respectively. The
white horizontal lines represent the smoothing length used in the analysis. Rightmost panels: redshift evolution of mean stellar mass iso-contours in the frame of
the saddle (curvilinear coordinates) for the entire galaxy population at redshift two (top row) and one (bottom row), respectively. The white curves correspond
to the contours of the galaxy number counts, while the white crosses represent the peaks in galactic number density on axis. Note how galaxies become more
clustered towards filaments and nodes as they grow in mass with decreasing redshift, consistently with the global flow of matter within the cosmic web and in
agreement with results considering the 3D distributions.

A P P E N D I X D : AG N QU E N C H I N G EF F I C I E N C Y

Fig. D1 shows the normalized difference of sSFR in the HORIZON-
AGN and HORIZON-NOAGN simulations at redshift zero for highest
stellar mass bin. This quantity allows to quantify where the quench-
ing is most efficient. As expected, highest reduction of the sSFR is
in the vicinity of the densest node.

A P P E N D I X E: TH E O R E T I C A L P R E D I C T I O N S

Let us briefly predict from first principles the expected shape of the
matter and halo distribution in the vicinity of a saddle and its cosmic
evolution.

E1 Predictions for the mean constrained initial density field

The initial density field in which the cosmic web develops being
Gaussian, the theory of constrained Gaussian random field provides
a natural framework in which to compute the expectation of the

matter distribution and typical halo mass within the frame set by the
saddle point, as we do not expect the dynamics to be strongly non-
linear on such scales. An important ingredient here is therefore to
impose a filament-type saddle point constraint. Such a critical point
form when the gradient of the density field is zero and is defined by
its geometry, namely (i) its height ν defined as the density contrast

divided by its rms σ0 =
√〈

δ2
〉

and (ii) its curvature by means of
the three eigenvalues of the Hessian matrix of the density contrast

rescaled again by their rms σ2 =
√〈

(�δ)2
〉
. For a filament-type

saddle point, λ1 ≥ 0 ≥ λ2 ≥ λ3.
The so-called peak theory (Kac 1943; Rice 1945) then allows

us to predict all statistical properties of critical points once the
(supposedly Gaussian here) probability density function (PDF) of
the field ν = δ/σ 0, its first ν i = δ, i/σ 1 and second derivatives
ν ij = δ, ij/σ 2 is known. The saddle constraint reads

Csad = 1

R3
�

λ1λ2λ3�H(λ1)�H(−λ2)δD(νi) , (E1)
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Galaxies in the saddle frame of the cosmic web 3251

Figure D1. sSFR ratio in the HORIZON-AGN, sSFR (AGN), and HORIZON-
NOAGN, sSFR (noAGN), simulations at redshift zero for highest stellar mass
bin. Note that the highest impact of AGN feedback on sSFR of galaxies is,
as expected, in the vicinity of the densest node. White contours represent
galaxy number counts in the HORIZON-AGN simulation.

where the Dirac delta function ensures the gradient to be zero, the
Heaviside Theta functions impose the sign of the eigenvalues, the
Jacobian λ1λ2λ3 = det νij accounts for the volume associated with
a saddle point, and R� = σ 2/σ 1.

To predict the mean density map around a saddle point, one
has to consider the joint statistics of (ν, ν i, ν ij) together with the
density field ν

′
at a distance r from the saddle point. In addition,

the symmetry along the axis of the filament (i = 1 here) will be
broken by imposing the first axis to be oriented in the opposite
direction from that of the gradient of the gravitational potential
(i.e. towards the deepest potential well, the most attractive node).
One therefore also has to consider �1 the derivative of the gravita-
tional potential along the first direction rescaled by its corresponding

variance σ−1 =
√〈

(∇�)2
〉
. Let us gather those 12 fields in a vec-

tor X = {ν ′, ν, ν1, ν2, ν3, ν11, ν22, ν33, ν12, ν13, ν23, �1} whose PDF
can be written

P(X) = 1√
det|2πC| exp

(
−1

2
XT · C−1 · X

)
, (E2)

where the covariance matrix C = 〈X · XT〉 depends on the separa-
tion vector r and the linear power spectrum Pk(k) which can include
a filter function on a given scale. In this work, a �CDM power spec-
trum is used (using the same values for the cosmological parameters
as HORIZON-AGN) with a Gaussian filter defined in Fourier space
by

WG(k, L) = 1

(2π)3/2
exp

(−k2L2

2

)
, (E3)

with L = 0.8 Mpc h−1. One-point covariances do not depend on
the separation but may depend on the spectral parameter γ =
σ 2

1 /(σ0σ2). The variance of the density field is one by definition,
C11 = 1, while the diagonal block corresponding to the saddle po-

sition, C0 = (Cij)i, j > 1, reads

C0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 −γ /3 −γ /3 −γ /3 0 0 0 0
0 1/3 0 0 0 0 0 0 0 0 −β/3
0 0 1/3 0 0 0 0 0 0 0 0
0 0 0 1/3 0 0 0 0 0 0 0

−γ /3 0 0 0 1/5 1/15 1/15 0 0 0 0
−γ /3 0 0 0 1/15 1/5 1/15 0 0 0 0
−γ /3 0 0 0 1/15 1/15 1/5 0 0 0 0

0 0 0 0 0 0 0 1/15 0 0 0
0 0 0 0 0 0 0 0 1/15 0 0
0 0 0 0 0 0 0 0 0 1/15 0
0 −β/3 0 0 0 0 0 0 0 0 1/3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

with β = σ 2
0 /σ−1σ1. The cross-correlations between ν

′
and the

fields at the position of the saddle are to be computed carefully
as they depend on both the separation and the orientation of the
separation vector in the frame of the Hessian described by the coor-
dinates with indices i = 1, 2, and 3. They are explicit function of the
shape of the power spectrum and are therefore computed numeri-
cally (the angle dependence is analytical, hence only the integration
with respect to k = |k| requires a numerical integration). They read
for j between 2 and 12

〈
ν ′Xj

〉 =

∫
d3kPk(k)

3∏

i=1

(−ıki)
αi (ık)−2p exp (ık · r)

∫
d3kPk(k)

∫
d3kPk(k)

3∏

i=1

k2αi
i

, (E4)

where p = 1 only for j = 12 (because of Poisson equation) and
zero elsewhere and αi counts the number of derivatives with respect
to index i. Note that the mean density map around a saddle point
of fixed height and curvatures with no symmetry breaking (i.e not
imposing �1 < 0) is analytical and given by (Codis et al. 2015b)

〈
ν ′|S〉 = (λ1+λ2+λ3)

(〈
ν ′tr νij

〉 + γ
〈
ν ′ν

〉)

1 − γ 2

+ ν
(〈

ν ′ν
〉 + γ

〈
ν ′tr νij

〉)

1 − γ 2
+ 45

4

(
r̂T · H · r̂

)〈
ν ′(r̂T · H · r̂

)〉
,

where H is the detraced Hessian of the density and r̂ = r/r .
However, here the goal is to compute this mean map around an
arbitrary saddle (marginalizing over its height and curvatures) and
with symmetry breaking. To do so, a Monte Carlo technique is
implemented to compute the integrals of typically six dimensions
with MATHEMATICA.

The mean map marginalized over the direction perpendicular to
the filament is shown on the left-hand panel of Fig. 13. As expected,
a filamentary ridge is predicted along the λ1 direction with two nodes
at about three smoothing lengths from the saddle. In the direction
perpendicular to the filament, two voids are typically found on both
sides of the saddle. In addition, Fig. 13 also shows the mean density
in a plane perpendicular to the filament and containing the saddle
point. As expected the filament cross-section is squashed in the
direction of the wall (λ2). This squashing will depend on the peak
height and therefore on the mass of galaxies and haloes, namely the
rarer objects will display a more spherical cross-section and vice
versa. Note that for both plots, 10 million draws of the fields per
point are drawn from a Gaussian distribution conditioned to having
ν i = ν12 = ν13 = ν23 = 0. All configurations with positive �1

and wrong signs of the eigenvalues are thrown before computing
the mean density ν

′
in those configurations with weights λ1λ2λ3

(because of the ν i condition) times (λ1 − λ2)(λ2 − λ3)(λ1 − λ3)
(because of the ν12 = ν13 = ν23 condition).
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E2 Cosmic evolution of the dark matter maps

The above formalism is valid in the Gaussian initial conditions
and can in principle be extended perturbatively to the subsequent
weakly non-linear cosmic evolution. For the sake of simplicity, only
the mean non-linear evolution of the density distribution around a
saddle point of fixed geometry is described. Using a Gram–Charlier
expansion (Gay, Pichon & Pogosyan 2012) for the joint distribution
of the field and its derivative, the first non-Gaussian correction to
the mean density map is found to be

〈δ(r|S)〉 ∼ 〈δ(r|S)〉G + σ0

⎡
⎣ ∑

ijk≤11

SijkHijk(r)

⎤
⎦ , (E5)

where higher order terms O(σ 2) are neglected. In equation (E5),
the Sijk ≡ 〈XiXjXk〉/σ coefficients generalize the so-called
S3 ≡ 〈δ3〉/〈δ2〉2 to expectations of cubic combinations of the field
ν = δ/σ 0 and the components of its gradients, νk, and its Hessian,
ν ij (rescaled by their respective variance) evaluated at the running
point r and at the saddle. In equation (E5), the function Hijk(r) only
involves known combinations of the Gaussian covariance matrix
Cij evaluated at separation r (so Hijk is independent of redshift).
Note importantly that at tree order, the Sijk also do not depend on
σ 0, so that the only (degenerate) dependence on cosmic time τ and
smoothing scale L (over which the saddle is defined) is through
σ 0(L, τ ) in front of the square bracket of equation (E5). For the
purpose of this paper, this equation therefore implies that gravita-
tional clustering will distort and enhance the contours of DM density
within the frame of the saddle, with a scaling proportional to σ 0.20

Here, the considered scale L can also be related to the typical mass,
M� of the population considered so that the local clock becomes
σ (M�,redshift). Hence, equation (E5) simply predicts the observed
mass and redshift scalings of the main text. In practice, computing
the whole Sijk suite takes us beyond the scope of this paper and will
be investigated elsewhere.

Notwithstanding, as a first approximation, most of the effect is
simply due to the density boost ν = νS at the location of the saddle.
The corresponding non-Gaussian correction is simply given by σ 0

multiplied by

H2(νS)

2

ξ (r)

σ 2
0

(C12(r) − S3) , (E6)

with H2(x) = x2 − 1 the second Hermite polynomial, C12 =〈
ρ2(x)ρ(x + r)

〉
c
/σ 2

0 ξ and again S3 = 〈
ρ3

〉
c
/σ 4

0 . Note that at tree
order in perturbation theory, in the large separation limit, C12(r) −
S3 → −34/21. For a saddle point 1σ above the mean, H2(νS) > 0,
which means that the non-linear evolution tend to sharpen the den-
sity profile around the saddles (given that the height of the saddle,
νS is fixed here), as one would have expected.

Alternatively, excursion set theory (Musso et al. 2018) allows
us to predict the typical mass distribution in the vicinity of a given
saddle point (with fixed geometry) and as was done in that paper, the
predicted profile can be displaced via a so-called Zel’dovich boost.
This is shown in Fig. E1, which corresponds to a cross section
through fig. 13 of Musso et al. (2018) where the length have been
rescaled by a factor α and the masses by a factor α3 to match the
smoothing scale used in this paper and to account for differences
arising from the use of a different filter (Gaussian versus Top-Hat).
Using the same approach, it is also possible to compute the expected

20As such, the thickening of filaments provides us with a cosmological
probe, though admittedly it might not be the most straightforward one!

Figure E1. Coloured contours: predicted cross-section of the halo mass
density after a Zel’dovich boost for a fixed geometry of the saddle in the
plane of the wall and filament (left-hand panel) and perpendicular to the
filament (right-hand panel). Dashed contours: the cross-section before the
boost.

Figure E2. Left-hand panel: DM longitudinal cross-section measurements
in HORIZON-AGN at redshift 0. Right-hand panel: same quantity at redshift
2. The corresponding prediction at high redshift is shown in Fig. 13 and the
agreement is fairly good.

accretion rate of the DM halo. One then recovers fig. 12 of Musso
et al. (2018) that is showing that the effect of the saddle point on
the accretion rate decreases as the mass of the halo decreases. In the
(simplistic) picture where DM accretion rate correlates with fresh
gas accretion and specific star formation, one then qualitatively
recovers the results of Fig. 6, where the effect of the cosmic web
onto the sSFR decreases with the stellar mass. Indeed, as these
two quantities (DM accretion rate and sSFR) only probe the recent
accretion history of the halo, they are sensitive to differential effects
induced by the saddle point which vanish at scales much smaller
than that of the filament.

In order to compare this Lagrangian prediction to simulations,
the mean total matter distribution was measured around saddles
in the HORIZON-AGN simulation. The low-redshift measurement is
shown on the left-hand panel of Fig. E2. Interestingly, the prediction
for Gaussian random fields recovers the qualitative picture found
in the HORIZON-AGN simulation in terms of the geometry of the
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contours. As expected, the non-linear evolution (not captured by the
Gaussian prediction) further contracts the filaments which become
more concentrated. As one goes to higher redshifts (right-hand panel
of Fig. E2), the contours clearly become closer to the Gaussian
prediction.

APP EN D IX F: K I N E T IC BU L K F L OW N E AR
SADDLE

Extending the result of Sousbie et al. (2008, which focused on DM),
let us quantify the geometry of the bulk galactic velocity flow in
the frame of the saddle. Fig. F1 displays the (normalized) velocity
field of galaxies in the frame of the saddle while tracking (left-hand
panel) or not (middle panel) the orientation of the saddle, and the
PDF of the velocity’s modulus and orientation (right-hand panel).
The velocities of the left-hand and middle panels are computed as
previously, i.e. as an average velocity for all galaxies in given 2D
bin and smoothed over 0.3 Mpc h−1. Note that no flipping with re-
spect to the z-axis is applied here. As expected, when the frame is
orientated towards the larger node (left-hand panel), the net flow is
directed towards that node throughout that frame. Interestingly, note
that the flow actually overshoots the peak of density in that frame,
which is in fact expected, in so far that the velocity should, at the
level of the Zel’dovich approximation, point towards the minimum
of the potential, whose peak is typically further away from the sad-
dle. When the orientation of the saddle is ignored (middle panel),
one recovers a ‘saddle-like’ geometry for the flow, i.e. the saddle
point locally repels the flow longitudinally but attracts it transver-
sally. The right-hand panel is consistent with fig. 6 of Sousbie et al.
(2008), but applies now to galaxies in HORIZON-AGN. The PDF
velocity orientation and moduli present a tail of high velocities (at
cos δ < 0), corresponding to galaxies converging transversally to-
wards filaments.

The geometry of the flow displayed in Fig. F1, together with the
distinct initial population distribution (and accretion history) for the
progenitor of high- and low-mass galaxies allow us to understand
their cosmic evolution presented in the main text. On top of this
passive advection, Section 6.5 argues that the tides of the saddle
may impact directly dark halo growth while shifting the conditional
mean and covariances of the accretion rate, and galactic V/σ or
sSFR while biasing spin (hence cold gas) acquisition.

APP EN D IX G : STATI S T I C A L O RI G IN
O F R E S I D UA L S

Let us finally discuss the statistical basis of the procedure described
in the main text to study second-order effects beyond the mass
and density and capture the origin of these hidden variables. When
attempting to disentangle the specific role of tides from that of the
local density and/or that of the dark halo mass, we are facing a
statistical mediation problem (see e.g. Wright 1934; Sobel 1982;
Baron & Kenny 1986), in that we aim to determine if the tidal
tensor plays a specific role impacting the sSFR (or V/σ or age etc.)
which is not already encoded in other quantities such as density and
DM mass (which also vary away from the saddle, but typically with
different maps in that frame). For the sake of being concrete, let us
assume that the effect of the tides can be summed up by a scalar
field α (e.g. the squared sum of the difference of the eigenvalues of
the Tidal tensor, α = ∑

(λi − λj)2, which quantifies the anisotropy
of the collapse, or the net flux of advected angular momentum,
etc.). Our purpose is to extract the map α(r) and check its structure
relative to the saddle.

G1 Conditional mediation

Let us motivate the procedure used in Section 6.5 while relying
on a statistical description of the random variables describing the
various fields at some given position away from the saddle. Let us
first assume for simplicity that the field X = (sSFR, δ ≡ log ρ, m ≡
log MDH, α) obeys a centred21 joint Gaussian statistics:

PDF(sSFR, δ, m, α)= 1√
det(C0)

exp

(
−1

2
XT · C0

−1 · X
)

,

where C0 is the matrix of the covariance of the four fields, which
we will also assume for now to be position independent (but see
below). Note the change of variable to m and δ which are likely to
behave more like Gaussian variables than MDM and ρ.

Applying Bayes’ theorem, we can compute the conditional
PDF(sSFR|δ, m, α) = PDF(sSFR, δ, m, α)/PDF(δ, m, α), where
PDF(δ, m, α) is the marginal (after integration over sSFR). From
this conditional PDF, the expectation sSFR(r) ≡ 〈sSFR|δ, m, α, r〉
subject to the constraint of the three fields δ(r), m(r), and α(r)
reads

sSFR(r) = (〈sSFR δ〉, 〈sSFR m〉, 〈sSFR α〉)

·
⎛
⎝

〈δ2〉 〈δm〉 〈δα〉
〈δm〉 〈m2〉 〈αm〉
〈δα〉 〈αm〉 〈α2〉

⎞
⎠

−1

·
⎛
⎝

δ(r)
m(r)
α(r)

⎞
⎠ ≡

∑

i>1

βiXi,

(G1)

so that the conditional sSFR(r) is simply a linear combination of the
three Xi maps, δ(r), m(r), and α(r) (with coefficients β i involving
the covariances).22 Let us now take the statistical expectation of this
equation at a given pixel. Subtracting the contribution of 〈δ(r)〉 and
〈m(r)〉 from the measured 〈sSFR(r)〉 (while using a linear fit to the
simulation to estimate the β i since we do not know a priori what
the covariances involving α might be23) and focusing on residuals
provides a position-dependent estimate of the field 〈α(r)〉. If its
amplitude is statistically significant, its geometry may tell us if it
is consistent with the nature of the mediating physical process, as
discussed in the main text.

If we relaxed the assumption of Gaussian statistics, the condi-
tionals derived from a Gram–Charlier expansion of the joint PDF
(Gay et al. 2012) would lead (to leading order in non Gaussianity)
to the mapping

sSFR(r) =
∑

i>1

βiXi +
∑

i,j>1

βijXiXj + · · · (G2)

where β i (respectively β ij) are functions of the second respectively,
second- and third-order cumulants of the fields (such as 〈δ2α〉 etc).
Once again we could subtract the (up to quadratic) fitted contribution
of 〈δ(r)〉 and 〈m(r)〉 from the measured 〈sSFR(r)〉 so as to fit the
manifold of the X samples. Unfortunately, in this non-linear regime,
the expectations would not compute any more, 〈XiXj〉 �= 〈Xi〉〈Xj〉
and the residuals will also involve terms such as 〈δα〉, 〈mα〉, or 〈α2〉.

In practice though, the extracted relationships expressed in terms
of δ = log ρ and m = log MDH do in fact look fairly linear, see

21The PDF is assumed to be centred on the mean value of the field averaged
over the whole map
22This relationship could have also been obtained by principal component
analysis in the extended X space: it would have led to the same sets of
covariances as linear coefficients.
23Note that for an explicit choice of α, we could have extracted the co-
variances entering equation (G1) from the simulation and estimated the β i

accordingly.

MNRAS 483, 3227–3254 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/483/3/3227/5212316 by U
PM

C
 user on 22 July 2019



3254 K. Kraljic et al.

Figure F1. Left-hand and middle panels: velocity vector of galaxies in the frame of the saddle for masses in the range 109– 1012 M� at redshift zero, in the
longitudinal plane of the saddle, with the upward direction defined to be towards the node of highest density (left), and without imposing any condition on the
direction of the filament at the saddle (middle). The arrows represent the unitary velocity vector in the y − z plane, colour coded by the cosine of the angle
between this vector and the z−axis. Note that as the modulus of the velocity near the saddle point is low, the direction of the velocity vector is not very well
constrained there. Note also that the structure of the velocity field in the saddle frame is intrinsically complex due to the relative velocity of a saddle with
respect to the nodes. The grey contours represent the galaxy number counts. Right-hand panel: PDF of the velocity field of galaxies within the cosmic web as
a function of its modulus v, and the cosine of its angle δ with the closest filament. The excess of galaxies with cos δ close to unity shows that the bulk of the
population appears to be flowing along the filaments in the direction of nodes, i.e. the high-density regions.

e.g. the top panels of Fig. 16, which favours the assumption of
Gaussianity, as was assumed in the main text. We also checked
that relationships such as equation (G1) did not significantly vary
with position within the saddle frame (by marginalizing over sub-
regions within the frame). Finally, we used the median to extract
the β i coefficients, as it is a more robust estimator.

As a word of caution, it should nevertheless be stressed that
since we are aiming to extract a secondary effect (beyond mass
and density), the impact of departure from our assumptions may
prove to be of the same order as the sought signal. Eventually,
larger statistical samples may allow us to statistically disentangle
more robustly the various processes. Note finally that carrying out
the analysis at fixed stellar mass allows us to avoid the bimodality
of some physical parameters which would clearly have broken the
assumption of joint Gaussian statistics.

G2 Mediation of multiple causes

An alternative strategy to address the fact that more than one vari-
able impact V/σ (and/or sSFR, age etc.) is to sample over narrow
bins of stellar and dark halo mass, local density, and position r
within the frame of the cosmic web, and estimate the full joint PDF.
This is challenging for a sample of only 105 galaxies, hence can
only be applied to relatively large bins in practice. We attempted to
disentangle halo mass, density, and tidal effects by computing the
residuals of V/σ (and/or sSFR, age) from median halo mass map-
ping in a given stellar mass and density bin. We found comparable
residuals to those shown in Fig. 16. However, given the size of the
bins we use, we cannot draw any definitive conclusions here. Sim-
ulations with more statistics should be able to address this difficult
point in the future.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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B.3 “Dense gas formation and destruction in a simulated Perseus-like galaxy cluster
with spin-driven black hole feedback” (accepted in A&A)
One striking feature of nearby clusters is the extended �lamentary Hα1

emission found at their

centre, yet their formation mechanism and the processes which shape their morphology remain

unclear. In this study, the e�ect of AGN feedback on the evolution of clumps, de�ned as contiguous

regions with ρ > 1 mp cm−3
and T < 106 K is studied. It shows that the formation of clumps

is directly in�uenced by the AGN jet and that, for low black hole spin, the clumps are able to

reorient the spin axis (and hence the jet direction). The study makes use of the tracer particles

described in chapter 5, which are key to provide the Lagrangian history of the gas found in clumps.

In particular, they are used to estimate the condensation rate of gas into clumps by computing the

mass of tracer particles that entered each individual clump between two snapshots. It is found

that most of the condensation happens when clumps are falling in, although a small fraction of

the condensation happens for out�owing clumps. Two processes driving the fragmentation of

clumps into smaller structures are found. (1) AGN feedback events are able to break large clumps

into smaller ones, essentially by blowing out 3/4 of the gas. The surviving clumps are entrained

and are ejected from the cluster centre. (2) At the top of their ballistic trajectories, clumps also

fragment before the surviving ones fall back onto the cluster centre.

This study would have proven impossible with previous implementations of velocity-advected

tracers, as their distribution is particularly inaccurate in regions where condensation occur (they

gather in clump centres and stick there). In addition, the velocity-advected approach do not track

the conversion of baryons into stars which may form in the clumps. While they provide somehow

precise trajectories, velocity-advected tracers could not be used to compute e.g. condensation

rate, which require tracer particles to accurately reproduce the Eulerian distribution of the gas

and its time evolution (see Cadiou et al., 2019, chapter 5 for a discussion).

1

Not to be confused with with cold �lamentary accretion discussed in chapters 5 and 6.
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ABSTRACT

Context. Extended filamentary Hα emission nebulae are a striking feature of nearby galaxy clusters but the formation mechanism of
the filaments, and the processes which shape their morphology remain unclear.
Aims. We conduct an investigation into the formation, evolution and destruction of dense gas in the centre of a simulated, Perseus-like,
cluster under the influence of a spin-driven jet. The jet is powered by the supermassive black hole located in the cluster’s brightest
cluster galaxy. We particularly study the role played by condensation of dense gas from the diffuse intracluster medium, and the
impact of direct uplifting of existing dense gas by the jets, in determining the spatial distribution and kinematics of the dense gas.
Methods. We present a hydrodynamical simulation of an idealised Perseus-like cluster using the adaptive mesh refinement code ram-
ses. Our simulation includes a supermassive black hole (SMBH) that self-consistently tracks its spin evolution via its local accretion,
and in turn drives a large-scale jet whose direction is based on the black hole’s spin evolution. The simulation also includes a live dark
matter (DM) halo, a SMBH free to move in the DM potential, star formation and stellar feedback.
Results. We show that the formation and destruction of dense gas is closely linked to the SMBH’s feedback cycle, and that its
morphology is highly variable throughout the simulation. While extended filamentary structures readily condense from the hot intra-
cluster medium, they are easily shattered into an overly clumpy distribution of gas during their interaction with the jet driven outflows.
Condensation occurs predominantly onto infalling gas located 5 - 15 kpc from the centre during quiescent phases of the central AGN,
when the local ratio of the cooling time to free fall time falls below 20, i.e. when tcool/tff < 20.
Conclusions. We find evidence for both condensation and uplifting of dense gas, but caution that purely hydrodynamical simulations
struggle to effectively regulate the cluster cooling cycle and produce overly clumpy distributions of dense gas morphologies, compared
to observation.

Key words. Galaxies: clusters: intracluster medium – Galaxies: jets – Galaxies: clusters: general – Methods: numerical – Hydrody-
namics

1. Introduction

One of the most striking features of the nearby Perseus clus-
ter, NGC1275, is the extended filamentary Hα emission nebula
in its centre (Lynds 1970; Heckman et al. 1989; Crawford &
Fabian 1992; Conselice et al. 2001; Hatch et al. 2007; Fabian
et al. 2008). Harbouring up to 5 × 1010 M� of cold gas (Salomé,
P. et al. 2006), this emission nebula has a filamentary morphol-
ogy, with individual filaments up to 40 kpc long and only 70
pc wide (Conselice et al. 2001; Fabian et al. 2016). Within the
extended, filamentary Hα emission, dense clumps of molecular
gas have been observed (Salomé, P. et al. 2006; Lim et al. 2012),
and some filaments show signs of star formation (Fabian et al.
2008; Canning et al. 2010, 2014). Larger observational samples
show that the Perseus cluster is not the only object to house such
Hα emission nebulae, with many massive galaxy clusters show-
ing similar features (Crawford & Fabian 1992; Heckman et al.
1989; McDonald et al. 2010, 2012; Olivares et al. 2019) in their
centre. Where does this gas come from, and what causes its char-
acteristic filamentary morphology?

? ricarda.beckmann@iap.fr

Finding cold gas in cluster centres is not unexpected. As
cooling times in the intra-cluster medium (ICM) of massive
galaxy clusters are short, a massive cooling flow of the order of
100 − 1000 M� yr−1 is expected to develop in the cluster centre
(Fabian 1994). However, observed star formation rates in clus-
ters are of the order of only 1-10% of the naive cooling rate in-
ferred from X-ray observations (McDonald et al. 2018). Clusters
must therefore contain a heating source which prevents over-
cooling and slows down star formation. Many clusters show evi-
dence for extended jets powered by active galactic nuclei (AGN),
which are inflating large cavities in the ICM whose power is suf-
ficient to offset cooling (McNamara & Nulsen 2007; Rafferty
et al. 2006; Fabian 2012). Via the self-regulation cycle, which
consists of cold gas feeding the AGN, which in turn powers a jet,
which then inflates cavities that heat the ICM, AGN are expected
to play a decisive role in determining the cooling and star forma-
tion properties of the cluster (see McNamara & Nulsen 2007;
Fabian 2012, for a review). This picture of self-regulation cycles
from AGN jets is getting increasing support from hydrodynami-
cal simulations both in an idealised (Cattaneo & Teyssier 2007;
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Gaspari et al. 2011; Li & Bryan 2014a) and in a cosmological
context (Dubois et al. 2010).

The cospatiality of the Hα emission nebula with the AGN
jets and bubbles suggests that the AGN might not only con-
trol global cooling properties of the cluster but also be more di-
rectly responsible for the morphology of the existing dense gas
(Salomé, P. et al. 2006; Russell et al. 2017; Vantyghem et al.
2017, 2018; McKinley et al. 2018; Tremblay et al. 2018). The of-
ten complex line-of-sight velocity field of the nebula in Perseus
also suggests that this gas is not merely free-falling, or rotation-
ally supported (McDonald et al. 2012; Gendron-Marsolais et al.
2018), but most likely interacts with the turbulence injected by
the AGN jets and buoyantly rising bubbles (Fabian et al. 2003;
Hatch et al. 2006; Revaz et al. 2008). However, with only line-of-
sight velocity information, the three-dimensional velocity pat-
tern of gas is difficult to ascertain.

Simulations by McCourt et al. (2012) and Sharma et al.
(2012) show that even for a globally thermally stable ICM (re-
quired to avoid overly strong cooling flows) dense gas can con-
dense out of the hot ICM via local thermal instabilities for suffi-
ciently low values of tcool/tff . Here, tcool is the local cooling time

tcool =
3
2

nkBT
neniΛ

, (1)

where ni, ne and n are the ion, electron and total number density
respectively, T is the temperature and Λ the cooling rate. The
free fall time is

tff =

(
2r
g

) 1
2

, (2)

where g is the local gravitational acceleration and r is the ra-
dius from the cluster centre. Condensation into multi-phase can
take place when locally tcool/tff < 1, but it is also observed for
larger values of the radial tcool/tff profile due to the turbulence
and inhomogeneities injected by uplifting hot gas from the clus-
ter centre via AGN driven feedback processes (Voit et al. 2017;
Voit 2018). It has been confirmed observationally that molecu-
lar gas is observed at the minima of tcool/tff profiles (Hogan et al.
2017; Pulido et al. 2018; Olivares et al. 2019), with some of these
authors stressing that only tcool determines condensation rates as
the growth of linear perturbations is largely independent of the
geometry of the gravitational potential (Choudhury & Sharma
2016).

Simulations show that the turbulence injected by AGN feed-
back can cause the local thermal instabilities predicted by Mc-
Court et al. (2012), but struggle to reproduce the observed mor-
phologies, with dense gas having either a very clumpy morphol-
ogy (Li & Bryan 2014b; Yang & Reynolds 2016a) or settling
into a massive central disk (Gaspari et al. 2012; Li & Bryan
2014a,b; Prasad et al. 2015). While the latter has is observed in
some clusters, such as in Hydra-A (Hamer et al. 2014; Olivares
et al. 2019), only a small central disk is observed in Perseus (Na-
gai et al. 2019). The dense gas morphology therefore seems to
sensitively trace the energy balanced in the ICM.

One feature of these clusters is that the cold gas is expected
to rain down on the AGN in a cold and chaotic fashion (Gaspari
et al. 2013; Voit & Donahue 2015; Voit et al. 2017), so the cold
gas accreted by the black hole is expected to lack coherent angu-
lar momentum, which in turn could lead to a reorientation of the
black hole spin axis over time. In this paper, we investigate the
impact of this chaotic dense accretion on the formation of further
gas by explicitly tracing the spin of the black hole, and using this
black hole spin axis as the axis for the AGN driven jet (Dubois

et al. 2014). In contrast to existing simulations, which rely on
a fixed jet axis with pre-defined precession within a narrow jet
cone (Li & Bryan 2014a; Yang & Reynolds 2016a; Ruszkowski
et al. 2017; Li et al. 2017; Prasad et al. 2018; Martizzi et al. 2019;
Wang et al. 2019), the spin driven approach used here is able to
inject turbulence over a larger volume of the cluster centre, and
to respond dynamically to the evolving dense gas morphology
throughout the simulation.

In this paper, we will investigate the formation and time evo-
lution of dense gas structures in a Perseus-like cluster under the
influence of a spin-driven jet, with a particular focus on clump
dynamics. The simulations are introduced in section 2. A general
overview of results is given in section 3.1, the jet evolution is
studied in Section 3.2 and the clump properties are investigated
in Section 3.3. A detailed look at the role of uplifting in clump
properties and dynamics is given in Section 3.4, and the impact
of condensation is studied in Section 3.5. A discussion of results
can be found in section 4, and conclusions are summarised in 5.

2. Simulation setup

This paper presents a set of hydrodynamical simulations of iso-
lated galaxy clusters, produced with the adaptive mesh refine-
ment code ramses (Teyssier 2002).

2.1. Technical details and refinement

For the simulations presented here, the Euler equations were
solved with the second order MUSCL-Hancock scheme, which
computes Godunov fluxes using an approximate HLLC Riemann
solver and a MinMod total variation diminishing scheme to re-
construct the interpolated variables. The Courant factor was set
to a value of 0.8.

The simulation was performed in box of size 8 Mpc with a
root grid of 643, and then adaptively refined to a maximum res-
olution of 120 pc. Refinement proceeded according to several
criteria. We used a quasi-Lagrangian criterion: when a cell con-
tains a mass greater than 3.5 × 109 M�, it was refined ( and it
was derefined if it contains less than 0.125 this). We also used
a Jeans-based criterion: a cell was refined until the local Jeans
length was > 4 times the cell size. To refine regions of interest
to this work, we also employed two additional refinement crite-
ria. First, the cell containing the BH was forced to be refined at
the maximum resolution. Second, a passive scalar variable was
injected by the BH jet with a mass density ρscalar equals to that
of the gas ρgas, which was advected with the gas and marked
regions affected by BH feedback. The scalar decayed exponen-
tially, with a decay time of tjet = 10 Myr to ensure that the scalar
traces only recent AGN feedback events. After testing different
decay times, we confirm that the results do not sensitively de-
pend on this value. To resolve the AGN bubbles, cells were al-
lowed to be further refined when the scalar fraction exceeded
ρscalar/ρgas > 10−4, equivalent to 92 Myr since the last feed-
back event, and its relative variation from one cell to another
exceeded 10−2. The latter two refinement criteria ensure that the
regions affected by AGN feedback, including the hot, low den-
sity bubbles which would de-refine under a purely Lagrangian
refinement scheme, remained maximally refined over a reason-
able duration of the jet propagation and mixing with hot ICM.
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2.2. Initial conditions

The initial conditions for dark matter (DM) and gas consisted of
a cored Navarro-Frenk-White profile:

ρDM = (1 − fgas)ρs
r3

s

(r + rcore)(r + rs)2 , (3)

where rs = r200/c is the scale radius, rcore = 20 kpc is the core
radius, ρs = ρcδ200 is the density scaling of the profile, with ρc
the critical density of the Universe. The rescaling factor δ200 =
200Ωm

3
c3

f (c) , where f (c) = ln(1 + c)− c/(1 + c), rescaled the profile
to the radius at which the average density of the profile is 200
times the mean density of the Universe. fgas is the gas fraction
of the halo, here taken to be 15 %. The halo had a concentration
parameter c = 6.8, and a virial velocity v200 = 1250 km s−1.

DM particles had a mass resolution of 3.7×108 M� and were
distributed using the dice code (Perret et al. 2014). The profile
was truncated at a radius 2.2 Mpc, for a total DM halo mass of
3.4 × 1014 M�. DM particle were live and able to move under
gravity, allowing the DM potential to respond to the evolution of
the cluster core throughout the simulation.

Gas was initiated in hydrostatic equilibrium assuming a gas
fraction of 15 %, distributed according to the profile of the DM
(see Eq. 3), and then allowed to cool. As part of the initial con-
ditions, turbulence was injected into the gas with a velocity dis-
persion of 15 km s−1, but no rotation was added to the halo. This
small initial velocity dispersion in the hot gas serves to break the
symmetry of the initial conditions. Metallicity was initially set
to 0.3 Z� throughout, and the BH sinkparticle was placed in the
centre of the halo. No stars were added as part of the initial con-
ditions. In order to avoid edge effects, the halo was placed in a
sufficiently large box (8 Mpc on a side), and initiated with a gas
density of 9.8×10−8 cm−3 outside of the truncation radius of the
halo.

2.3. Cooling

The metal-dependent cooling of the gas was followed using the
tabulated values of Sutherland & Dopita (1993) down to 104 K.
The cooling function was extended below 104 K with the fitting
functions from Rosen & Bregman (1995). Solar abundance ra-
tios of the elements were assumed throughout, independent of
the overall metallicity.

2.4. Star formation and stellar feedback

Star formation proceeded according to a combined density and
temperature criterion, with star formation permitted in cells with
hydrogen number density of nH > 1 H cm−3 and temperature
T < 104 K. The mass resolution of stars was nHmp∆x3/XH =

5.6 × 104 M�, where XH = 0.74 is the fractional abundance of
hydrogen. The star formation rate density proceeded according
to a Schmidt law ρ̇∗ = ε∗ρ/tff , where ρ is the gas density, tff is the
gas free-fall time, and ε∗ = 0.1 is the constant efficiency of star
formation.

Stellar feedback was included in the form of type II super-
novae only. We used the energy-momentum model of Kimm
et al. (2015) with each stellar particle releasing an energy of
e∗,SN = m∗ηSN1050 erg M−1

� at once after 10 Myr, where ηSN =
0.2 corresponds to the mass fraction of the initial mass function
for stars ending up their life as type II supernovae, and m∗ is
the stellar particle mass. These explosions also enriched the gas
with metals with a constant yield of 0.1. Metals were treated as
a single species and were advected as a passive scalar.

2.5. Black hole accretion and feedback

AGN feedback from the central BH was followed using the
model from Dubois et al. (2010) with several modifications that
include the self-consistent evolution of the BH spin (Dubois et al.
2014) and the spin-dependent feedback efficiency (Dubois et al.,
in prep.).

A BH “sink” particle was placed at the centre of the halo as
part of the initial conditions, with a mass of 3.4 × 108 M�. The
BH was then free to move across the grid throughout the simula-
tion. To compensate for unresolved dynamical friction from the
stars within the host galaxy, an analytic drag force was applied
to the sink particle according to Pfister et al. (2019). We did not
model the equally unresolved gas drag explicitly as the difficulty
in measuring the relative velocity between the sink and the tur-
bulent ISM introduces too many numerical artifacts in the black
holes trajectory (see Beckmann et al. 2019). A particular worry
was the black hole getting attached to its own feedback and be-
ing ejected from the central galaxy, which we avoided here by
not using a sub-grid prescription for the gas drag.

The BH accreted according to the Bondi-Hoyle-Lyttleton ac-
cretion rate

ṀBHL =
G2M2

BH ρ̄

(c̄s
2 + v̄2)3/2

, (4)

where ρ̄, c̄s and v̄ are the mass weighted local average density,
sound speed and relative velocity between the gas and the BH.
All quantities were measured within a sphere with radius 4∆xmin
centred on the instantaneous position of the BH, with the BH
free to move across the grid. ∆xmin is the size of the smallest
resolution element of the simulation. Accretion was not limited
to the Eddington accretion rate.

The AGN feedback was modelled with jets following the
injection method from Dubois et al. (2010). At each feedback
event, feedback energy

Ėfeed = ηMADṀBHLc2 (5)

(where c is the speed of light) was injected as kinetic energy
within all cells contained in a cylinder of radius 0.4 kpc and
height 0.8 kpc. The cylinders was aligned with the BH spin
axis. The efficiency ηMAD is a spin-dependent efficiency obtained
from magnetically arrested disc (MAD) simulations from McK-
inney et al. (2012), which has a minimum at a spin of 0, and a
maximum at a spin of 1. The BH spin-up rate is taken from the
same simulations. The AGN jet was always taken to be aligned
with the BH spin axis, and the conditions for BH-disc alignment
in misaligned grid-scale gas angular momentum (with that of
the BH spin) is obtained by Lense-Thirring considerations (see
Dubois et al. 2014, for details). As the spin-axis changes self-
consistently throughout the simulation, we did not need to add
any explicit precession to the jet, as it naturally arises from the
chaotic nature of the cold gas accretion onto the BH (Gaspari
et al. 2013), which regularly changes the BH spin direction over
time (see Section 3.2).

As mentioned in Section 2.1, a passive scalar of density
ρscalar = ρgas was injected within the feedback cylinder at each
feedback event, where ρgas is the gas density. This scalar then
decayed exponentially with a decay time of 10 Myr, allowing
cells recently affected by the AGN jet to be identified. There-
fore, with the AGN passive scalar quantity, one can define
an age for the gas that has been impacted by the AGN, with
tAGN = −10 ln (Yscalar) Myr, where Yscalar = ρscalar/ρgas.
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2.6. Tracer particles

To follow the dynamical history of gas in the simulation we
employ Monte-Carlo based tracer particles from Cadiou et al.
(2019). These tracer particles are a significant improvement over
classical “velocity”-based tracer particles, in particular in re-
gions with strongly converging flows such as cold gas condensa-
tion and gas collapsing under self-gravity. We set up 2 × 108

tracer particles, with each particle tracing a gas mass of 4 ×
105 M�. They were initially distributed according to the gas den-
sity profile in the initial conditions, out to a radius of 200 kpc.

3. Results

3.1. Cluster evolution

As can be seen in Fig. 1, which shows the gas density, tem-
perature, AGN age (see section 2.5) and the gas radial velocity
at various times, the gas in the cluster develops a multi-phase
structure with a complex morphology that evolves significantly
over the course of the simulation. The hot gas in the intra-cluster
medium, which has temperatures in the range 0.09 − 1131 keV
(106 − 1.3 × 1010 K), cools down and condensates into dense
clumps and filaments within the central 50 kpc of the cluster,
with an average temperature of the dense gas of 4.0 × 10−4 keV
(4.6 × 103 K). This dense gas falls towards the centre where it
feeds the central BH and thereby triggers the AGN jet, which, in
return, interacts with existing dense gas and stirs turbulence into
the hot gas, generating hot outflows with outflow velocities up
to 3.5 × 104 km s−1. As the radio jet is oriented along the SMBH
spin axis, which in turn is updated according to the chaotic cold
accretion onto the central BH (Gaspari et al. 2013; Voit et al.
2017), the jet continuously re-orients throughout the simulation
(see Section 3.2 for details). As a result, the shapes of the jet
relics indicated by the “AGN age” also change significantly over
time.

More quantitatively, Fig. 2 shows that gas begins to cool after
approximately 100 Myr, equivalent to the initial cooling time of
gas in the cluster centre as set by the initial conditions. Dense
gas, for the remainder of the analysis, is defined to be gas with a
maximum temperature of 106 K. By 139 Myr, the dense gas mass
first exceeds 109 M�, and the cluster enters a cyclic behaviour
where dense gas repeatedly builds up to a total mass in excess of
2 × 1010 M� before being reduced to closer to 2 × 109 M�.

We have split the evolution of the cluster into two regimes us-
ing the total dense gas mass. A cooling dominated regime, when
the total dense gas mass of the cluster increases (marked with
a grey background in Fig. 2), and a heating dominated regime,
when the total dense gas mass of the cluster decreases. The
regime of the cluster is evaluated using the smoothed derivative
of the mass of dense gas Mgas,dense. The total dense gas mass in
the cluster can be reduced in a number of different ways: dense
gas can be consumed in star formation, accreted onto the BH or
destroyed via hot winds or shocks driven by AGN feedback.

AGN activity (see second panel of Fig. 2) is highest dur-
ing the heating-dominated phase, with maxima in dense gas fol-
lowed by maxima in AGN activity within 50 Myr or less. These
peaks in AGN activity destroy dense gas in the cluster, causing
the AGN to enter a low feedback state until the dense gas mass
has had time to build up again. Only a small fraction of the gas
is directly accreted by the SMBH, as can be seen by the fact that
the mass increase of the SMBH mass in the top panel of Fig. 2
is much smaller than the decrease in dense gas mass over the
equivalent period of time.

As can be seen in the bottom panel of Fig. 2, the star forma-
tion rate varies strongly over time, following the general trends
set by the total dense gas mass in the cluster. There are clear
bursts of star formation in the cooling dominated interval. This
suggests that a significant amount of the dense gas is directly
consumed by star formation. At peaks of up to 1000 M�yr−1, the
star formation rate of our simulated cluster is extremely high in
comparison to observations, which for equivalent mass clusters
report star formation rates in the range 1 − 100 M� yr−1 (O’Dea
et al. 2008). The dense gas mass, by contrast, falls close to the
1010 − 1011 M� observed in Perseus (Bridges & Irwin 1998; Sa-
lomé, P. et al. 2006; Mittal et al. 2015). The SFR might be so
elevated in comparison to observations because gas is cooling
too efficiently to start with, or because gas is being converted too
efficiently into stars once cooled. The latter is discussed further
in Sec. 4.1.

If gas in the cluster is cooling too efficiently, too much gas is
transitioning from the hot, diffuse phase to the dense phase. The
X-ray luminosity of the central 50 kpc of the simulated cluster
are in the range of 1.2 − 5.3 × 1045 erg s−1 , with the observed
values for Perseus of 1.26 × 1045 s−1 (Ebeling et al. 1996) at the
lower end of that range. While the initial conditions were cho-
sen to reproduce observed profiles, the emitted X-ray luminosity
increases due to the gas cooling in the cluster centre.

One limitation of the simulation presented here is the lack
of cosmological context, which means that heating due to turbu-
lence injected by large-scale phenomena, such as galaxy mergers
or anisotropic accretion, is absent. In addition, being purely hy-
drodynamical, the simulation disregards effects such as magnetic
fields and other non-thermal energy sources such as cosmic rays,
which could heat the gas and provide an extra pressure support
against collapse on small scales.

Currently, we rely on equilibrium cooling with an initially
uniform metallicity of 0.3 Z� everywhere, based on observations
of the metallicity in the outskirts of Perseus by Werner et al.
(2013). By 1 Gyr, the volume weighted metallicity in the central
50 kpc of the hot ICM has risen to 0.36 Z� due to stellar feed-
back. While this is higher than the initial value, it still falls below
the value of 0.6 observed by Schmidt et al. (2002). One possi-
bility is that equilibrium cooling assumed here over-estimates
the contribution of metal cooling at high temperatures. X-rays
emitted by the AGN could dissociate metals in high temperature
gas, reducing their contribution to cooling (Dubois et al. 2011;
Agertz et al. 2013).

If radiative transfer and non-equilibrium processes were in-
cluded, the hard X-rays emitted by the AGN would be able to
photo-ionize some important metal coolants further so that their
contribution to cooling is reduced (e.g. Gnedin & Hollon 2012;
Segers et al. 2017). As metal line cooling is the dominant cool-
ing channel for gas between 105 − 107 K, shutting down metal
cooling would hamper the transition of gas from the hot, dif-
fuse phase to the dense phase. To test this hypothesis, we ran a
simulation using a cooling function in which the metal cooling
function is modified by a kernel

fcool = exp

−
(

T
104 K

)10 , (6)

which effectively shuts off metal cooling for gas with tempera-
tures above T > 104 K. As can be seen in the bottom panel of
Fig. 2, while the initial cooling is delayed in comparison to the
fiducial simulation, SFRs remain high even with truncated metal
line cooling and the evolution of dense gas is qualitative indistin-
guishable between the two simulations. We therefore conclude
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Fig. 1: Projections of (from left to right) density, temperature, radial velocity and the time since a cell has been affected by AGN
feedback, tAGN, at five different points in time. Radial velocity and temperature are weighted by tAGN. Radial velocity is measured in
3D space with the SMBH at the origin, and negative velocities are inflowing. Contours are based on the plot of tAGN, and are drawn
at 10 (solid), 50 (dashed) and 200 (dotted) Myr. The location of the SMBH is marked by a white cross, and black contours in the
right hand column denote the outline of dense gas structures. The white dotted line lies along the instantaneous jet axis, which is
plotted to be exactly 10 kpc long in 3D space. The shorter it appears, the more it is aligned with the line of sight of the image (here
taken to be the z-axis of the box at all times).
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Fig. 2: Top panel: Time evolution of cluster properties includ-
ing stellar mass Mstar, BH mass MBH and gas mass Mgas. Middle
panel: AGN luminosity, X-ray luminosity of hot gas within 50
kpc of the cluster centre, and the dense mass again for compar-
ison. Bottom panel: SFR, as well as the dense gas mass again
for comparison, for both the fiducial simulation and for a com-
panion simulation without metal cooling for gas with T > 104

K (see text for details). Dense gas is defined to be gas with a
temperature at or below Tdense = 106 K, hot, diffuse gas with
a temperature above that. White and grey background colours
show the heating and cooling dominated regimes of the fiducial
simulation.

that metal line cooling is not the root cause of the over-cooling
reported here. It is more likely that the over-cooling occurs due
the absence of non-thermal energies from cosmic rays, which are
expected to be able to offset as much as 60 % of the thermal cool-
ing in a cluster environment (Pfrommer 2013; Jacob & Pfrom-
mer 2017a,b; Ruszkowski et al. 2017), while only contributing
on the percent level to the overall pressure (Reimer et al. 2004;
Brown et al. 2011). Due to the large reservoir of heat in cluster
outskirts, thermal conductivity in massive clusters can also be an
efficient process to bring balance back to the hot cooling gas in
the centre of clusters (Narayan & Medvedev 2001; Ruszkowski
& Oh 2010; Yang & Reynolds 2016b; Kannan et al. 2017). These
avenue of investigation will be explored in future work.

3.2. Jet evolution and turbulence in the cluster

One important difference between the work presented here, and
previous works on the subject (Li & Bryan 2014a,b; Yang &
Reynolds 2016a; Ruszkowski et al. 2017; Li et al. 2017; Cielo
et al. 2018; Martizzi et al. 2019; Wang et al. 2019) is that our jet
axis is not fixed throughout the simulation, nor do we add ex-
plicit precession. Instead, the spin evolution of the BH not only
determines the feedback energy but also, crucially, the direction
of the jet, as the jet axis is taken to be aligned with the BH spin
axis, and the BH spin axis is continuously updated according to
the angular momentum of accreted gas.
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Fig. 3: Spin evolution of the SMBH, showing the spin magnitude
(top panel), and the two angles defining the SMBH axis (second
+ third panel) and the angular momentum of the accreted gas
at that particular timestep (bottom two panels). The angles are
measured in the box frame, and are defined to be the same as in
polar coordinates, where θjet is measured in the x-y plane of the
box (shown in Fig. 1) and φjet is the angle with the z-axis (the
line of sight in Fig. 1). Angles are measured in the range 0 ≤ θ <
360◦ and 0 ≤ φ < 180◦. Discontinuous jumps from just below
the upper end of the range, to just above the lower end of the
range, or vice versa, are due to the cyclic nature of the coordinate
system. The top three panels show both the fiducial simulation,
and a second, identical simulation initiated with a higher spin
value. White and grey background colours show the heating and
cooling dominated regimes of the fiducial simulation.

Fig. 3 shows that the direction of the jet explores the full
parameter space of the simulation, repeatedly traversing the full
range of both polar and azimuthal angles (0 ≤ θjet < 360◦ and
0 ≤ φjet < 180◦). This is a consequence of the chaotic angular
momentum accreted by the SMBH. As can be seen in the bot-
tom two panels of Fig 3, the angular momentum of the accreted
gas varies extremely rapidly, both in θ and in φ, as clumps rain
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Fig. 4: Projection plots at t = 874.5 Myr, showing the central gas
disc in the cluster: Top row - density projections of the cluster
centre along two different lines of sight, Bottom left: composite
x-ray image, using the same x-ray bins as in Figure 5, Bottom
right: jetscalar weighted temperature projection. Contours mark
tAGN = 10 and 50 Myr (solid, dashed). The SMBH location is
marked by a black cross, and the jet direction is shown by a
white dotted line in the right hand panels only.

down on the BH from all directions. As the BH spin evolution
is a continuous measure, it varies more slowly than the angular
momentum of the accreted gas. The only time both the gas an-
gular momentum and the BH spin direction settle occurs in the
period t = 820−950 Myr, when both the BH spin and the angular
momentum have θ ≈ 90◦ and φ close to zero (the apparent large
gap in φ at this time is a feature of the coordinate system chosen.
φ = 2◦ to φ = 178◦ only represents a rotation of 4◦, as both 0◦
and 180◦ are aligned with the z-axis of the box). At this time a
rotating central gas disc forms around the SMBH, as can be seen
in Fig. 4,which drives jet bubbles out to more than 70 kpc from
the cluster centre. Dense clumps continue to exist at larger radii,
but are preferentially found outside the region recently affected
by AGN feedback (see solid grey contours on the image).

Our jets self-consistently produce a three-dimensional distri-
bution of fat feedback bubbles seen in Fig. 5, without the need
for adding an ad hoc precession or reorientation of the jet (as
done in e.g. Li & Bryan 2014a,b; Yang & Reynolds 2016a;
Ruszkowski et al. 2017; Li et al. 2017; Cielo et al. 2018; Martizzi
et al. 2019; Wang et al. 2019). Firstly, the jet reorientation due
to spin helps to self-regulate the cooling flow in clusters (Cielo
et al. 2018) by more uniformly redistributing the energy in the
hot gas as long as the reorientation is moderate (i.e. not too close
to mimicking isotropic energy input, see Gaspari et al. 2012).
Secondly, the reorienting jet has important consequences for the
distribution of turbulence in the cluster centre, as over time a
much larger volume is directly affected by the AGN jet. How-
ever, the bubbles shown here are less round and more broken
up than observed X-ray cavities in clusters. This is due to the
fact that in the absence of viscosity and magnetic fields, strong
Rayleigh-Taylor and Kelvin-Helmholtz instabilities at the bub-

ble surface break up bubbles prematurely and shorten their over-
all lifetime (Ogiya et al. 2018).

While we explicitly track the spin evolution of the BH, as
described in Section 2.5, the magnitude of the BH spin remains
small throughout, as can be seen in Fig. 3, with a maximum spin
parameter of 0.08. This is partially a consequence of the model
chosen, as the MAD jet model always preferentially reduces the
spin of the BH. This low spin value in turn has consequences
for the jet direction, as the jet axis is aligned with the BH spin
axis. Due to the low spin value of the BH, the chaotic angular
momentum of accreted gas (see bottom two panels of Fig. 3),
driven by the chaotic infall of the clumps, is able to significantly
realign the spin axis throughout the simulation.

As can be seen in Eq. 5, the feedback energy of the BH is
determined by the feedback efficiency ηMAD, which in turn is
determined by the BH spin. Due to the consistently low spin-
values, the simulation presented here has an average luminosity-
weighted feedback efficiency of only 0.046.

To test the consequences of a higher initial spin value of the
BH, we ran a companion simulation to our fiducial simulation.
The only difference between the two was that the companion
simulation had an initial SMBH spin value of 0.8. As can be
seen in the top panel of Fig. 3, the SMBH spin persistently de-
creases over the course of the simulation, until it converges with
the fiducial simulation after ∼ 500 Myr. While the spin is high,
the jet changes direction very slowly in comparison to the fidu-
cial simulation, as the high angular momentum of the rapidly
spinning BH makes reorientation more difficult. Once the spin
has dropped below 0.4, the jet direction changes more rapidly
and the two simulations become statistically indistinguishable.
The bubbles remain comparatively fat even in the absence of pre-
cession. This is due to the fact that our jets are very light and hot,
and therefore over-pressurized in comparison to the background
medium. While injected bimodally, the bubbles quickly expand
outwards into the surrounding medium. We note that the absence
of magnetic fields, whose wound-up helical structure along the
jet is expected to keep it confined over kpc scales (see Pudritz
et al. 2012, for a review), will have contributed to the fatness
of the bubbles. We therefore postpone a comparison between
bubble structures in a high spin and a low spin case to future,
magnetised simulations.

3.3. Dense gas structures

3.3.1. Quantifying clump morphology

As can be seen visually in Fig. 1, the dense gas in the cluster cen-
tre can be found in clumps of a wide range of sizes and shapes.
A clump is defined here to be a connected volume of space, for
which all cells have a minimum density of 1 H cm−3 and a maxi-
mum temperature of 106 K. All properties are measured by sum-
ming over all cells contained within a given clump. Tracer parti-
cles are associated with a particular clump if they are contained
within the clump volume at the point of measurement.

To quantify this parameter space, we measured the physical
extent of individual clumps using the following methodology:

1. Find the centre of mass for each clump by summing over all
cells contained within the clump, treating each cell as a point
mass located at the cell centre.

2. Calculate the clump’s mass-weighted reduced inertia tensor
using

Ii, j =
∑

n=1

mnxn,ixn, j

R2
n

(7)

Article number, page 7 of 18



A&A proofs: manuscript no. output

10 kpc

t=323.8 Myr

10 kpc

t=770.9 Myr

10 kpc

t=1022.1 Myr

Fig. 5: Synthetic composite X-ray images of the cluster centre, with 0.3-1.2 keV in red, 1.2-2 keV in green and 2-7 keV in blue, to
match the image of Perseus in Fabian et al. (2006), towards the beginning, middle and end of the simulation. Each channel is scaled
to highlight fainter features. Each image is 100 kpc across.

by summing over all cells n contained within a clump, where
xn,i is the ith coordinate of the nth cell within the clump,
measured in the centre of mass frame of the clump. Rn is the
nths cells distance from said centre of mass, and mn is its gas
mass.

3. Calculate the physical extent of the major axis rmaj by finding
the largest distance between any two cell centres contained
within the clump. To this value, ∆xmin is added to extrapolate
from the cell centres to the cell edges contained within the
clumps.

4. Find the axis vectors and axis length ratios using the eigen-
values and eigenvectors of the inertia tensor from Eq. 7.

5. Calculate the median and minor axis length, rmed and rmin
respectively, using the axis length ratios from the previous
step, and the length of the major axis, rmaj.

6. Calculate the volume of the ellipse defined by the three axes:

Vellipse =
4
3
πrmajrmedrmin. (8)

7. Calculate the volume filling fraction fV , which is defined to
be the ratio of the volume defined by the axis vectors, Vellipse
in Eq. 8, and the sum of the cell volumes contained within
the clump:

fV =
Vellipse∑

n
Vn

(9)

where Vn is the volume of the nth cell contained in the clump.
For solid, round clumps well described by an ellipse, fV will
have a value close to unity. For clumps with a complex mor-
phology, such as bent filaments and three-dimensional net-
works of filaments and clumps, the volume fraction will be
low as the axis vectors used to describe the ellipse mark the
total physical extent of the clump along a given axis vector in
3D space, and said ellipse will therefore contain many cells
outside the clump.

For further analysis, we split the population of clumps into
three categories depending on the length of their major axis rel-
ative to the mean major axis of the whole sample, r̄maj = 1.54
kpc, and the samples standard deviation σmaj = 1.42 kpc:

1. small clumps have a major axis rmaj < r̄maj = 1.54 kpc.
2. big clumps have a major axis length in the range r̄maj =

1.54 < rmaj < r̄maj + σmaj = 2.96 kpc.

3. filaments have rmaj > r̄maj + σmaj = 2.96 kpc.

Some example decompositions according to these criteria can be
seen in Fig. 6.

3.3.2. Clump properties

A variety of bulk clump properties versus axis length are shown
in Fig. 7, for the stacked sample of clumps of the whole simu-
lation. As can be seen in column (a), the distribution of major
axis lengths ranges from the resolution limit of the simulation to
very large, extended objects that have major axes of the order 10
kpc or more. The stacked sample shown here, which contains all
objects from all snapshots at all points in time of the simulation,
contains 37897 small clumps (87.4 %), 4283 big clumps (9.9 %)
and 1153 filaments (2.7 %).

As expected, smaller clumps contain less gas mass (Fig. 7,
column (b)), with a minimum gas mass for the current resolu-
tion of 5 × 105 M�, and an average value of 1.8 × 107 M� for
small clumps and 1.1×108 M� for large clumps. The population
of filaments is much more massive, with an average gas mass
of 2.5 × 109 M�. Structures with a mass above 109 M� are all
classified as filamentary. This lower mass limit for gas clumps
is determined by the resolution. As we tested with a compan-
ion simulation, in which we reduced ∆xmin to 30 pc, i.e. a fac-
tor 4 smaller than in the fiducial simulation. With this improved
resolution, the gas structures fragment further into even smaller
clumps, with a new minimum mass of 2.2 × 103 M�, and a new
minimum axis length still approaching the resolution limit. This
suggests that the shattering into smaller structures is by no means
complete, and with even more resolution, the clumps would con-
tinue to break apart, as in the "cloudlet" model by McCourt et al.
(2018). However, larger, filamentary structures continued to ex-
ist even in the higher resolution simulation.

In terms of shape, smaller clumps have higher values of fV ,
so they are indeed much more compact (column (c), Fig 7). Val-
ues of fV > 1 can occur for compact objects when the axis length
for the median and minor axis are under-estimated in compari-
son to the true extent of the clump which happens mainly for
clumps with less than 20 cells. However, the volume of the el-
lipse used to fit the clump never exceeds that of the sum of the
cells contained in the clump by more than 40 %. More extended
objects have fV far below unity, which is an indicator of complex
morphology. The most clumpy filament produced in this simula-
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Fig. 7: Clump properties for the whole sample (bottom row) and split into the three structure categories (top two rows). From left to
right: clump gas mass Mgas, volume ratio fV , distance between the clump centre of mass and the cluster centre rcentre, bulk velocity
vr and gas velocity dispersion within the clump σgas,radial. The probability distributions φ in the top row is mass weighted, while the
one in the row below is unweighted.

tion still has fV < 0.7 so large clumpy structures do not form at
any point of the simulation.

Small and big clumps have a similar radial distribution (col-
umn (d), Fig. 7) and are preferentially found between 3− 10 kpc
from the cluster centre. Filaments, on the other hand, include
both a subsample found at large radii, and a sample of partic-
ularly extended structures in the cluster centre, an example of

which can be seen in the right hand panel of Fig. 6. This sug-
gests that gas structures merge into larger objects as they reach
the cluster centre, consistent with a model in which small struc-
tures rain down onto a central massive gas structure. This struc-
ture can take the form of a massive gas disk, as for example seen
in Li & Bryan (2014a) and briefly also in the simulation pre-
sented here (see Fig. 4), or in the form of an extended but not
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rotationally-supported object such as the one in the right hand
panel of Fig. 6, or the gas structures seen in the first, third and
fourth snapshot of Fig. 1.

In velocity space, all three populations are similarly dis-
tributed (column (e), Fig. 7), with no discernible difference in
the unweighted probability distribution of small and medium
clumps, as well as filaments. The mass-weighted distribution
in the top row shows that all three categories of structures are
preferentially infalling (i.e. have vr < 0). The time-stacked
sample of the simulation has an unweighted mean radial ve-
locity of 75 km s−1, with a full width half max of 198 km s−1,
where radial velocity is measured in 3D space with the SMBH
at the origin. Negative values denote gas falling towards the
SMBH. These values are comparable to observed bulk veloci-
ties of 100 km s−1 but are at the upper end of observed veloc-
ity widths of 100 − 218 km s−1 for molecular gas in Perseus
(Salomé, P. et al. 2008; Hitomi Collaboration 2016; Gendron-
Marsolais et al. 2018). By comparison, they fall easily within
the range of observed velocity widths for warm ionised gas in
massive clusters (Hamer et al. 2016). We note that, in contrast
to the observational values, the full width-half max calculated
here is calculated across the entire time-stacked sample, not just
along the line of sight. While the mean and dispersion values
show good agreement with observations, the sample of clumps
presented here has an overall larger velocity range than found in
cold-gas maps of nearby clusters, which report velocity values
across the map in the range of 350 km s−1 at most (Olivares et al.
2019; Gendron-Marsolais et al. 2018).

The velocity dispersion σgas,radial is defined to be the veloc-
ity dispersion of the radial velocities of all resolution elements
within an individual clump. It therefore quantifies the range of
velocities found within an individual object. Clumpy structures,
both small and big, have a low velocity dispersion (column (f),
Fig 7), i.e. a small range of radial velocities, with an average
value of just 90 km s−1. The bulk of the filaments, despite ma-
jor axis lengths of 10 kpc or more, have radial velocity disper-
sion of less than 200 km s−1 but there is a small population of
high-velocity dispersion objects with σgas > 200 km s−1, which
is preferentially populated by filaments: They make up 28 % of
the high dispersion objects versus only 2.7 % of the total sample.

Dynamically, the clumps are therefore a surprisingly uniform
population, despite more than 2 orders of magnitude in size dif-
ference, and more than 4 orders of magnitude in mass range. Gas
properties across all three populations are also similar, with a
temperature range of 10−106 K (the latter being the cut-off tem-
perature for the definition of a dense gas structure in this paper),
and densities in the range of 1− 105 H cm−3. The bulk of the gas
has a temperature around 104 K and a density of 10−103 H cm−3.
This is not to say that all objects have the same properties at a
given point in time, but that all types of objects can be found at
all points in phase space at some point throughout the simula-
tion.

The morphology and distribution of objects can vary strongly
on a 5 Myr timescale, as can be seen in Fig. 8. Overall, the
number of structures at all points in time is dominated by small
clumps, which are always the most abundant and make up
87.4 % of the time-integrated sample. During some parts of the
cooling-dominated phase, they also contain the bulk of the dense
gas mass, such as around 400 Myr and at 500−550 Myr. The rest
of the time, the bulk of dense gas mass can be found in filaments,
despite the fact that they only make up 2.7 % of the overall sam-
ple by number. Big clumps contain dense gas mass on the order
of that contained in the small clumps, but represent 9.9 % of the
total number of objects.
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Fig. 8: Time evolution of (from top to bottom) the number, total
dense gas mass, mean gas mass and mean distance to the cluster
centre for the three structure categories. In the bottom two pan-
els, solid lines show the mean and shaded regions the range from
the 10th to the 90th percentile of the distribution. The dashed
grey line in all plots shows the AGN luminosity for comparison.

From Fig. 8, strong bursts of AGN feedback are followed by
a strong increase in the number of small clumps, as well as an
equally strong drop in both the total mass of gas contained in fil-
aments (second panel) and the average mass of gas per filament
(third panel). At the same time, the average radial distance be-
tween the cluster centre and a clumps centre of mass increases
(bottom panel). While the bulk of clumps can usually be found
within the central 20 kpc of the cluster, strong AGN outbursts
produce clumps at much larger radii, up to 50 kpc from the lo-
cation of the cluster centre. This suggests a scenario where large
objects are being shattered into smaller clumps during their in-
teraction with strong AGN jets, and highlights the importance of
the AGN jet not just for slowing down cooling onto the cluster
centre but also for the morphology and kinematics of the exist-
ing dense gas structures. The details of this interaction will be
explored further in the next section.

3.4. Uplifting

Uplifting has been used to explain the unstructured velocity pro-
files observed in nearby clusters (Pulido et al. 2018; Gendron-
Marsolais et al. 2018). When talking about uplifting dense gas
in clusters, two different mechanisms need to be distinguished.
On the one hand, there is the entrainment of existing dense gas
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by the AGN driven outflows, which turns previously infalling
dense gas into outflowing dense gas, which will be discussed in
this section. Alternatively, outflowing dense gas could form via
condensation at large radii, when gas is uplifted from the cluster
centre by AGN jets, before being deposited at larger radii, where
local entropy conditions then allow gas to condense Voit et al.
(2017); Voit (2018).

The impact of one interaction between the AGN jet and
the dense gas in the cluster centre, namely the outburst at
320 − 400 Myr, is shown visually in Fig. 9: at t = 323 Myr
(top left), the dense gas is predominantly infalling and con-
tained in radially oriented filaments. At this point in time, the
filaments contain Mgas,filaments = 1.7 × 1010M�, i.e. 76 % of the
total dense gas mass, with an average gas mass per filament of
M̄gas,filaments = 1.47 × 108 M�. As the AGN outburst commences,
fed by this infalling dense gas (t = 338 − 356 Myr, middle and
top right panel), the filaments are broken into small and medium
size clumps, and their velocity turns from infalling to outflowing.
By 371 Myr (bottom left), gas is predominatly outflowing, and
the total mass budget of 8.8 × 1010 M� is evenly split between
small clumps, medium clumps and filaments. The filaments that
continue to exist are much less massive, with an average mass of
just M̄gas,filaments = 4.2 × 107 M�.

By t = 388 Myr, the gas has reached its largest radial extent
for this episode and is beginning to fall back onto the cluster
centre in the form of a shower of small, distinct clumps. From
371.9 Myr to 388.5 Myr, the total gas only increases by 5 %,
from 8.8 × 1010 M� to 9.3 × 1010 M�, but the total number of
objects triples as objects continue to break apart, from 244 at
371.9 Myr to 651 individual objects by 388.5 Myr. By this point,
small clumps dominate the population, as they represent 94 % of
objects and contain 64 % of the total gas mass, with a further
27 % contained in big clumps.

The timeseries of the number of different objects in the top
panel of Fig. 8 shows that this behaviour is generic for the cluster
presented here. Following a strong feedback outburst, the num-
ber of small objects spikes, while the total gas mass and the av-
erage mass per filament decrease strongly. At the same time, the
average distance for objects of all categories increases as they are
ejected from the cluster, with the outermost small clumps being
found as far as 40 kpc or more from the cluster centre.

Looking directly at the number of inflowing and outflowing
objects, as shown in Fig. 10, strong AGN feedback bursts are fol-
lowed by a spike in the number of outflowing objects, as larger,
filamentary structures are entrained and broken up by the hot
winds of AGN feedback and lifted to larger radii. As gas is evac-
uated from the cluster centre the AGN turns off. The entrained
clumps then decelerate under gravity and fall back onto the clus-
ter centre. During this process, they shatter into even smaller
components so the number of individual objects continues to in-
crease even after the AGN has become quiescent again. As the
small clumps fall back onto the cluster centre, they coalesce and
trigger another strong outburst of AGN feedback, which repeats
the cycle. The results presented in this paper are similar to work
by Yang & Reynolds (2016a), who presented evidence for ex-
isting dense gas to be redistributed by the AGN jet. Contrary to
their work, the dense gas in the simulations presented here is not
indestructible. In our simulations, only 25 % of the dense gas
survives its interaction with the hot jet. It gets entrained by the
AGN driven outflows and lifted to large radii. We note that, with
a temperature cut of 106 K, the gas discussed here is equivalent
to the ionised dense gas seen in observation, not to the molecular
gas. We expect that if we were able to adequately distinguish be-

tween ionised warm gas and molecular cold gas, the molecular
gas would be much more difficult to uplift by the AGN jet.

This is surprising in the context of work by Klein et al.
(1994), who showed that for adiabatic cold structures in hot
winds, the drag timescale tdrag ≈ χrclump/vwind is always longer
than the clump crushing timescale tcc ≈ χ1/2rclump/vwind, where
χ is the density contrast between wind and cold clump, rclump is
the clump radius and vwind is the relative velocity. It should there-
fore be impossible to accelerate cold clumps with a hot wind.
However, recent work by Gronke & Oh (2018) shows that ra-
diative cooling can replenish the cold clump mass from the hot
gas during uplifting and thereby dramatically increase the clump
lifetime. Under these assumptions, clumps with radii larger than
rclump > vwindtcool,mixing/χ, where tcool,mixing is the cooling time
in the mixing layer surrounding the cold clumps, should sur-
vive the uplifting process, as cooling from the hot to the cold
phase replenishes gas faster than cold gas from the clumps is
being evaporated. For the simulation presented here, the maxi-
mum outflow velocities in the vicinity of clumps is of the order
104 km s−1, the cooling time in the mixing layer around clumps is
of the order 0.1 Myr and the density contrast χ ≈ 104. Therefore,
clumps with a minimum value of rclump ≈ 1 pc should survive
their interaction with the hot wind, which is much smaller than
the smallest cell size of 120 pc. While poorly resolved clumps
most likely lack this mixing layer, and are therefore destroyed
during the jet interaction, well-resolved cold clouds would be
expected to survive their interaction with the hot outflows and
become entrained without being destroyed, as shown in Fig. 9.
These results are also in agreement with work by Armillotta et al.
(2017), who show that the bulk of cold gas in clouds with radii
above 250 pc survives being accelerated by a hot wind for 200
Myr. It is however likely that the 25 % of dense gas that survives
the interaction in our simulations is an overestimate, as work by
Sparre et al. (2019) showed that more highly resolved clouds
shatter more efficiently during their interaction with hot winds
and therefore have shorter overall lifetimes than less resolved
clouds.

In comparison to the observed velocity maps for Hα emitting
gas in Perseus by Gendron-Marsolais et al. (2018), the velocity
maps from our simulation (as shown in Fig. 9) are much more
coherent, with clumps either predominantly infalling or outflow-
ing in a given map. In this context we note that the maps in Fig.
9 show an unusual period for our cluster, i.e. the only AGN out-
burst during which the number of infalling clumps fall almost
to zero (see Fig. 10). This episode was chosen for analysis as
it illustrates uplifting by AGN feedback particularly cleanly. At
other points in time, dense gas can be observed to be inflowing
and outflowing at the same time in our simulation, due to the
directionality of the jet and the limited width of the jet cone.

It is also important to remember that the observed veloci-
ties are line-of-sight velocities, while Fig. 9 shows radial ve-
locities. As can be seen visually in Fig. 11, which shows both
radial velocities (top row) and line-of-sight velocities (bottom
row) for an inflowing dominated (left column), an outflow dom-
inated (middle panel) and a mixed (right column) point in time,
the line-of-sight velocities appear less ordered than the radial ve-
locities. The outflow or inflow dominated nature of the flow (left
or middle panels respectively) cannot easily be recovered from
line-of-sight velocity maps. This difficulty in distinguishing be-
tween flow patterns in the frame of the cluster, and line-of-sight
flow patterns, is even more obvious in Fig. 12, which shows the
radial velocity probability distributions for the three snapshots
in Fig. 11, as well as that for the three line-of-sight velocities
(here aligned with the x-axis, y-axis and z-axis of the box re-
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Fig. 9: (a) Visual time evolution of one episode of AGN feedback that starts around t = 350 Myr. Only the dense gas is plotted.
The colourmap shows the radial velocity of the gas, with negative values denoting infall, with the background colour set to grey for
clarity. The location of the BH is marked by a cross, and the contours show the extent of the AGN feedback bubbles produced by
the feedback event that starts at t = 323 Myr. (b) Time evolution of dense gas mass contained in the three categories over the same
period of time. Vertical grey lines mark the outputs shown in the top panel.

spectively). In all three cases, the line-of-sight velocities fail to
recover the radial velocity pattern and predict a more gaussian-
like pattern with a mean velocity close to zero. The Gaussian
distribution of line-of-sight velocities is expected for infalling or
outflowing gas distributed roughly spherically around the cluster
centre. The chaotic velocity patterns observed in nearby clusters
are therefore not necessarily evidence for the absence of coher-
ent radial flows of the gas.

3.5. Condensation

As first proposed in McCourt et al. (2012), and then shown in
idealised simulations by Sharma et al. (2012), dense gas can

form out of the hot ICM via local thermal instability, even if
the cluster is globally thermally stable. Condensation can happen
when locally, tcool/tff falls below 1, and is suppressed for higher
values. With sufficient uplifting of gas from the cluster centre,
condensation can occur for larger values of the radial tcool/tff pro-
file, up to the range of 10 − 30 (Voit et al. 2017; Voit 2018), as
also seen in observations (Hogan et al. 2017; Pulido et al. 2018;
Olivares et al. 2019).

In the simulation presented here, we used the tracer particles
to estimate the condensation rate of dense gas. As each tracer
particle has a unique identification number and traces 2×104 M�
of gas mass, the trajectories of tracer particles can be used to
track gas flows throughout the simulation. The total mass of
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Fig. 10: Time evolution of the total number of inflowing and
outflowing clumps. The AGN luminosity is shown as a dotted
line for comparison. The solid background highlights the event
shown in Fig. 9.

gas transferred from the hot, diffuse to dense phase between
two simulation outputs can be estimated by counting the number
of tracer particles that pass from the diffuse phase to the dense
phase between two simulation outputs. The condensation rate
Ṁcondensed is then found by dividing the newly condensed gas
mass Mcondensed by the time it took to assemble it.

As can be seen in the left hand panels of Fig. 13, our simula-
tion confirms that condensation primarily occurs when tcool/tff <
20. This is somewhat higher than prediction from idealised cool-
ing simulations (Sharma et al. 2012; McCourt et al. 2012), most
likely because the hot gas along the jet drives up the spherically
averaged cooling time, but in line with observed values (Hogan
et al. 2017; Olivares et al. 2019). Profiles of tcool/tff during the
cooling dominated phases, which produce the bulk of the con-
densation, are generally ordered, with a clear minimum around
10 kpc. During heating dominated phases, by contrast, profiles
show a much wider range of shapes as gas heated by the AGN
rises to large radii in the form of hot bubbles, which signifi-
cantly increase the cooling time both in the centre and at larger
radii. Some condensation continues during the heating domi-
nated phases, and while the condensation remains confined to
< 20 kpc from the cluster centres, the values of tcool/tff can be as
high as 50 even for actively cooling clusters. We postulate that
this continued condensation is due to the multiphase structure of
the ICM and the directionality of AGN feedback. Both tcool and
tff are calculated for the hot ICM only, and it takes even strong
AGN feedback bursts some time to reach large volume filling
factors and shut off condensation completely.

This hypothesis is confirmed by the condensation time-series
in Fig. 14, which shows that condensation is highest towards the
minimum of heating-dominated phases and falls to zero as the
AGN feedback continues of impact the ICM. Fig. 14 also shows
that at the end of cooling-dominated phases, condensation oc-
curs preferentially onto filamentary structures, but by the end of
heating-dominated phases and the beginning of the next cooling-
dominated phases, condensation occurs preferentially onto small
and big clumps, in line with the uplifting - shattering - reconden-
sation picture presented in Section 3.4.

As can be seen in Fig. 14, the total condensation rate of the
cluster varies with time, ranging from a minimum of 3 M� yr−1

at the beginning of cooling dominated intervals to a maximum
of up to 1.8 × 103 M� yr−1 towards the end of cooling domi-
nated phases. While the bulk of condensation takes place onto

filaments, smaller and big clumps dominate when condensation
rates are low. As discussed in the context of the clusters SFR in
Section 3.1, this condensation rate is high in comparison to the
observed condensation rate for Perseus, which is in the range of
50 − 100 M� (Fabian 2012). In future work, we will explore if
this over-cooling occurs because of the omission of non-thermal
energies from cosmic rays in the work presented here, which
are expected to be able to offset as much as 60 % of the ther-
mal cooling in a cluster environment (Pfrommer 2013; Jacob &
Pfrommer 2017a,b; Ruszkowski et al. 2017).

While the areas of high condensation rate are confined to
the minima of the tcool/tff profiles, dense gas can be found over
a much wider range of radii (see righthand panels of Fig. 13),
and significant amounts of dense gas can also be observed dur-
ing heating-dominated times. This is due to the fact that existing
dense gas free-falls onto the cluster centre from its formation lo-
cation around 10 kpc, and is uplifted to larger radii due to its
interactions with AGN feedback. The location at which dense
gas is observed is therefore not a perfect proxy for where it is
formed, as the kinematics in active clusters are complex and sub-
ject to hysteresis.

This can be seen in more detail when comparing the radial
and velocity distributions for stacked samples of newly con-
densed gas (left panel) and dense gas (right panel) in Fig. 15.
While some amount of condensation occurs over the full pa-
rameter space of radii and velocities occupied by dense clumps,
the distribution in both radius and velocity is different for newly
condensed gas and dense gas in general. As shown in both the
mass distribution in Fig. 15, and in the probability distributions
in Fig. 16, dense gas is preferentially found at the cluster centre,
whereas condensation preferentially occurs at larger radii, with
a peak of the distribution at 10 kpc. In velocity space, both exist-
ing dense gas and new condensation are preferentially infalling,
but condensation has a broader distribution towards negative val-
ues, with a mean velocity at −155.6 km/s for condensation com-
pared to −104.3 km/s for dense gas. Overall, only 75.9 % of gas
is infalling, while 82.1 % of condensation occurs onto infalling
clumps. This means that while the bulk of newly condensed gas
is infalling, with an average condensation rate onto inflowing gas
of 2.56 M� yr−1, there is also evidence for gas condensation onto
outflowing clumps, which have an average condensation rate of
1.05 M� yr−1.

We therefore conclude that condensation occurs preferen-
tially onto infalling clumps within the radial range of 5 − 15
kpc, but approximately a fifth of all condensation occurs onto
outflowing gas.

4. Discussion

In this paper, we have studied the formation, evolution and de-
struction of dense gas in the centre of a Perseus-like cluster, un-
der the influence of a spin-driven AGN jet. We have particularly
focused on the role played by uplifting and condensation in the
kinematics and morphology of the dense gas.

4.1. Cooling and star formation

As reported in Section 3.1 and shown again in Fig. 17, the star
formation rate of the cluster (solid line) is much higher than ob-
served values for Perseus, such as for example the 71 M� yr−1

measured by Mittal et al. (2015) (dotted line). As discussed in
Section 3.1, this could be due to an overly high cooling rate of
the gas, or because too much of the resulting dense gas is turned
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Fig. 11: Density weighted velocity projections of the dense gas at three different points in time. The top row shows the radial velocity
for each snapshot, the bottom row the corresponding line of sight velocity (here chosen to be the z-axis of the simulation box).
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simulation box respectively, for the three snapshots in time shown in Fig. 11.

into stars. To compare the star formation efficiency of the cluster
with observation, Fig. 17 shows both the total dense gas conden-
sation rate Ṁcond from Fig. 14 and a naive cooling rate, defined
as

Ṁcool,naive =
Mgas(r < rcool)

tcool(rcool)
(10)

following McDonald et al. (2018), where Mgas(r < rcool) is the
total gas mass contained within the cooling radius rcool, which in
turn is defined to be the radius at which the cooling time profile,
tcool(r) = 3 Gyr.

As can be seen in Fig. 17, both the time series and the aver-
age value for Ṁcool,naive are a factor 2-4 higher than the observed
value, except during the disc-dominated stage between 850 - 950
Myr. By contrast, the dense gas condensation rate, Ṁcond shows
significant variablity but has a time-averaged value that is close
to the naive observed cooling rate. It is also noticeably lower
than the naive cooling rate, suggesting that reheating by the AGN
keeps the majority of cooling gas from cooling efficiently and
prevents it from condensating into dense gas.

Looking at the resulting star formation efficiencies (εcool,
bottom panel), the average value of εcool = SFR/Ṁcool,naive =
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Fig. 14: Time evolution for the gas condensation rate onto the
dense structures in the simulation. See text for how the conden-
sation rate is calculated.

0.19 ± 0.27 is only slightly higher than the εcool = 0.16 reported
by (McDonald et al. 2018), but the scatter on this value is large.
The error on εcool given here is equal to one standard deviation
of the distribution. Looking at the efficiency of converting dense
gas into stars, εcond = SFR/Ṁcond = 0.76 ± 1.37 means that the
majority of dense gas is turned into stars. This shows that de-
spite individual cold clumps loosing as much as 75% of their
mass during interactions with strong feedback episodes such as
the one shown in Fig. 9, only about a quarter of the total dense
gas is returned to the hot phase in this manner. Destroying dense
gas once it has condensed is therefore not an efficient mechanism
to regulate star formation in the cluster. Given the large variation
in εcond, the instantaneous SFR is not a reliable tracer of Ṁcond,
the cold gas formation rate of the cluster. It is possible that we
overestimate the star formation rate in dense gas, as we use a
comparatively simple density-based star formation recipe of the
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Fig. 15: Phase plot of the total condensation rate (left) and total
dense gas mass (right) over a range of radial positions and radial
velocities of the clumps. Data shown here is stacked over all
clumps at all snapshots of the simulation.

form ρ̇∗ = ε∗ρ/tff , which does not take the effects of small-scale
turbulence into account, and could therefore be too efficient for
the context shown here (Shi et al. 2011; Salomé et al. 2016).

Fig. 17 also shows that in general Ṁcool,naive >> Ṁcond, so
the vast majority of gas that cools out of the hot phase does not
reach the dense phase, and is instead reheated by the AGN be-
fore condensing fully. As already known from the classic cooling
flow problem and confirmed here more quantitatively, Ṁcool,naive
is therefore not a good tracer of the overall cooling budget of the
cluster as Ṁcond/Ṁcool,naive = 0.38 ± 0.27 on average, with the
error again denoting a standard deviation.
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4.2. Filament lifetimes

One notable result of our simulations is that extended gas struc-
tures form preferentially during comparatively AGN quiet times,
and are readily destroyed in the interaction with AGN feedback.
While this interaction between dense gas and AGN feedback is
one of the requirements for effective self-regulation of cooling in
the cluster, it also means that the lifetime of filaments is limited
by the length of AGN duty cycles. While as much as 25 % of the
dense gas mass survives the interaction with the hot, AGN driven
outflows, larger structures are broken into smaller structures in
the process. The result is a volume-filling distribution of small
clumps, which are at first outflowing and then fall back onto the

cluster centre. Such a clumpy morphology of the dense gas is not
supported by observations, which show more extended, filamen-
tary structures (Conselice et al. 2001; Fabian et al. 2006). Two
possible explanations come to mind.

One possibility is that the dense filaments are too readily de-
stroyed in our simulations. If physical processes not modelled
here, such as notably magnetic fields, could support the filaments
against fragmentation, they might survive their interaction with
the AGN jet and retain their extended morphology for longer.
This hypothesis is supported by work on the survival rate of iso-
lated clumps accelerated by hot, magnetised winds (Shin et al.
2008; McCourt et al. 2015; Xu & Lazarian 2018), which show
that magnetised winds draw spherical clouds out into extended,
filamentary structures instead of evaporating them or breaking
them into smaller clumps. From this point of view, we over-
estimate the fragmentation rate of dense filaments into the hot
ICM.

The other possibility is that we underestimate the ability of
AGN feedback to destroy dense clumps, for example by under-
resolving the mixing layers at the outer clump surface (Gronke &
Oh 2018), or simply due to lack of resolution to follow the frag-
mentation process to smaller scales. This hypothesis is supported
by our high-resolution companion simulation, which showed
that the fraction of dense gas that survives this particular up-
lifting event falls from 25 % at a resolution of ∆xmin = 120 pc to
19 % at a resolution of ∆xmin = 30 pc. The fact that the minimum
clump size remains at the resolution limit shows that this process
is by no means converged, and higher resolution would likely
lead to even smaller clumps and even lower dense gas survival
rates. This question has been investigated further by McCourt
et al. (2018), who report that for individual clouds accelerated
by a hot wind, even a sub-pc scale resolution is insufficient for
fragmentation to converge. Based on work by Armillotta et al.
(2017), the survival rates for small gas clumps in hot winds is
very low, which suggests that we would expect the gas currently
contained in our small, compact gas clumps to break into an even
large number of even smaller clumps until it evaporates entirely
and mixes back into the ICM. From this point of view, we are
under-estimating the fragmentation rate of small clumps, as well
as under-estimating the ability of the AGN to evaporate dense
gas.

4.3. The width of filaments

Throughout this paper, we have shown that extended dense gas
structures readily form in the cluster centre. While our filamen-
tary dense gas structures show maximal extents of 1-10 kpc, in
agreement with observations (Conselice et al. 2001), many of
our structures appear much wider than the observed 70 pc. Res-
olution will play a role in determining the width of the filaments,
particularly for very thin filaments which currently have a width
close to the resolution limit, such as the long, thing structures
seen in the left two panels of Fig. 6. A comparison simulation
with higher resolution of ∆xmin = 30 pc, run for only a span of
15 Myr, produced thinner filaments than the fiducial simulation
at 120 pc. However, many filaments seen in the fiducial simu-
lation, such as for example the extended structures in the right
hand panel of Fig. 6, are well resolved at the current resolution
and therefore not influenced by improvements in resolution.

One process not modelled here, which is thought to play an
important role in the morphology of filaments, is anisotropic
thermal conduction along magnetic field lines. In the presence
of anisotropic thermal conduction, in combination with mag-
netic fields, the characteristic thermal collapse length scale (the
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field length) becomes much larger along field lines than per-
pendicular to it (Field 1965), as thermal energy is preferentially
redistributed along field lines. Collapse therefore preferentially
occurs perpendicular to magnetic field lines, smearing spheri-
cal collapse out along magnetic field lines. Isolated simulations
have shown that in the presence of magnetic fields, local thermal
instabilities do indeed produce more extended filamentary gas
structures (McCourt et al. 2012; Ji et al. 2018; Xu & Lazarian
2018) compared to more clumpy dense gas for the purely hy-
drodynamical runs. While this process could help smear dense,
round clumps into long, extended filaments, it is unlikely to
make the existing filaments thinner. Understanding why the fil-
aments reported here take their particular shapes, and how their
morphology might change in the presence of magnetic fields and
cosmic rays, will be the subject of future work.

Another limitation of our work is that with many structures
shown here at the resolution limit of the simulation, it will be
impossible to resolve the detailed internal structure observed for
filaments, which consist of dense molecular clumps surrounded
by an H-α envelope (Salomé, P. et al. 2006; Salomé et al. 2011).
With a more complex internal structure and gas dynamics, we
would expect the energy balances of filaments to change, with
as of yet poorly understood consequences for their morphology.

5. Conclusions

In this paper, we have investigated the formation and evolution
of dense gas in the centre of a Perseus-like cluster under the in-
fluence of a spin driven AGN jet, using hydrodynamical simula-
tions.

We showed that:

1. Under the influence of the AGN jet, the cluster undergoes re-
peated cycles of cooling dominated phases, when dense gas
builds up in the cluster centre, and heating dominated phases,
when the total amount of dense gas decreases. Cycle lengths
are on the order of 100 Myr, but show significant variation.
(Section 3.1)

2. For low black hole spin values, the chaotic cold accretion
onto the cluster centre is able to continuously reorient the
spin axis, with characteristic reorientation timescales of the
order of 10 Myr, allowing the jet to sweep out the full param-
eter space in both polar and azimuthal angle. (Section 3.2)

3. The morphology of dense gas is highly variable throughout
the simulation, with between 20 and 620 individual dense
structures present at a given point in time. (Section 3.3)

4. Major axis lengths of individual clumps range from the reso-
lution limit of the simulation up to more than 30 kpc. Larger
clumps have more complex, filamentary morphologies than
smaller objects, which tend to be rounder and compacter.
(Section 3.3)

5. We find evidence for uplifting of existing dense gas by the
AGN, with dense gas defined to have a maximum temper-
ature of 106 K. During a strong feedback episode, larger,
infalling structures fragment into smaller clumps under the
influence of the hot outflows driven by the AGN. In the pro-
cess, they lose up to 75 % of their gas mass and become
entrained and ejected from the cluster centre. (Section 3.4)

6. Despite these high mass loss rates for individual clumps,
75.7 % of the total dense gas is turned into stars during the
course of the simulations. Despite individual clumps loos-
ing up to 75 % of their mass during interactions with AGN
jets, destruction of dense gas via AGN feedback is therefore
not an efficient channel to regulate star formation in clusters.
(Section 4.1)

7. A second round of fragmentation into even smaller clumps
occurs at the top of the ballistic orbit, before surviving
dense clumps fall back onto the cluster centre where they
re-coalesce into larger objects. (Section 3.4)

8. Condensation takes place preferentially when tcool/tff < 20,
which occurs primarily during cooling dominated phases of
the cluster, and in the radial range of 5−15 kpc. Heating dom-
inated phases see more disturbed profiles of tcool/tff without a
clear minimum as the ICM is heating by the AGN feedback.
(Section 3.5)

9. Dense gas continues to be observable even during heating-
dominated phases, and is preferentially found at smaller radii
than condensation, i.e. at r < 5 kpc, but can be found as far
out as 30 kpc due to uplifting. The presence of dense gas is
therefore not a reliable tracer for condensation. (Section 3.5)

10. While 82.1 % of condensation of gas from the hot ICM
onto dense clumps occurs on infall, there is also evidence
for continued condensation for outflowing gas, with out-
flowing dense clumps having an average condensation rate
of 1.06 M� yr−1, compared to 2.56 M� yr−1 for infalling
clumps. (Section 3.5)

11. Both direct uplifting of dense gas and condensation of gas
from the hot, diffuse to the dense phase in outflowing gas
has been invoked to explain the unstructured velocity maps
observed in nearby clusters. While we find evidence for both
mechanisms, and confirm a general lack of rotation in the
dense gas, we also caution that the observed line of sight ve-
locities fail to show coherent radial flow patterns even when
they are present in the dense gas (Section 3.4).

12. Neither the naive cooling rate Ṁcool,naive nor the SFR are re-
liable observational tracers of the cold gas formation rate
Ṁcond. (Section 4.1)
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Sujet : L’impact des grandes structures de l’Univers sur la formation des
halos de matière noire et des galaxies

Résumé : À grande échelle, il est frappant de voir que la distribution anisotrope de la matière forme

un large réseau de vides délimités par des murs qui, avec les �laments présents à leurs intersections,

tissent la toile cosmique. La matière qui doit former plus tard les halos de matière noire et leurs galaxies

a�ue vers les nœuds compacts se situant à l’intersection des �laments et garde dans ce processus une

empreinte de la toile cosmique.

Dans cette thèse, je développe une extension contrainte de la théorie de l’excursion dans son approximation

dite “du franchissement vers le haut” pour prédire la masse, le taux d’accrétion et le temps de formation

des halos de matière noire au voisinage des proto-�laments (qui sont identi�és comme des points-selles du

potentiel). Les points-selles sont utilisés comme un référentiel local dans lequel l’évolution des propriétés

physiques et morphologiques des galaxies est quanti�ée aux grandes échelles. À masse �xée, le modèle

prédit que le taux d’accrétion et le temps de formation varient avec l’orientation et la distance au point-

selle, con�rmant que le biais d’assemblage est sensible aux forces de marées de la toile cosmique. Les halos

peu massifs, s’étant formés tôt et “a�amés” sont regroupés le long de l’axe principal des �laments, tandis

que les halos plus massifs, plus jeunes sont répartis autour des nœuds. Les di�érents gradients observés

pour di�érentes quantités, tels que la masse typique et le taux d’accrétion, ont pour origine l’anisotropie

du point-selle et leur dépendance distincte aux moyennes et aux variances du champ. Pour les faibles

décalages vers le rouge, ce modèle prédit qu’à masse �xe il y a un excès de galaxies rouges dans des

directions préférentielles, comme l’ont montré des relevés spectroscopiques (GAMA) et photométriques

(COSMOS), mais aussi les simulations hydrodynamiques (Horizon-AGN).

J’ai également calculé les taux de fusions par analyse multi-échelle des conditions initiales pour prédire

l’assemblage anisotrope des halos et comprendre son impact sur la formation des galaxie. Outre les fusions

de halos, j’ai aussi pris en compte les fusions de murs et de �laments qui ont un e�et sur l’accrétion

galactique et j’ai calculé leurs statistiques à un et deux points en fonction du temps cosmique. J’ai

établi le lien entre les taux de fusion et la connectivité. J’ai ensuite exploité ce lien pour estimer l’e�et

des structures à grande échelle sur le biais d’assemblage. Cette théorie décrit l’anisotropie de la toile

cosmique, qui est un élément important pour décrire conjointement l’évolution de la physique et de

la dynamique des galaxies dans leur environnement, en particulier les alignements intrinsèques ou les

diversités morphologiques.

A�n d’étudier l’accrétion cosmique à de plus faibles échelles, j’ai implémenté une nouvelle méthode de

particules traceuses dans le code à ra�nement de grille adaptatif Ramses. Cette méthode est basée sur un

échantillonnage de Monte-Carlo et est capable de reconstruire la trajectoire lagrangienne du gaz et son

retraitement. Je démontre que la distribution spatiale des particules traceuses reproduit précisément celle

du gaz, et je propose une extension capable de suivre tout le cycle des baryons dans leurs échanges avec

les étoiles et les trous noirs. Cette approche est particulièrement adaptée aux problèmes astrophysiques

qui requièrent simultanément d’avoir une résolution e�cace des chocs avec un solveur de Godounov

et de suivre l’histoire lagrangienne des baryons. Je l’utilise ensuite dans plusieurs simulations zoomées

pour étudier l’acquisition du moment angulaire par les galaxies via leur accrétion bi-modale pour les

hauts décalages vers le rouge. J’y observe que l’amplitude et l’orientation du moment angulaire du gaz

froid sont conservées jusque dans le halo interne où le moment angulaire contribue à l’augmentation de

la rotation des galaxies. Les couples de pressions sont plus importants en amplitude mais, de par leur

turbulence, ils sont incohérents et sont dominés globalement par les couples gravitationnels. Les couples

de la matière noire dominent dans le halo externe, ceux des étoiles dominent dans le disque.

Mots clés : galaxies – matière noire – toile cosmique – cosmologie – accrétion anisotrope



Subject : The impact of the large scale structures of the Universe on dark
matter halo and galaxy formation

Abstract: The strikingly anisotropic large-scale distribution of matter is made of an extended network

of voids delimited by sheets, with �laments at their intersection which together form the cosmic web.

Matter that will later form dark matter halos and their galaxies �ows towards compact nodes at �laments’

intersections and in the process, retains the imprint of the cosmic web.

In this thesis, I predict the mass, accretion rate, and formation time of dark matter halos near proto-

�laments (identi�ed as saddle points of the potential) using a conditional version of the excursion set

theory in its so-called up-crossing approximation. The (�lament-type) saddle points provides a local

frame in which to quantify the induced physical and morphological evolution of statistical properties

of galaxies on large scales. The model predicts that at �xed mass, mass accretion rate and formation

time vary with orientation and distance from the saddle, demonstrating that assembly bias is indeed

susceptible to the tides imposed by the cosmic web. Starved, early-forming halos of smaller mass lie

preferentially along the main axis of �laments, while more massive and younger halos are found closer to

the nodes. Distinct gradients for distinct quantities such as typical mass and accretion rate occur because

the saddle condition is anisotropic, and because the statistics of these observables depend on both the

means and their covariances. The signature of this model corresponds at low redshift to an excess of

reddened galaxies at �xed mass along preferred directions, as recently reported in spectroscopic (GAMA)

and photometric (COSMOS) surveys and in hydrodynamical simulations (Horizon-AGN).

I also compute the rate of merger events in the multi-scale initial conditions to forecast special events

driving the anisotropic assembly of dark matter halos and understand their impact on galaxy formation.

Beyond halo mergers, I consider all sets of mergers, including wall and �lament mergers, as they impact

the geometry of galactic infall. Their one- and two-points statistics are computed as a function of cosmic

time. I establish the relation between merger rates and connectivity, which is then used to assess the

impact the large scale structures on assembly bias. The anisotropy of the cosmic web, as encoded in

this theory, is a signi�cant ingredient to describe jointly the physics and dynamics of galaxies in their

environment, e.g. in the context of intrinsic alignments or morphological diversity.

In order to explore the impact of cosmic infall on smaller scales I implemented a novel tracer particles

algorithm in the Eulerian adaptive mesh re�nement code Ramses. The tracer particles are based on a

Monte Carlo approach and keep tracks of where �uid elements originate, so as to follow their Lagrangian

trajectories and re-processing history. I show that they reproduce the gas distribution very accurately

and I extend them to also trace the stars and black holes through the full cycle of baryons. These tracer

particles are ideal to study complex astrophysical systems where both the e�ciency of shock-capturing

Godunov schemes and a Lagrangian follow-up of the �uid are required simultaneously, in particular

in cold �ows. Thanks to this accurate tracer particle algorithm, the acquisition and loss of angular

momentum of both cold and hot accretion �ows onto galaxies at high redshift can be studied reliably. I

�nd that the amplitude and orientation of the speci�c angular momentum of the cold gas is preserved

down to the inner halo where the angular momentum contributes to the spin-up of galaxies, while for

the hot gas it is lost at larger radii. Pressure torques, stronger in magnitude than gravitational torques

are, however, spatially incoherent, which leads them to have no signi�cant impact on the redistribution

of angular momentum of the accretion �ows. Gravitational torques, which dominate globally, are the

main driver of the loss of angular momentum of the accretion �ows in those halos, with dark matter

gravitational torques dominating in the outer halo and stellar gravitational torques dominating in the

disk.
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