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3.1 Overview
In this part, we present the effect of a large scale filamentary structure on the assembly of dark
halos from a theoretical perspective.

3.2 “How does the cosmic web impact assembly bias?” (article)
The results presented here were published in Musso, Cadiou et al., 2018.
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ABSTRACT

Themass,accretionrate,andformationtimeofdarkmatterhaloesnearprotofilaments

(identifiedassaddlepointsofthepotential)areanalyticallypredictedusingaconditional

versionoftheexcursionsetapproachinitsso-calledupcrossingapproximation.Themodel

predictsthatatfixedmass,massaccretionrateandformationtimevarywithorientationand

distancefromthesaddle,demonstratingthatassemblybiasisindeedinfluencedbythetides

imposedbythecosmicweb.Starved,early-forminghaloesofsmallermassliepreferentially

alongthemainaxisoffilaments,whilemoremassiveandyoungerhaloesarefoundcloserto

thenodes.Distinctgradientsfordistincttracerssuchastypicalmassandaccretionrateoccur

becausethesaddleconditionisanisotropic,andbecausethestatisticsoftheseobservables

dependonboththeconditionalmeansandtheircovariances.Thetheoryisextendedtoother

criticalpointsofthepotentialfield.Theresponseofthemassfunctiontovariationsofthe

matterdensityfield(theso-calledlarge-scalebias)iscomputed,anditstrendwithaccretion

rateisshowntoinvertalongthefilament.Thesignatureofthismodelshouldcorrespondatlow

redshifttoanexcessofreddenedgalactichostsatfixedmassalongpreferreddirections,asre-

centlyreportedinspectroscopicandphotometricsurveysandinhydrodynamicalsimulations.

Theanisotropyofthecosmicwebemergesthereforeasasignificantingredienttodescribe

jointlythedynamicsandphysicsofgalaxies,e.g.inthecontextofintrinsicalignmentsor

morphologicaldiversity.

Keywords:galaxies:evolution–galaxies:formation–galaxies:kinematicsanddynamics–

large-scalestructureofUniverse–cosmology:theory.

1INTRODUCTION

Thestandardparadigmofgalaxyformationprimarilyassignsgalac-

ticpropertiestotheirhosthalomass.Whilethisassumptionhas

proventobeverysuccessful,moreprecisetheoreticalandobserva-

tionalconsiderationssuggestotherhiddenvariablesmustbetaken

intoaccount.

Themass–densityrelation(Oemler1974),establishedobserva-

tionally40yrago,wasexplained(Kaiser1984;Efstathiouetal.

1988)viatheimpactofthelong-wavelengthdensitymodesofthe

darkmatter(DM)field,allowingtheproto-halotopassearlierthe

criticalthresholdofcollapse(Bondetal.1991).Thisbiasesthemass

functioninthevicinityofthelarge-scalestructure:theabundance

ofmassivehaloesisenhancedinoverdenseregions.

Numericalsimulationshaveshownthatdenserenvironmentsdis-

playapopulationofsmaller,older,highlyconcentrated‘stalled’

⋆
E-mail:mmusso@sas.upenn.edu(MM);cadiou@iap.fr.(CC)

haloes,whichhavestoppedaccretingandwhoserelationshipwith

theenvironmentisinmanywaystheoppositeofthatoflarge-mass

activelyaccretinghaloesthatdominatetheirsurroundings.This

istheso-calledassemblybias(e.g.Sheth&Tormen2004;Gao,

Springel&White2005;Wechsleretal.2006;Dalaletal.2008;

Paranjape&Padmanabhan2017;Lazeyras,Musso&Schmidt

2017).Morerecently,Alonso,Eardley&Peacock(2015),Tramonte

etal.(2017)andvonBraun-Batesetal.(2017)haveinvestigated

thedifferentialpropertiesofhaloeswithrespecttolociinthecos-

micweb.Astheyfocusedtheirattentiontovariationsofthemass

function,theyalsofoundthemtovarymostlywiththeunderlying

density.Paranjape,Hahn&Sheth(2017)haveshownthathaloes

innodesandfilamentsbehaveastwodistinctpopulationswhena

suitablevariablebasedontheshearstrengthonascaleoftheorder

ofthehalo’sturnaroundradiusisconsidered.

Inobservations,galacticconformity(Weinmannetal.2006)re-

latesquenchingofcentralstothequenchingoftheirsatellitegalax-

ies.Ithasbeendetectedforlow-andhigh-masssatellitegalaxies

uptohighredshift(z∼2.5,Kawinwanichakijetal.2016)and

C©2018TheAuthor(s)

PublishedbyOxfordUniversityPressonbehalfoftheRoyalAstronomicalSociety
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fairly large separation (4 Mpc, Kauffmann et al. 2013). Recently,

colour and type gradients driven specifically by the anisotropic

geometry of the filamentary network have also been found in sim-

ulations (Laigle et al. 2017; Kraljic et al. 2018) using the Horizon-

AGN simulation (Dubois et al. 2014), and observations using SDSS

(Yan, Fan & White 2013; Martı́nez, Muriel & Coenda 2016; Poudel

et al. 2017; Chen et al. 2017), GAMA (Alpaslan et al. 2016;

Kraljic et al. 2018) and, at higher redshift, VIPERS (Malavasi et al.

2017) and COSMOS (Laigle et al. 2017). This suggests that some

galactic properties do not only depend on halo mass and density

alone: the co-evolution of conformal galaxies is likely to be con-

nected to their evolution within the same large-scale anisotropic

tidal field.

An improved model for galaxy evolution should explicitly inte-

grate the diversity of the geometry of the environment on multiple

scales and the position of galaxies within this landscape to quantify

the impact of its anisotropy on galactic mass assembly history. From

a theoretical perspective, at a given mass, if the halo is sufficiently

far from competing potential wells, it can grow by accretion from

its neighbourhood. It is therefore natural to expect, at fixed mass, a

strong correlation between the accretion rate of haloes and the den-

sity of their environment (Zentner 2007; Musso & Sheth 2014b).

Conversely, if this halo lies in the vicinity of a more massive struc-

ture, it may stop growing earlier and stall because its expected

feeding will in fact recede towards the source of anisotropic tide

(e.g. Dalal et al. 2008; Hahn et al. 2009; Ludlow, Borzyszkowski &

Porciani 2014; Wang et al. 2011).

Most of the work carried out so far has focused on the role of

the shear strength (a scalar quantity constructed out of the trace-

less shear tensor which does not correlate with the local density)

measured on the same scale of the halo: as tidal forces act against

collapse, the strength of the tide will modify the relationship of

the halo with its large-scale density environments, and induce dis-

tinct mass assembly histories by dynamically quenching mass in-

flow (Hahn et al. 2009; Castorina et al. 2016; Borzyszkowski et al.

2016). Such local shear strength should be added, possibly in the

form of a modified collapse model that accounts for tidal deforma-

tions, so as to capture e.g. the effect of a central on its satellites’

accretion rate. This modified collapse model has been motivated in

the literature on various grounds, e.g. as a phenomenological ex-

planation of the scale-dependent scatter in the initial overdensity of

proto-haloes measured in simulations (Ludlow et al. 2014; Sheth,

Chan & Scoccimarro 2013) or as a theoretical consequence of the

coupling between the shear and the inertia tensor which tends to

slow down collapse (Bond & Myers 1996; Sheth, Mo & Tormen

2001; Del Popolo, Ercan & Gambera 2001). Notwithstanding, the

position within the large-scale anisotropic cosmic web also directly

conditions the local statistics, even without a modification of the

collapse model, and affects different observables (mass, accretion

rate, etc.) differently.

The purpose of this paper is to provide a mathematical under-

standing of how assembly bias is indeed partially driven by the

anisotropy of large-scale tides imprinted in the so-called cosmic

web. To do so, the formalism of excursion sets will be adapted to

study the formation of structures in the vicinity of saddle points

as a proxy for filaments of the cosmic web. Specifically, various

tracers of galactic assembly will be computed conditional to the

presence of such anisotropic large-scale structure. This will allow

us to understand why haloes of a given mass and local density

stall near saddles or nodes, an effect which is not captured by the

density–mass relation, as it is driven solely from the traceless part

of the tide tensor. This should have a clear signature in terms of the

distinctions between contours of constant typical halo mass ver-

sus those of constant accretion rate, which may in turn explain the

distinct mass and colour gradients recently detected in the above-

mentioned surveys.

The structure of this paper is the following. Section 2 presents

a motivation for extended excursion set theory as a mean to com-

pute tracers of assembly bias. Section 3 presents the unconstrained

expectations for the mass accretion rate and half-mass. Section 4

investigates the same statistics subject to a saddle point of the po-

tential and computes the induced map of shifted mass, accretion

rate, and half-mass time. It relies on the strong symmetry between

the unconditional and conditional statistics. Section 5 provides a

compact alternative to the previous two sections for the less theo-

retically inclined reader and presents directly the joint conditional

and marginal probabilities of upcrossings explicitly as a function of

mass and accretion rate. Section 6 reframes our results in the context

of the theory of bias as the response of the mass function to varia-

tions of the matter density field. Section 7 wraps up and discusses

perspectives. Appendix A sums up the definitions and conventions

used in the text. Appendix B tests these predictions on realizations

of Gaussian random fields (GRFs). Appendix C investigates the

conditional statistics subject to the other critical points of the field.

Appendix D presents the probability distribution function (PDF) of

the eigenvalues at the saddle. Appendix E presents the covariance

matrix of the relevant variables to the PDFs. Appendix F presents

the relevant joint statistics of the field and its derivatives (spatial and

with respect to filtering) and the corresponding conditional statistics

of interest. Appendix G presents the generalization of the results

for a generic barrier. Appendix H speculates about galactic colours.

2 BA S I C S O F T H E E X C U R S I O N SE T

APPROACH

The excursion set approach, originally formulated by Press &

Schechter (1974), assumes that virialized haloes form from spher-

ical regions whose initial mean density equals some critical value.

The distribution of late-time haloes can thus be inferred from the

simpler Gaussian statistics of their Lagrangian progenitors. The ap-

proach implicitly assumes approximate spherical symmetry (but not

homogeneity), and uses spherical collapse to establish a mapping

between the initial mean density of a patch and the time at which it

recollapses under its own gravity.

According to this model, a sphere of initial radius R shrinks to

zero volume at redshift z if its initial mean overdensity δ equals

δcD(zin)/D(z), where D(z) is the growth rate of linear matter pertur-

bations, zin the initial redshift, and δc = 1.686 for an Einstein–de

Sitter universe, or equivalently, if its mean overdensity linearly

evolved to z = 0 equals δc/D(z), regardless of the initial size. If so,

thanks to mass conservation, this spherical patch will form a halo

of mass M = (4π/3)R3ρ̄ (where ρ̄ is the comoving background

density) . The redshift z is assumed to be a proxy for its virialization

time.

Bond et al. (1991) added to this framework the requirement that

the mean overdensity in all larger spheres must be lower than δc, for

outer shells to collapse at a later time. This condition ensures that the

infall of shells is hierarchical, and the selected patch is not crushed

in a bigger volume that collapses faster (the so-called cloud-in-cloud

problem). The number density of haloes of a given mass at a given

redshift is thus related to the volume contained in the largest spheres

whose mean overdensity δ ≡ δ(R) crosses δc. The dependence of

the critical value δc on departures from spherical collapse induced

by initial tides was studied by Bond & Myers (1996), and later

MNRAS 476, 4877–4906 (2018)
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named “critical events” may be relevant parameters entering galaxy models, in particular to
understand the evolution of galaxy properties that depend on the geometry of the accretion, such
as their spin or their velocity-to-velocity-dispersion. This could readily be used to constrain
further the assembly of dark matter halo by providing variables describing the evolution of the
environnement.

In the current understanding of galaxy formation, the evolution of the baryons is driven by
the cosmic web on large scales, while at small scales complex interactions between the gas, stars
and AGNs and the dark matter halo drive most of the physics. While the impact of the cosmic web
on halo formation can be studied to some extent from first principles, the complex physics at play
in galaxy formation make the task much more tedious, if not impossible. This problem is usually
tackled using cosmological simulations that reproduce as accurately as possible galaxy formation
in a credible cosmological context. In this approach, a single testbed can be used to probe at
the same time halo formation and galaxy formation. One of the questions these simulations can
answer is the question of the link between dark matter halos and their galaxies. Indeed, some
galaxy properties have been shown to be only weakly correlated to their halos’. One particular
example, relevant to the formation of disks, is the spin of galaxy, which is found to be only weakly
correlated to the halo disk (Hahn et al., 2010; Jiang et al., 2018) while the inner halo spin is well
correlated with the galactic spin, which, at large redshifts is also well correlated to the principal
axis of the large-scale tidal field. It has been suggested that one way for galaxies to grow a disk
independently from their host halo’s spin is through cold flows, which are the main driveway to
funnel angular-momentum rich material from the cosmic web down to the innermost regions of
the galaxies (Danovich et al., 2015; Nelson et al., 2015; Tillson et al., 2015), effectively connecting
the large-scale environnement the spin of galaxies. Indeed, if the accretion history of the cold gas
differ from that of the hot gas and DM, it can be expected that the response of the galaxy to the
large scale perturbations will also be different, resulting in a differential evolution of the halo and
its galaxy. Using a suite of numerical simulations and novel numerical methods, I have studied
the formation of disk galaxies at large redshift and showed that the information acquired by the
gas at large scale is transported to the inner regions of the halo and in the galaxy. In particular,
cold flows are able to retain most of their angular momentum down to the inner halo. In the inner
halo and around the disk, complex gravitational torques redistribute the angular momentum to
the inner halo and the stellar component. I argue that this may lead to a good alignment of the
inner halo and the galaxy, since their angular momentum is partially driven by their interaction
with cold flows. This internal alignment is also expected to reflect the large-scale tidal field set by
the cosmic web, as most of the anisotropic information is transported to the internal regions.

As a final conclusion, I have shown that the cosmic web is able to influence the assembly
of dark matter halos. I have shown that one can build theoretical models in which part of the
assembly bias can simply be interpreted as a large-scale environnement modulation, which cannot
be parametrize easily in terms of the local properties of the field, both for dark matter halos
and galaxies. I propose a set of parameters that are suited to the compact description of the
evolution of the cosmic web and I argue that the geometry of the accretion onto galaxies via cold
flows, and its evolution, can have a significant impact on the properties of galaxies, in particular
against the ones sensible to the anisotropy of the flows, including notably the spin and the v/σ
parameter. This is in particularly highlighted by a numerical study that showed that the angular
momentum of the gas, set by the cosmic web, is effectively transported down to the galaxy where
complex interactions redistribute it. I suggest that in order to capture effects beyond mass and
density relations, new models of galaxy and halo formation should be augmented by parameters
describing the non-local structure of the cosmic web at large-scales in terms of its critical points
(nodes, filament and wall centers) but also in terms of their evolution, as described by critical
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byShethetal.(2001),whoapproximateditasascale-dependent

barrier.ThiswillbefurtherdiscussedinSection7.2.

Asthevariationofδ(R)withscaleresemblesrandomdiffusion,

itisconvenienttoparametrizeitwiththevariance

σ
2
(R)≡Var(δ(R))=

∫
dk

k
2
P(k)

2π2W
2
(kR)(1)

ofthestochasticprocess,smoothedwithareal-spaceTop-Hatfilter

W,
1

ratherthanwithRorM.Inequation(1),P(k)istheunderlying

powerspectrum.Thethreequantitiesσ,R,andMareinpractice

interchangeable.ThemassfractioninhaloesofmassMatzis

M

ρ̄

dn

dM
=
∣∣
∣∣dσ

dM

∣∣
∣∣f(σ),(2)

wheredn/dMisthenumberdensityofhaloesperunitmass(i.e.

themassfunction)andf(σ)–oftencalledthehalomultiplicity–is

theprobabilitydistributionofthefirst-crossingscaleoftherandom

walks,thatisofthesmallestσ(largestR)forwhich

δ(R,r)≡
∫d

3
k

(2π)3δm(k)W(kR)e
ik·r=

δc

D(z)
,(3)

whereδmisthe(unsmoothed)matterdensity.Thefirst-crossing

requirementavoidsdoublecountingandguaranteesthatf(σ)isa

well-behavedprobabilitydistribution,andtheresultingmassfrac-

tioniscorrectlynormalized.Inequation(3),thelineargrowthfactor,

D(z),isdefinedasafunctionofredshiftvia

D(z)=
H(a)

H0

∫a

0

da
√

�m/a+��a2
,witha=

1

1+z
.(4)

Atearlytime,D(z)scaleslike1/(1+z).Here,H(a)=
H0

√
�m/a+��a2istheHubbleconstant.

Thefirst-crossingprobability,f(σ)�σ,isthefractionofwalks

thatcrossthethresholdbetweenσ−�σandσforthefirsttime.

Consideringdiscretizedtrajectorieswithalargenumberofsteps

σ1,...,σNofwidth�σ≡σi−σi−1(correspondingtoconcentric

spheresofradiiR1,...,RN),thefirst-crossingprobabilityisthe

jointprobabilitythatδN>δcandδi<δcfori<N,withδi≡
δ(σi)andσN=σ=N�σ.Hence,thedistributionf(σ)isformally

definedasthelimit

f(σ)≡lim
�σ→0

1

�σ
〈ϑ(δN−δc)

N−1 ∏

i

ϑ(δc−δi)〉,(5)

whereϑ(x)isHeaviside’sstepfunction,andtheexpectationvalue

isevaluatedwiththemultivariatedistributionp(δ1,...,δN).This

definitiondiscardscrossingsforwhichδi>δcforanyi<N,

sinceϑ(δc−δi)=0,assigningatmostonecrossing(thefirst)

toeachtrajectory.Forinstance,inFig.1,trajectoryBwouldnot

beassignedthecrossingmarkedwith(3),sincethetrajectorylies

abovethresholdbetween(1)and(2).Sincetakingthemeanimplies

integratingoveralltrajectoriesweighedbytheirprobability,f(σ)

canbeinterpretedasapathintegraloverallallowedtrajectories

withfixedboundaryconditionsδ(0)=0andδ(σ)=δc(Maggiore

&Riotto2010).

Inpractice,computingf(σ)becomesdifficultifthestepsofthe

randomwalksarecorrelated,asisthecaseforreal-spaceTop-Hat

filteringwitha�colddarkmatter(�CDM)powerspectrum,and

formostrealisticfiltersandcosmologies.Forthisreason,moreeas-

ilytractablebutlessphysicallymotivatedsharpcut-offsinFourier

1
ThewindowfunctioninFourierspaceisW(x)=3j1(x)/x,j1beingthe

sphericalBesselfunctionoforder1.

Figure1.Pictorialdescriptionofthefirst-crossingandupcrossingcon-

ditionstoinferthehalomassfromtheexcursionsettrajectory.Thefirst-

crossingconditiononσassignsatmostonehalotoeachtrajectory,withmass

M(σ).Upcrossingmayinsteadassignseveralmassestothesametrajectory

(thatis,tothesamespatiallocation),thusovercountinghaloes.Trajectory

Binthefigurehasafirstcrossing(upwards)atscaleσB(1),adowncrossing

(2),andsecondupcrossing(3),butthecorrectmassisonlygivenbyσB.

However,thecorrelationofeachstepwiththepreviousonesmakesturns

insmallintervalsofσexponentiallyunlikely:atsmallσmosttrajectories

willthuslookliketrajectoryA.Thankstothecorrelationbetweenstepsat

differentscales,forsmallσ(largeM)simplydiscardingdowncrossingsisa

verygoodapproximation.

spacehavebeenoftenpreferred,forwhichthecorrelationmatrix

ofthestepsbecomesdiagonal,treatingthecorrelationsaspertur-

bations(Maggiore&Riotto2010;Corasaniti&Achitouv2011).

Theupcrossingapproximationdescribedbelowcaninsteadbecon-

sideredastheoppositelimit,inwhichthestepsareassumedtobe

stronglycorrelated(asisthecaseforarealisticpowerspectrumand

filter).Thisapproximationisequivalenttoconstrainingonlythelast

twostepsofequation(5),marginalizingoverthefirstN−2.

2.1Theupcrossingapproximationtof(σ).

Indeed,Musso&Sheth(2012)noticedthatforsmallenoughσ

(i.e.forlargeenoughmasses),thefirst-crossingconstraintmaybe

relaxedintothemildercondition

δ′≡
dδ

dσ
>0;(6)

thatis,trajectoriessimplyneedtoreachthethresholdwithposi-

tiveslope(orwithslopelargerthanthethreshold’sifδcdepends

onscale).Thisupcrossingconditionmayassignseveralhaloesof

differentmassestothesamespatiallocation.Forthisreason,while

firstcrossingprovidesawell-definedprobabilitydistributionfor

σ(e.g.withunitnormalization),upcrossingdoesnot.However,

sincethefirstcrossingisnecessarilyupwards,anddowncrossings

arediscarded,theerrorintroducedinf(σ)bythisapproximation

comesfromtrajectorieswithtwoormoreturns.Musso&Sheth

(2012)showedthatthesetrajectoriesareexponentiallyunlikelyif

σissmallenoughwhenthestepsarecorrelated.Thefirst-crossing

andupcrossingconditionstoinferthehalomassfromexcursionsets

aresketchedinFig.1:whilethetrajectoryAwouldbe(correctly)

assignedtoasinglehalo,thesecondupcrossingoftrajectoryBin

thefigurewouldbecountedasavalideventbytheapproximation,

andthetrajectorywould(wrongly)beassignedtotwohaloes.The

probabilityofthiseventisnon-negligibleonlyifσislarge.

Returningtoequation(5),expandingδN−1aroundδNgives

ϑ(δc−δN−1)≃ϑ(δc−δN)+δD(δc−δ)δ′�σ,(7)

MNRAS476,4877–4906(2018)
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172Chapter5.Conclusion

thatsmallhalosgrowingindenseenvironnementarenotabletoaccretemass.Asaconsequence,
thesehalosappearolderresultinginandifferentialbiasingasafunctionofformationtime.Ina
similarway,Paranjapeetal.,2018suggestedthattheeffectofhaloconcentrationonthebiasis
wellexplainedbyalocalquantificationofthelocaltidalanisotropy.Allthesemodelsaretypically
extensionsofthehalomodelwithnewhalo-centredprobesofthelarger-scaleenvironnement.

Anotherpossibleapproachfollowedinthisdissertationistorelaxthehalo-centricassumption
andworkintheframethatsetsthelargescaleenvironnement:thecosmicweb.Indeed,dueto
thestatisticalpropertiesoftheinitialconditionsoftheUniverse,thedifferentscalesinvolved
ingalaxyformationandtheformationofthecosmicwebarecoupledstatistically.Inparticular,
large-scalestructuressuchaslargefilamentshaveanimpactonthestatisticalpropertiesofthe
fieldoutofwhichhalosgrow,whichhastheeffectofbiasinghaloassembly.Onecanarguethat
theassemblysignalcanexplainedsimplyinthisbiasingeffectofthecosmicweb:thecosmicweb
isresponsiblefordrivingthetypicalassemblyhistoryatfixedhalomassandlocaldensity.

Thisapproachhasalreadyprovensuccessfulatprovidingatheoreticalexplanationtothe
spin-alignmentproblem(Codisetal.,2012).Inthisdissertation,Iarguethattheproblemstated
inthesetermscanalsoprovideavaluableunderstandingofhowhalosgrow,butalsohowtheir
galaxyforms.Usinganextensionoftheexcursionsettheory(Bondetal.,1991;LaceyandCole,
1993;MoandS.D.M.White,1996),Ishowedinchapter3thatthecosmicweb,andinparticular
largescalefilaments,biasestheformationofdarkmatterhalos.Theformalismpredictsthat
thevariablesenteringtheassemblyhistoryofthehalo,namelythehaloformationtimeandthe
accretionrate,aremodulatedbythecosmicweb.Asaresult,atfixedfinalmass,halosforming
closetonodesofthecosmicwebarefoundtoaccretemoreandhaveformedatlatertimes,in
agreementwithn-bodysimulationsforlarge-masshalos(Dalaletal.,2008;Gaoetal.,2005;
R.K.ShethandTormen,2004;Wechsleretal.,2006).Thiseffectcomplementsothersuggestions
thatthetidemayberesponsiblefortheassemblybiassignalasitispurelygeometric:ashalos
growbyaccretingmaterial,theyalsoprobelargerscaleswhosestatisticalstructureissetby
thecosmicweb.Ialsoarguethatthisprovidesanaturalframeinwhichtheassemblysignalis
simplyaspatialmodulation,orstateddifferently,differentassemblyhistoriesaretobeexpectedat
differentlocations.Thisframehassincebeenusedtoshowthat,inhydrodynamicalsimulations,
thecosmicwebhasalsoaneffectontheassemblyofgalaxies.Kraljicetal.,2019reportedthatthe
specificstarformationrateandthevelocity-to-velocity-dispersionratiobothpresentsignificant
modulationsinthedirectionofthefilaments,highlightingthat,indeed,filamentarystructures
canbeusedasametrictoparametrizetheassemblyofdarkmatterhalosandgalaxiestherein.

Althoughanumberofevidencesarepointingtowardsaneffectofthecosmicwebongalaxy
formation,thedetailedphysicsthatcouplestheformertothelatterisstillpoorlyunderstood.
Oneoftheissuelaysinthedescriptionofthecosmicwebitself,sothatdifferentmethodsmay
leadtodifferenteffectsongalaxyformation.Onekeyparametertofurtherstudytheeffectof
thecosmicwebisthenthequestionofitsdescription,thechallengeresidinginitscontinuous
andmulti-scalenature.Alargenumberofmethodshavebeendevelopedtotacklethisissueand
provideaclearframeinwhichgalaxypropertiescanbestudied(Bondetal.,1996;Sousbieetal.,
2008andLibeskindetal.,2018forareview).Inmydissertation,Isuggestanewrelevantparameter
enteringtheformationofgalaxiesanddarkhalos,namelytheevolutionofthecosmicweb.I
presenttheoreticaltooltoaccountforitinacompactwayandprovidetheoreticalpredictionsof
theevolutionofthecosmicwebintheLagrangianspaceoftheinitialconditionsandlinkthem
totheconnectivityofthecosmicwebCodisetal.,2018.Usinganextensionofthetheoryto
themildlynon-linearregime,weshowthatonecanconnectourpredictionstoresultsobtained
fromn-bodysimulations.Inparticular,theformalismisabletodetecthalomergerevents,but
alsofilament-andwall-mergersintheLagrangianinitialconditions.Iarguethattheseevents,
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where the crossing scale σ , giving the halo’s final mass M, is de-

fined implicitly in equation (3), as the solution of the equation

δ(σ ) = δc/D.2 The assumption that this upcrossing is first crossing

allows us to marginalize over the first N − 2 variables in equation

(5) without restrictions. The first term has no common integration

support with ϑ(δN − δc), and only the second one – containing the

Jacobian (δ′ − δ′
c) – contributes to the expectation value (through-

out the text, a prime will denote the derivative d/dσ ). Adopting

for convenience the normalized walk height ν ≡ δ/σ , for which

〈ν2〉 = 1, the corresponding density of solutions in σ -space obeys
∣∣ν ′ − ν ′

c

∣∣ δD(ν − νc) = (|δ′|/σ ) δD(ν − νc) , (8)

where νc ≡ δc/(σD) is the rescaled threshold. The probability of

upcrossing at σ in equation (5) is therefore simply the expectation

value of this expression,

fup(σ ) ≡ pG(ν = νc)

∫ ∞

0

dδ′δ′pG(δ′|νc) , (9)

where the integral runs over δ′ > 0 because of the upcrossing

condition (6). Usually, one sets D = 1 at z = 0 for simplicity

so that νc = δc/σ . For Gaussian initial conditions,3 the conditional

distribution pG(δ′|νc) is a Gaussian with mean νc and variance 1/Ŵ2,

where

Ŵ2 =
1

〈δ′2〉 − 1
=

γ 2

1 − γ 2
=

1

σ 2〈ν ′2〉
, (10)

and γ 2 = 〈δ′δ〉2/〈δ′2〉〈δ2〉 is the cross-correlation coefficient be-

tween the density and its slope.4 Thanks to this factorization, inte-

grating equation (9) over δ′ yields the fully analytical expression

fup(σ ) = pG(νc)
μ

σ
F (X) , (11)

where pG is a Gaussian with mean 〈ν〉 = 0 and variance Var(ν) = 1.

For a constant barrier (see Appendix G for the generalization to a

non-constant case), the parameters μ and X are defined as

μ ≡ 〈δ′|νc〉 = νc , and X ≡
μ

√
Var (δ′|νc)

= Ŵνc , (12)

with

F (x) ≡
∫ ∞

0

dy
y

x

e−(y−x)2/2

√
2π

=
1 + erf(x/

√
2)

2
+

e−x2/2

x
√

2π
, (13)

which is a function that tends to 1 very fast as x → ∞, with

correction decaying like exp ( − x2/2)/x3. It departs from one by

∼8 per cent for a typical Ŵνc ∼ 1. Equation (11) can be written

explicitly as

fup(σ ) =
νce−ν2

c /2

σ
√

2π
F (Ŵνc) , (14)

where the first factor in the right-hand side (RHS) of equation (14)

is the result of Press & Schechter (1974), ignoring the factor of

2, they introduced by hand to fix the normalization. For correlated

steps, their non-normalized result reproduces well the large-mass

tail of f(σ ) (which is automatically normalized to unit and requires

to correcting factor), but it is too low for intermediate and small

masses. The upcrossing probability fup(σ ) also reduces to this result

2 A careful calculation shows that the step function should be asymmetric,

so that ϑ(δ − δc) = 1 when δ = δc instead of 1/2.
3 No conceptual complications arise in dealing with a non-Gaussian distri-

bution, which is none the less beyond the scope of this paper.
4 Recalling that 〈δ′δ〉 = σ so that γ 2 = 1/〈δ′2〉.

in the large-mass limit, when Ŵνc ≫ 1 and F(Ŵνc) ≃ 1. However,

for correlated steps fup(σ ) is a very good approximation of f(σ ) on

a larger mass range. For a �CDM power spectrum, the agreement

is good for halo masses as small as 1012 M⊙ h−1, well below the

peak of the distribution. The deviation from the strongly correlated

regime is parametrized by Ŵνc, which involves a combination of

mass and correlation strength: the approximation is accurate for

large masses (small σ and large νc) or strong correlations (large Ŵ).

Although Ŵ mildly depends on σ , fixing Ŵ2 ∼ 1/3 (or γ ∼ 1/2)

can be theoretically motivated (Musso & Sheth 2014c) and mimics

well its actual value for real-space Top-Hat filtering in �CDM on

galactic scales. The limit of uncorrelated steps (Ŵ = 0), whose

exact solution is twice the result of Press & Schechter (1974), is

pathological in this framework, with fup becoming infinite. More

refined approximation methods can be implemented in order to

interpolate smoothly between the two regimes (Musso & Sheth

2014a).

From equation (11), a characteristic mass M⋆ can be defined by

requesting that the argument of the Gaussian be equal to one, i.e.

νc = 1 or σ (M⋆) = δc/D. This defines M⋆ implicitly via equation

(1) for an arbitrary cosmology. This quantity is particularly useful

because fup(σ ) does not have well-defined moments (in fact, even

its integral over σ diverges). This is a common feature of first

passage problems (Redner 2001), not a problem of the upcrossing

approximation: even when the first-crossing condition can be treated

exactly, and f(σ ) is normalized – it is a distribution function –,

its moments still diverge. Therefore, given that the mean 〈M〉 of

the resulting mass distribution cannot be computed, M⋆ provides a

useful estimate of a characteristic halo mass.

2.2 Joint and conditional upcrossing probability

The purpose of this paper is to recompute excursion set predictions

such as equation (11) in the presence of additional conditions im-

posed on the excursions. Adding conditions (like the presence of a

saddle at some finite distance) will have an impact not only on the

mass function of DM haloes, but also on other quantities such as

their assembly time and accretion rate.

Let us present in full generality how the upcrossing probabil-

ity is modified by such supplementary conditions. When, besides

δ(σ ) = δc and the upcrossing condition, a set of N linear5 functional

constraints {F1[δ], . . . ,FN [δ]} = {v1, . . . , vN } on the density field

is enforced, the additional constraints modify the joint distribution

of ν and ν ′. The conditional upcrossing probability may be obtained

by replacing p(ν, ν ′) with p(ν, ν ′|{v}) in equation (9). For a Gaus-

sian process, when the functional constraints do not involve δ′, this

replacement yields after integration over the slope

fup(σ, {v}) = pG(νc, {v})
μv

σ
F (Xv) , (15)

where pG(νc|{v}) is a Gaussian with mean 〈ν|{v}〉 and variance

Var (ν|{v}), while μv and Xv are defined as

μv ≡ 〈δ′|νc, {v}〉 , Xv ≡
μv√

Var (δ′|νc, {v})
, (16)

and 〈δ′|νc, {v}〉 and Var
(
δ′|νc, {v}

)
are the mean and variance of

the conditional distribution, pG(δ′|νc, {v}) given by equations (F10)

and (F11) and evaluated at δ = δc, while F is given by equation (13).

Equation (15) is formally the conditional counterpart to equation

5 Indeed the saddle condition below imposes linear constraints on the con-

trast and the potential, since the saddle’s height and curvature are fixed.

MNRAS 476, 4877–4906 (2018)
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5. Conclusion

One of the success of the ΛCDM model is its ability to predict a significant number of properties
of DM halos and their galaxies. In the classical model of galaxy formation, galaxy form out of the
condensation of the gas in the potential well of their host halo. As such, this model is usually
parametrized in terms of the mass of the halo — which sets the amount of gas available and the
internal kinematics — and the local density — which regulates gas accretion and pair interactions.
The classical model intrinsically supposes that halo properties, and as a consequence, galaxy
properties are only influenced by their local environnement via the local density, with some
extensions probing also the local tidal environnement (Alam et al., 2019) (TODO: citations). This
model has proven successful at predicting a large number of galactic properties, such as their
spatial clustering or their mass function.

However, it has been established that the clustering of dark matter halos, as measured by the
halo bias, not only depends on halo mass but also on other halo properties such as formation time,
concentration, spin and ellipticity (Gao et al., 2005; Gao and S. D. M. White, 2007; Hahn et al.,
2007; Wechsler et al., 2006). This problem, commonly referred to as the “assembly-bias problem”
can be rephrased as follow: the clustering of dark matter halos and their properties are correlated,
beyond a mere mass and density relation. On large scales, surveys like the SDSS have revealed
that the Universe is structured around voids, sheets, filaments and knots that form the cosmic
web. Using a different approach, a growing number of evidence (Kraljic et al., 2018; Kraljic et al.,
2019; Welker et al., 2014) have since showed that some halo and galaxy properties present distinct
features at different locations in the cosmic web. One striking example is spin-alignments which
have been measured for DM halos (e.g. Codis et al., 2012) and galaxies (e.g. Chisari et al., 2017),
but also colour segregation (Kraljic et al., 2019; Laigle et al., 2018).

In the context of assembly bias, many extensions of the halo model have been suggested aimed
to understand the modulation effects of the cosmic web in terms of local properties. In particular,
it has suggested that the local tidal field may explain part of the assembly bias signal (e.g. Hahn
et al., 2009; Ludlow et al., 2014) when formulated in terms of the formation time. Tidal forces
induce a shear flow in the vicinity of small halos that flow along filaments on the cosmic web. One
of the outcome is that the accretion rate of small halos is decreased by neighbouring structures, so
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Table1.Listofvariablesforthethreedifferentprobabilitiesstudiedinthe

text(upcrossing,accretionrategivenupcrossing,andformationtimegiven

upcrossing),conditionedornottothepresenceofthesaddlepoint,splitby

whethertheyrelatetotheheightoftheexcursionsettrajectoryoritsslope.

VariableslikeμandXalwaysappearasμF(X)anddescribethemeanslope

oftheupcrossingtrajectoriesgiventhedifferentconditions(presenceofthe

saddleand/orheightνfofthetrajectoryatformation).Theunconditional

casehasμ=νcandX=Ŵνc.Theremainingvariablesappearasarguments

ofaGaussian,andareusedtodefinethetypicalvaluesσ⋆,α⋆,andD⋆ofthe

excursionsetvariablesσ,α,andDf.Theheight-relatedvariablesdescribe

theprobabilityofreachingthecollapsethresholdνc(unconditionalorgiven

thesaddle),ortheformationthresholdνfgivenνc(withorwithoutsaddle).

Theslope-relatedonesdescribetheprobabilityofhavingatupcrossingthe

slopecorrespondingtoagivenaccretionrate.SeealsoTableA1.

WithoutsaddleWithsaddle

HeightSlopeHeightSlope

Upcrossing(σ)νcμ,Xνc,SμS,XS
Accretion(α)YαYα,S
Formation(Df)νf,cμf,Xfνf,c,Sμf,S,Xf,S

(11),whileincorporatingextraconstraintscorrespondingtoe.g.the

large-scaleFouriermodesofthecosmicweb.

Thebruteforcecalculationoftheconditionalmeansandvari-

ancesenteringequation(15)canrapidlybecometedious.Tospeed

uptheprocess,andgainfurtherinsight,onecanwritethecondi-

tionalstatisticsofδ′intermsofthoseofδandtheirderivatives.

ThisisdoneexplicitlyinAppendixF1,whichallowsustowrite

explicitlytheconditionalprobabilityofupcrossingatσgiven{v},

obtainedbydividingequation(15)byp({v}),as

fup(σ|{v})=−ν′
c,v

e−ν2
c,v/2

√
2π

F

⎛
⎝−

ν′
c,v

√
Var

(
ν′

v

)

⎞
⎠,(17)

given

νc,v≡
δc−〈δ|{v}〉
√

Var(δ|{v})
,andν′

c,v≡
dνc,v

dσ
,(18)

wheretheseconditionalsandvariancescanbeexpressedexplic-

itlyintermsoftheconstraintviaequations(F8)–(F11).Equation

(17)isthereforealsoformallyequivalenttoequation(14),upon

replacingνc→νc,vand〈ν′2〉→〈ν′2
v〉toaccountfortheconstraint.

Remarkably,theconditionalprobabilityfup(σ|{v})isthussimply

expressedasanunconditionalupcrossingprobabilityfortheeffec-

tiveunitvarianceprocessobtainedfromtheconditionaldensity.

Theabove-sketchedformalprocedurewillbeappliedtopractical

constraintsinthenextsection.Forconvenienceandconsistency,

Table1listsallthevariablesthatareintroducedinthefollowing

sections,forthecombinationsofthevariousconstraints(onthe

slopeatcrossing,ontheheightofthetrajectoryatσ(M/2),andon

thepresenceofasaddle)thatwillbeimposed.

3ACCRETIONRATEANDFORMATIONTIME

Letusfirstpresentthetracersofgalacticassemblywhenthereis

nolarge-scalesaddle.Specifically,thissectionwillconsiderthe

DMmassaccretionrateandformationredshift.Itwillcompute

thejointPDFs,thecorrespondingmarginals,typicalscales,and

expectations.Itsmainresultsarethederivationoftheconditional

probabilityoftheaccretionrate–equation(25)–andformation

time–equation(36)–forhaloesofagivenmass.Theemphasis

willbeonderivationinthelanguageofexcursionset.Thereader

Figure2.Pictorialrepresentationoftheproceduretoinferaccretionrates

fromexcursionsets.Astheredshiftzgrows,thebarrierδc/D(z)becomes

higherandthefirst-crossingscaleσ(z)movestotheright,towardssmaller

masses.ThisprocedurereconstructstheentiremassaccretionhistoryM(z)

fromthefirst-crossinghistoryσ(D).Asthetworedshiftsz1andz2infigure

getclosetoeachother,thedifferencebetweenσ(z1)andσ(z2)iscompletely

fixedbytheslopeofthetrajectory.Thisdeterministicrelationconnectsthe

excursionsetslopetothehalo’sinstantaneousmassaccretionrate.Finite

jumpsofthefirst-crossingσafteradownturn[wheretheinversefunction

σ(δ)becomesmultivalued,asin(1)]cannotdescribesmoothaccretionand

aretraditionallyassociatedwithlargemergers.

onlyconcernedwithstatisticalpredictionsintermsofquantitiesof

directastrophysicalinterestmayskiptoSection5.

FollowingLacey&Cole(1993),theentiremassaccretionhistory

ofthehaloisencodedintheportionoftheexcursionsettrajectory

afterthefirstcrossing:solvingtheimplicitequation(3)atallz

enablestoreconstructM(z).Asthebarrierδc/D(z)decreaseswith

time(sinceD(z)growsaszdecreases),thefirst-crossingscalemoves

towardssmallervalues(largermasses),therebydescribingtheac-

cretionofmassontothehalo.Clearly,sinceδ(σ)isnotmonotonic,

M(z)isnotacontinuousfunction.Finitejumpsofthefirst-crossing

scale,correspondingtoportionsforwhichσisnotaglobalmax-

imumoftheinterval[0,σ],canbeinterpretedasmergers(see

trajectoryBinFig.1,ortheportionmarkedwith(1)inFig.2).In

theupcrossingapproximation,theconstraintδ′(σ)>0discardsthe

downwardpartofeachjump.

3.1Accretionrate

Inthelanguageofexcursionsets,findingthemassaccretionhistory

isequivalenttoreconstructingthefunctionσ(D)[whereDwas

definedinequation(4)]:becausethebarriergrowsasDdecreases

withz,thecrossingscaleσmovestowardslargervalues(smaller

masses).Differentiatingbothsidesofequation(3)withrespecttoz

gives

α≡−
D

σ

dσ

dD
=

δc

σδ′=
νc

σ(ν′−ν′
c)

,(19)

whereαmeasuresthefractionalchangeofthefirst-crossingscale

σ(M)withD(z),andisrelatedtotheinstantaneousrelativemass

accretionrateby

1

M

dM

dz
≡

Ṁ

M
=α

dlogD

dz

(
−

dlogM

dlogσ

)
.(20)

Theupcrossingconditionimpliesthatα>0:excursionsethaloes

canonlyincreasetheirmass,sincedlogM/dlogσ<0.

ApictorialrepresentationofthisprocedureisgiveninFig.2.

Equation(19)givesarelationbetweentheaccretionrateofthefinal

haloesandtheLagrangianslopeoftheexcursionsettrajectories,

MNRAS476,4877–4906(2018)
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which is statistically meaningful in the framework of excursion sets

with correlated steps (because the slope then has finite variance).

Note that α scales both like the inverse of the slope δ′ and the

logarithmic rate of change of σ with D. It also essentially scales like

the relative accretion rate, Ṁ/M since in equation (20) dlog D/dz is

simply a time-dependent scaling, while on galactic scales, (n ∼ 2),

dlog M/dlog σ ∼ −6 (see also Section 5 and Appendix E for the

generic formula).

Fixing the accretion rate establishes a local bidimensional map-

ping between {ν, ν ′}, or {δ, δ′}, and {σ , α}, defined as the solutions

of the bidimensional constraint

C ≡ {ν(σ ) − νc, ν
′(σ ) − ν ′

c − νc/σα} = 0 . (21)

The density of points in the (σ , α) space satisfying the constraint is

| det (∂C/∂{σ, α}) | δ(2)
D (C) . (22)

Since ∂(ν − νc)/∂α = 0, the determinant in equation (22) is sim-

ply |(ν ′ − ν ′
c)(νc/σα2)| = ν2

c /σ
2α3, and is no longer a stochastic

variable. Taking the expectation value of equation (22) gives

fup(σ, α) =
ν2

c

σ 2α3
pG(νc, ν

′
c + νc/σα),

=
Ŵν2

c

σα3

e−ν2
c /2

√
2π

e−Y 2
α /2

√
2π

, (23)

with [using the conditional mean μ = νc from equation (12)]

Yα ≡
νc/α − μ

√
Var (δ′|νc)

= Ŵ(σν ′
c + νc/α) , (24)

which is the joint probability of upcrossing at σ with accretion rate

α.6 This can be formally recovered setting 〈δ′|νc, α〉 = νc/α and

Var
(
δ′|νc, α

)
→ 0 in equation (16) (because the constraint fixes δ′

completely), which gives F(Xα) = 1 as needed.

The conditional probability of having accretion rate α given up-

crossing at σ can be obtained taking the ratio of equations (23) and

(14), which gives

fup(α|σ ) =
Ŵνc

α3

e−Y 2
α /2

√
2πF (Ŵνc)

, (25)

and represents the main result of this subsection. The exact form of

fup(α|σ ) from equation (25), as σ changes is shown in Fig. 3. This

conditional probability has a well-defined mean value, which reads

〈α|σ 〉 =
∫ ∞

0

dα αfup(α|σ ) =
1 + erf(Ŵνc/

√
2)

2F (Ŵνc)
; (26)

however, the second moment 〈α2|σ 〉 and all higher order statistics

are ill defined. The nth moment is in fact proportional to the ex-

pectation value of (1/δ′)n − 1 (over positive slopes and given νc),

which is divergent. Equation (25) shows that very small values of

α (corresponding to very steep slopes) are exponentially unlikely,

and very large ones (shallow slopes) are suppressed as a power law.

Unlike fup(σ ), the conditional distribution fup(α|σ ) is a well-defined

normalized PDF. However, it is still an approximation to the exact

PDF, as it assumes that the distribution of the slopes at first cross-

ing is a (conditional) Gaussian. This assumption is accurate for

steep slopes, but overestimates the shallow-slope tail, for which the

exact first-crossing condition would impose a boundary condition

pG(δ′ = 0|δc) = 0. The higher moments of the exact conditional

6 As expected, marginalizing equation (23) over α > 0 gives back equation

(11), upon setting Ŵνc/α = x.

Figure 3. Plot of the conditional PDF fup(α|σ ) of the accretion rate for

values of σ corresponding to Ŵνc = 10, 5, and1. As the mass gets smaller,

so does Ŵνc and the conditional PDF moves towards smaller accretion rates

α. Therefore, haloes of smaller mass tend to accrete less.

distribution of accretion rates should be convergent. However, even

if this was not the case, let us stress that these divergences would

not represent a pathology of excursion sets, but are instead a rather

common feature of first-passage statistics in a cosmological context.

Regardless of convergence issues, it remains true that the estimate

(26) of the mean 〈α|σ 〉 gets a significant contribution from the less

accurate side of the distribution. One may therefore look for other

more informative quantities. In analogy with M⋆, defined as the

value of M for which νc = 1, one can define the characteristic

accretion rate α⋆ as the value for which Yα , the argument of the

Gaussian in equation (25), equals one

α⋆(σ ) =
Ŵνc

1 + Ŵνc

. (27)

For the above-mentioned typical value, it follows that α⋆(M⋆) =(√
3 − 1

)
/2 ≈ 1/3. Another useful quantity is the most likely

value of the accretion rate, corresponding to the maximum αmax of

fup(α|σ ). Requesting the derivative of the PDF to vanish, one gets

αmax(σ ) =
(Ŵνc)2

6

[√
1 +

12

(Ŵνc)2
− 1

]
. (28)

All three quantities 〈α|σ 〉, α⋆, and αmax tend to 1 in the large-mass

limit, and decrease for smaller masses. They thus contain some

equivalent information on the position of the bulk of the conditional

PDF of α at given mass. Hence, haloes of smaller mass accrete less

on average.

3.2 Halo formation time

The formation time is conventionally defined as the redshift zf at

which a halo has assembled half of its mass. It is thus related to the

height of the excursion set trajectory at the scale σ 1/2 ≡ σ (M/2)

corresponding to the radius R1/2 = R/21/3. As the barrier δc/D(z)

grows with z, and the first-crossing scale moves to the right towards

higher values of σ , zf is the redshift at which σ 1/2 becomes the first-

crossing scale for that trajectory, if it exists. That is, neglecting for

the time being the presence of finite jumps in the first-crossing scale

(interpreted as mergers), one simply needs to solve for zf the implicit

relation δ(σ 1/2) = δc/D(zf), which makes zf a stochastic variable.

As described in Fig. 4, trajectories with the same upcrossing scale

σ but different heights at σ 1/2 describe different formation times: a
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Appendix A: Tracer particle algorithm

Let us describe here the pseudo-code underlying the tracer par-
ticle algorithm. The corresponding Fortran code is available
upon request.

A.1. Gas to gas cells

The main function in charge of moving tracers between gas cells
is called TreatCell. It takes as input the index of a cell and loops
over all tracers in it. It requires all the (mass) fluxes to be stored.
The pseudo code is the following.

function TreatCell(icell)
mcell ←MassOfCell(icell)
Fnet ← 0
for idir ← 1, 2Ndim do ⊲ Compute outgoing flux

5: F ← GetFluxInDir(icell, idir)
if F > 0 then

Fnet ← Fnet + F
end if

end for
10: tracers← GetTracerParticlesInCell(icell)

pout ← Fnet/mcell ⊲ Probability to move part. out of cell
for jpart in tracers do ⊲ Loop on tracer particles

r1 ← DrawUniform(0, 1)
if r1 < pout then

15: r2 ← DrawUniform(0, 1)
for idir ← 1, 2Ndim do ⊲ Select a direction

F ← GetFluxInDir(icell, idir)
p = F/Fnet
if r2 < p then ⊲ Move in direction idir

20: MoveParticle(icell, jpart, idir)
break

else
r2 ← r2 − p

end if
25: end for

end if
end for

end function
This function requires the MoveParticle function, which is
defined as follow

function MoveParticle(icell, ipart, idir)
Ftot ← GetFluxInDir(icell, idir)
neighbors← GetCellsOnFace(icell, idir)
īdir ← GetOppositeDirection(idir)

5: r ← DrawUniform(0, 1)
for jcell in neighbors do

F ← − GetFluxInDir( jcell, īdir)
p← F/Ftot
if r < p then⊲ Move particle to the centre of the cell

10: SetParticleAtCenter(ipart, jcell)
break

else ⊲ Proceed to next cell
r ← r − p

end if
15: end for

end function

Fig. A.1. Cell faces numbering.

GetFluxInDir returns the mass that goes through the cell
face in one timestep. Assuming that cell faces are numbered
from 1 to 6 (left, right, top, bottom, front, rear, see Fig. A.1),
GetOppositeDirection reads

function GetOppositeDirection(idir)
mask← [2, 1, 4, 3, 6, 5]
return mask[idir]

end function
When looped over all cells, the algorithm treating all the trac-

ers has complexity O(N) where N is the total number of tracer
particles and requires O(NdimNcell) memory to store the fluxes
and O(N) to store the tracer particles information.

A.2. AGN

Here we present how the volume of the jet is computed. We also
present how the positions of the tracer particles in the jet are
drawn. The function in charge of drawing position for the tracer
particles in the jet is Tracer2Jet

function Tracer2Jet(j)
loop

c← 2
while c > 1 do

5: a← NormalDistribution(0, 1)
b← NormalDistribution(0, 1)
c← a2 + b2

end while
x← rAGN × a

10: y← rAGN × b
h← Uniform(−2rAGN, 2rAGN)
r2 ← x2 + y2

if |h| > rAGN and (|h| − rAGN)2 + r2 < r2
AGN then

break
15: else if |h| ≤ rAGN then

break
end if

end loop
⊲ We now have a position in the frame of the jet.

20: uz ← j/|j|
ux ← [jy + jz,−jx + jz,−jx − jy]
ux ← ux/|ux|
uy ← uz ∧ ux
return x ux + y uy + h uz

25: end function
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Figure4.Pictorialrepresentationoftheinterplaybetweenaccretionrate

andformationtimeasinferredfromexcursionsets.TwohaloesAandB

upcrossthethresholdδc/D(z1)atthesamescaleσ.Atredshiftz1,theyhave

thereforethesamemass.HaloAhasasteeperslopethanhaloB,andhas

thusaloweraccretionrate.Ataslightlylargerredshiftz2,haloAcrossesthe

higherthresholdδc/D(z2)atalowerσ,anditsmassisthuslargerthanhalo

B’s:haloAassemblesitsmassearlier,consistentwithitsloweraccretion

atz1.Atthehalf-massscaleσ1/2=σ(M/2),thetrajectoryofhaloAis

higher:itsthresholdδc/DfhasavalueofDflowerthanhaloB’satthesame

σ1/2.HaloAhasthusassembledhalfofitsmassataredshiftzfhigherthan

haloB.

higherδ1/2correspondstoasmallerD(zf)andthustoahalowith

largerzf,whichassembledhalfofitsmassearlier.

Inthelanguageofexcursionsets,itisconvenienttoworkwith

Df≡D(zf)ratherthanwithzf.Intermsofunitvariancevariables,

haloeswithformationtimeDfcorrespondtotrajectoriessatisfying

ν1/2≡
δ(σ1/2)

σ1/2

=
δc

σ1/2Df

≡νf,(29)

whereν1/2istheGaussianvariableatσ1/2andνfisthethreshold

atDf.Thisconstraintatσ1/2imposesasecondconditiononthe

trajectoryafterν=νc,whichselectedthecrossingscaleσ.One

thenneedstotransformthebidimensionalconstraint

C̃≡{ν−νc,ν1/2−νf}=0(30)

on{ν,ν1/2}intoonefor{σ,Df},whichgives

∣∣
det

(
∂C̃/∂{σ,Df}

)∣∣
δ

(2)
D(C̃)=

∣∣
ν′−ν′

c

∣∣νf

Df

δ
(2)
D(C̃),(31)

thankstothefactthat∂(νc−ν)/∂Df=0.

ThejointprobabilityofupcrossingatσhavingformationtimeDf,

denotedfup(σ,Df),isdefinedastheexpectationvalueofequation

(31)withtheconditionν′>ν′
c.Thatis,

fup(σ,Df)≡
νf

Df

∫∞

ν′
c

dν′(ν′−ν′
c)pG(νc,ν′,ν

f),

=
νf

Df

pG(νc,νf)
μf

σ
F(Xf),(32)

wherethesecondequalityfollowsfromsetting{v}=νfinthe

generalexpression(15),whileμfandXfaregivenby

μf(Df)≡〈δ′|νc,νf〉,Xf(Df)≡
μf(Df)

√
Var(δ′|νc,νf)

,(33)

asspecifiedbyequation(16).Theconditionalmean〈δ′|νc,νf〉and

varianceVar
(
δ′|νc,νf

)
arecomputedinequations(F21)and(F22),

whichgive

μf(Df)=
ω′δ

c

σ1/2Df

+
σ−ω′ω

σ2−ω2

(
δc−

ωδc

σ1/2Df

)
,(34)

Xf(Df)=μf(Df)

/[
〈δ′2〉−ω′2−

(σ−ω′ω)
2

σ2−ω2

]1/2

,(35)

whereω=〈δν1/2〉andω′=〈δ′ν
1/2〉aregivenbyequations(E14)

and(E15),respectively.

TheconditionalprobabilityofDfgivenupcrossingatσ–the

mainresultofthissubsection–isobtaineddividingequation(32)

byequation(11)

fup(Df|σ)=
νf

Df

pG(νf|νc)
μfF(Xf)

νcF(X)
,

=
(
δc/σ1/2D

2
f

)
e−ν

2
f,c/2

√
2π(1−〈νν1/2〉2)

μfF(Xf)

νcF(X)
,(36)

where(νf/Df)pG(νf|νc)=p(Df|νc),notsurprisingly,isthecondi-

tionalprobabilityofthe(non-Gaussian)variableDfgivenνc,and

νf,c≡
νf−〈νν1/2〉νc
√

1−〈νν1/2〉2=
δc

σ1/2

1/Df−〈δδ1/2〉/σ
2

√
1−〈νν1/2〉2

.(37)

RecallalsothatX=Ŵνc.Theconditionalprobabilityfup(Df|σ)

dependsonDfdirectly,throughνf,candthroughμf(whichappears

alsoinXf).Asbothνf,candμfareproportionalto1/Dfinthesmall-

Dflimit,equation(36)scaleslikee−ν
2
f,c/2

/D
3
f.Hence,fup(Df|σ)is

exponentiallysuppressedforsmallDf,thatisforlargeformation

redshiftzf:itisexponentiallyunlikelyforahalotoassemblehalf

ofitsmassatveryhighredshift.

Likeintheprevioussection,theGaussiancut-offinequation(36)

enablestodefineacharacteristicvalueD⋆(σ)oftheformationtime,

belowwhichfup(Df|σ)isexponentiallysuppressed,byrequesting

thatνf,c=1.Thisdefinitioncorrespondsto

D⋆(σ)=
δc/σ1/2

〈νν1/2〉νc+
√

1−〈νν1/2〉2
,(38)

whichcanthenbesolvedforthetypicalformationredshiftz⋆.

Similarly,onemaydefinethemostlikelyformationtimeDmaxby

findingthevalueofDfthatmaximizesequation(36).Becauseits

expressionisratherinvolvedandnotmuchmoreinformativethan

D⋆,itisnotreportedhere.

ExpandingD⋆inpowersof�σ1/2≡σ1/2−σ(eventhough

�σ1/2/σ≃−(1/2)dlogσ/dlogMmaynotbesmall,inwhichcase

thisexpansionmayjustgiveaqualitativeindication),onegets

D⋆≃1−
�σ1/2

σ

(
1+

√
〈δ′2〉−1

νc

)
≃1−

1

α⋆

�σ1/2

σ
,(39)

confirmingtheintuitiverelationbetweenaccretionrateandfor-

mationtime.Haloeswithsmalleraccretionratestodaymusthave

formedearlier,inorderfortheirfinalmasstobethesame.Toderive

thisexpression,〈δδ1/2〉wasexpandeduptosecondorderin�σ,us-

ing〈δδ′〉=σand〈δδ′′〉=1−〈δ′2〉=Ŵ−2
.Letusstressthat,strictly

speaking,theconditionalprobabilityfup(Df|σ)isnotawell-defined

probabilitydistribution.Forinstance,justlikefup(σ),equation(36)

isnotnormalizedtounitywhenintegratedover0<Df<D.This

isanartefactintroducedbytheupcrossingapproximationtothe

first-crossingproblem,becauseequation(29)doesnotrequiretra-

jectoriestoreachδc/Dfforthefirsttime.AsDfgetsclosetoD,

mosttrajectoriesreachingδc/Dfdosowithnegativeslope,orafter

oneormorecrossings,whichleadstoovercounting.ForDf=D,

MNRAS476,4877–4906(2018)
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trajectories that first crossed δc/Df at σ cannot first cross again at

σ 1/2, since σ 1/2 − σ remains finite: the true distribution should then

have f(Df|σ ) = 0. This is clearly not the case for fup(Df|σ ). In spite

of these shortcomings, equation (36) approximates well the true

conditional PDF for Df ≪ D⋆, and the characteristic time D⋆ still

provides a useful parametrization of the height of the tail.

A better approximation than equation (36) may be obtained by

imposing an upcrossing condition at σ 1/2 as well

δc

D2
f

∫ ∞

0

dδ′ δ′
∫ ∞

0

dδ′
1/2 pG(δc, δ

′, δc/Df, δ
′
1/2) . (40)

Notice the absence in this expression of the Jacobian factor δ′
1/2: this

is because the constraint at σ 1/2 is not differentiated with respect

to σ 1/2, but only with respect to Df. This reformulation, which

unfortunately does not admit a simple analytical expression, would

improve the approximation for values of Df closer to D⋆, but it

would still not yield a formally well-defined PDF. Furthermore, the

mean 〈Df|σ 〉 and all higher moments would still be infinite: these

divergences are in fact a common feature of first passage statistics,

which typically involve the inverse of Gaussian variables. For all

these reasons, this calculation is not pursued further.

This section has formalized analytical predictions for accretion

rates and formation times from the excursion set approach with

correlated steps. It confirmed the tight correlation between the

two quantities, according to which at fixed mass, early-forming

haloes must have small accretion rates today. Because the focus is

here on accounting for the presence of a saddle of the potential at

finite distance, for simplicity and in order to isolate this effect we

have restricted our analysis to the case of a constant threshold δc.

More sophisticated models (e.g. scale-dependent barriers involving

other stochastic variables that account for deviations from spherical

collapse) could however be accommodated without extra concep-

tual effort (see Appendix G).

4 H ALO STAT ISTIC S N EA R SAD DLES

Let us now quantify how the presence of a saddle of the large-scale

gravitational potential affects the formation of haloes in its prox-

imity. To do so, let us study the tracers introduced in the previous

section (the distributions of upcrossing scale, accretion rate, and

formation time) using conditional probabilities. The condition we

enforce is that the upcrossing point (the centre of the excursion set

trajectories) lies at a finite distance r from the saddle point. The fo-

cus will be on (filament-type) saddles of the potential that describe

local configurations of the peculiar acceleration with two spatial

directions of inflow (increasing potential) and one of outflow (de-

creasing potential). See Appendix C for other critical points. These

initial regions will evolve into filaments (at least in the Zel’dovich

approximation), where particles accumulate out of the neighbouring

voids from two directions, and the saddle points filament centres,

where the gravitational attraction of the two nodes balances out. A

schematic representation of this configuration is given in Fig. 5.

The saddles are identified as points with null gradient of the

gravitational potential, smoothed on a sphere of radius RS (which

is assumed to be larger than the halo’s scale R). This condition

guarantees that the mean peculiar acceleration of the sphere, which

at first order is also the acceleration of its centre of mass, vanishes.

That is, the null condition (for i = 1, . . . , 3)

gi ≡
1

R⋆

∫
d3k

(2π)3

iki

k2
δm(k)

W (kRS )

σS
= 0, (41)

Figure 5. Illustration of the conditional excursion set smoothing on a few

infinitesimally close scales around R (in green) at finite distance r from

a saddle point of the gravitational potential smoothed on scale RS ≫ R

(in red). The eigenvectors ex and ez of the tidal tensor at the saddle give the

directions of steepest increase and decrease of the potential, corresponding

to maximum inflow and outflow, respectively. The region is compressed

along ex and ey and stretched along ez, thus creating a filament. The solid

lines are isocontours of the mean density, the thickest the densest. The dotted

line indicates a ridge of mean density (the filament), parallel to ez near the

saddle.

where σS ≡ σ (RS ), is imposed on the mean gradient of the potential

smoothed with a Top-Hat filter on scale RS . This mean acceleration

is normalized in such a way that 〈gigj〉 = δij/3 by introducing the

characteristic length-scale7

R2
⋆ ≡

∫
dk

P (k)

2π2

W 2(kRS )

σ 2
S

. (42)

Having null peculiar acceleration, the patch sits at the equilibrium

point of the attractions of what will become the two nodes at the

end of the filament.8

The configuration of the large-scale potential is locally described

by the rank 2 tensor

qij ≡
1

σS

∫
d3k

(2π)3

kikj

k2
δm(k)W (kRS ) , (43)

which represents the Hessian of the perturbed potential smoothed

on scale RS , normalized so that 〈tr2(q)〉 = 1. This tensor is the

opposite of the so-called strain or deformation tensor. The pecu-

liar gravitational acceleration at the surface of the sphere is pro-

portional to −qijrj. Thus, the trace tr(q) = νS of qij describes the

7 This scale is similar, but not equivalent, to the scale often defined in peak

theory. Calling σ 2
i the variance of the density field filtered with k2iW(kR),

the R∗ defined here is σ−1/σ 0, while the peak theory scale is
√

3σ1/σ2.
8 The mean gravitational acceleration gi includes an unobservable infinite

wavelength mode, which should in principle be removed. A way to circum-

vent the problem would be to multiply W (kRS ) by a high-pass filter on some

large-scale R0 to remove modes with k �1/R0. Because gi is set to 0, it does

not introduce any anisotropy, but simply affects the radial dependence of

the conditional statistics through its covariance 〈gigj〉, which however is not

very sensitive to long wavelengths. For this reason, this minor complication

is ignored.
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available in Ramses, and treated tracer particles just like stan-
dard particles (star or DM) with respect to code structure. In the
following, the computation overhead will be expressed in terms
of the number of tracer per initial cell: Nt/Ncell,i, where Nt is the
number of tracer particles and Ncell,i is the number of initial (gas)
cells.

The runs with tracers show that the total run time starts
increasing with the number of tracer particles per cell10 when
this number becomes of the order of ∼0.1 tracer per initial cell.
Above this threshold, the run time scales roughly linearly with
the number of tracer per initial cell. We have run the simula-
tion on the Occigen supercomputer with 672 cores (28 nodes of
24 cores). Each node is made of two Intel Haswell 12-Core E5-
2690 V3s11 running at a clock frequency of 2.6 GHz. The nodes
are wired together with a DDR Infiniband network (20 Gbit s−1).
The code was compiled with the Intel Fortran compiler version
17.0 and OpenMPI 2.0.2. In this setup the overhead is 3% per
tracer per initial cell. For example the run t100 with 10 tracer
per initial cell had a 40% overhead. Part of the overhead is due
to the tracer particles themselves (moving, generating random
numbers, etc.). Another part is due to the load balancing. Indeed,
in this simulation, tracer particles are only found in the zoomed
region, which is already the most CPU-intensive region. Our
simulation can be seen as a worst-case scenario for the tracer
particles. In general, let us write the conservative formula giving
an estimate of the overhead induced by the tracer particles

∆t
t
= 0.03

(
Nt

Ncell,i

)
+ 0.1, (23)

where t is the run time and ∆t the extra cost induced by the tracer
particles. Here, Nt and Ncell,i are the total number of tracer parti-
cles and the total number of initial cells, respectively.

5. Conclusions

We present a new implementation of tracer particles in the
Ramses AMR code based on the Monte Carlo approach
from Genel et al. (2013). It has been interfaced with the most
common physical models used in cosmological simulations (star
formation and stellar feedback, SMBH growth and AGN feed-
back). We have shown that the Lagrangian history of the gas is
accurately reconstructed by testing the accuracy of the tracer dis-
tribution in an advection-dominated problem and in a diffusion-
dominated problem. The gas tracer distribution matches that of
the gas, even in complex situations that involve subgrid models.
We have also provided a comparison of the new MC tracer parti-
cles to the previous velocity-based implementation and showed
that the new version largely outperforms the accuracy of the pre-
vious one. We have made a detailed study of the distribution of
tracer particles in a zoom-in cosmological simulation including
state-of-the art subgrid model physics (cooling, star formation,
SN feedback, SMBHs, and AGN feedback) and show that: (i) in
each cell, the gas tracer distribution is given by a Poisson distri-
bution with parameter λ = Mcell/mt; and (ii) for each star, the
number of star tracers can be approximated by a Poisson distri-
bution with parameter λ = M⋆/mt. The properties of the Poisson
distribution give a simple rule to estimate the sampling noise
of the tracer particle, as the noise can be represented by 1/

√
λ.

In turn this should allow users to quantify how many particles

10 We note that here the number of cells is the one in the refined regions,
not the initial number of cells.
11 See Intel-Xeon-Processor- E5-2690.

are needed to reach their sought accuracy. We have also shown
that the gas tracer particles sample exactly the intrinsic numer-
ical diffusion of the Godunov solver. To highlight the assets of
tracer particles in a realistic setting, they were implemented in
the problem of cold flow accretion at high redshift. The known
bi-modality in the temperature of gas was recovered.

The performance of the algorithm was explored. In a zoom-
in full physics cosmological simulation, the run time grows
roughly linearly with the number of tracer particles per cell. The
overall impact on computation time is estimated to be ∼3% per
tracer per initial cell plus a constant computation time overhead
of 10%, regardless of the number of tracer particles. These fig-
ures should serve as upper limits on the computation time. The
performance of the scheme could be optimised by using two sep-
arate linked lists for the tracer particles and the other particles, as
is done in arepo (Genel et al. 2013). Implementing these possi-
ble improvements will be the subject of future studies. Presently,
the performance is significantly lower than that reported in the
original paper of Genel et al. (2013): in addition to using a spe-
cific linked list for the tracer particles, the moving mesh of arepo
reduces the number of tracer movements and mitigates the cost
of each tracer.

In comparison to the original paper by Genel et al. (2013),
we provide an additional detailed description of the statistical
properties of the ensemble of tracer particles not only in the gas
but also in stars and in AGN jets. We also studied how their
distributions behave when complex sub-grid models are involved
(star formation and feedback, AGN feedback, BH accretion) and
checked that their distribution is in agreement with the baryon
distribution.

This implementation provides an efficient method to accu-
rately track the evolution of the Lagrangian history in the Eule-
rian code Ramses. It opens new perspectives to study how baryon
flows interact in hydrodynamical simulations. For instance,
tracer particles could be used to quantify the spatial and time
evolution of the anisotropically accreted gas, its contribution
to the spin of galaxies, and how these processes impact galac-
tic morphology. Specifically, following Tillson et al. (2015),
Danovich et al. (2015), and DeFelippis et al. (2017), one could
address the following open questions: Where does the angular
momentum go? Does it contribute to the spin-up of the galaxies
or is it re-distributed before entering the disk? If it is, is it due to
turbulent pressure, shock-heating or SN and AGN feedback?
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Howdoesthecosmicwebimpactassemblybias?4885

averageinfall(orexpansion,ifnegative)accelerationofthethree

axeswithrespecttothebackground,whiletheanisotropicshearis

givenbythetracelesspartq̄ij≡qij−δijνS/3,whichdeformsthe

regionbyslowingdownoracceleratingeachaxis.Byconstruction,

〈νSq̄ij〉=0.

Fortheinitialsphericalpatchtoevolveintoafilament,theeigen-

valuesqiofqijmustobeyq1<0<q2<q3(seealsoFig.D1).Inthis

configuration,theZel’dovichflowofthepatchhasoneexpanding

directionandtwoinfallingones.Thenon-linearevolutionisun-

likelytorevertthisbehaviour,andthesphericalregionwillendup

inafilament(Zel’dovich1970;Bond,Kofman&Pogosyan1996).

Thereisnoclearconsensusonwhattheinitialdensityofaprotofila-

mentshouldbeforthestructuretoformatz=0(seehoweverShen

etal.2006).ThevalueνS=1.2waschosenhere,correspondingto

ameandensityof0.8withinasphereofRS=10Mpch−1
,which

isaboutonestandarddeviationhigherthanthemeanvaluefor

saddlepointsofthistype(seeAppendixDfordetails),andthus

correspondstoafilamentslightlymoremassivethantheaverage

(ortoanaveragefilamentthathasnotcompletelycollapsedyet).

Thequalitativeresultspresentedinthispaperdonotdependonthe

exactvalueofνS(eventhoughtheyobviouslydoatthequantitative

level).

4.1Expectedimpactofsaddletides

Themeanandcovarianceofδandδ′atraremodifiedbythe

presenceofthesaddleattheorigin.Thezeromeandensityfieldis

replacedbyδ−〈δ|S〉,where(usingEinstein’sconventionasusual)

〈δ|S〉=〈δ|S〉〈δνS〉νS+3〈δgi〉gi+
15

2
〈δq̄ij〉q̄ij,(44)

wherethecorrelationfunctionsareevaluatedatfiniteseparation.

Here,Sstandsforafilament-typesaddleconditionofzerogradient

andtwopositiveeigenvaluesofthetidaltensor,seeFig.5.The

slopeδ′isreplacedbythederivativeofthiswholeexpressionwith

respecttoσ,whichgivesδ′−〈δ′|S〉,sincethecorrelationfunctions

ofδ′withthesaddlequantitiescorrespondtothederivativesofthe

δcorrelations.Thesemodifiedheightandslopenolongercorrelate

withanysaddlequantity.Thus,theabundanceofthevarioustracers

atrcanbeinferredfromstandardexcursionsetsofthiseffective

densityfield.Thebuildingblocksofthiseffectiveexcursionset

problem–thevarianceofthefieldandofitsslope,height,and

slopeoftheeffectivebarrier–arederivedinfullinAppendixF.

Themaintextofthissectiondiscusseshowthesaddlecondition

affectstheupcrossingstatistics,andtheexcursionsetproxiesfor

accretionrateandformationtime.

Forgeometricalreasons,sincestatisticalisotropyisbrokenonly

bytheseparationvector,anyangulardependenceofthecorrelation

functionsmayariseonlyasriorrirj.Letusthuswriteequation(44)

as

〈δ|S〉=ξ00νS+3ξ11

r

R⋆

r̂igi−5ξ20

3r̂iq̄ijr̂j

2
,(45)

wherer̂i≡ri/randthecorrelationfunctionsξαβ(r,R,RS)–whose

exactformisgiveninequation(E11)–dependonlyontheradial

separationr=|r|andthetwosmoothingscales,andhavepositive

sign.Noticethepresenceofaminussignintheshearterm.Inthe

frameofthesaddle,orientedwiththeẑ-axisinthedirectionof

outflow,

Q≡r̂iq̄ijr̂j=q̄3sin
2
θcos

2
φ+q̄2sin

2
θsin

2
φ+q̄1cos

2
θ,(46)

whereθandφaretheusualcylindricalcoordinatesintheframeof

theeigenvectors(e3,e2,e1)ofq̄ijwitheigenvaluesq̄3>q̄2>q̄1.

Figure6.Pictorialrepresentationoftheeffectofthepresenceofsaddle

pointontheexcursionsettrajectoriesatafinitedistancefromit.Haloes

AandBlieinthedirectionofthefilament(Q≡r̂iq̄ijr̂j<0),wherethe

meandensityishigherthantheaveragedensity.HaloCliesinthedirection

orthogonaltoit(Q>0),wherethemeandensityislower.Haloesinthe

filamentarelikelytocrossthecollapsingthresholdearlier,likehaloA,than

haloesinthevoids.Theythustendtohavelargermass.Atfixedcrossingscale

σB=σC,haloesinthefilamentarelikelytocrosswithshallowerslopes,

likehaloB,thanhalointhevoids.Attheirhalf-massscaleσ1/2>σA,their

trajectoriestendtobelower.Hence,atfixedmass,haloesinthefilaments

tendtohavelargeraccretionratesandtoassemblehalfoftheirmasslater.

Conversely,haloesinthevoidsassembletheirmassearlier,andthenstop

accreting.

Whensettinggi=0,anangulardependencecanonlyappearas

afunctionaldependenceonQ(r̂)=r̂iq̄ijr̂j.Thatis,adependence

onthedirectionr̂withrespecttotheeigenvectorsoftheshearq̄ij.

Asshownbyequation(45),anegativevalueofQcorrespondsto

ahighermeandensity,whichmakesiteasierforδtoreachδcand

forhaloestoform.Atfixeddistancefromthesaddlepoint,halo

formationisthusenhancedintheoutflowdirectionwithrespect

totheinflowdirection:haloesarenaturallymoreclusteredinthe

filamentthaninthevoids.Moreover,excursionsettrajectorieswith

alowermeanwilltendtocrossthebarrierwithsteeperslopesthan

thosecrossingatthesamescalebutwithahighermean,andwill

reachhigherdensitiesatsmallerscales.Hence,haloesofthesame

massthatforminthevoidswillformearlierandhavealower

accretionrates.ThesetrendsareshowninFig.6.

Tounderstandtheradialdependence,onemayexpandequation

(45)forsmallrawayfromthesaddle,obtaining

〈δ|S〉≃〈δνS〉r=0νS+〈δ∇
2
νS〉r=0

r
2

2
r̂iqijr̂j;(47)

whetherthemeandensityincreasesordecreaseswithrdepends

onthesignoftheeigenvalues,i.e.thecurvaturesofthesaddle,of

thefullqdefinedinequation(43).Since〈δ∇
2
νS〉<0,themean

densitygrowsquadraticallywithrifr̂iqijr̂j<0,anddecreases

otherwise.Onethusexpectsthesaddlepointtobeamaximum

ofhalonumberdensity,accretionrate,andformationtimeinthe

twodirectionsperpendiculartothefilament,andaminimuminthe

directionparalleltoit(correspondingtothenegativeeigenvalueq1).

4.2Conditionalhalocounts

Theconditionaldistributionoftheupcrossingscaleσatfinitedis-

tancerfromasaddlepointofthepotentialcanbeevaluatedfol-

lowingthegenericproceduredescribedinSection2.2,fixing

{vI}={νS,0,−
√

5(3Q/2)}≡S(r)(48)
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Fig.16.Bottompanel:histogramofthemaximumtemperatureofthe
gasaccretedontothecentralgalaxybetweendifferentredshifts(from
earlyaccretiontimeinbluetolateaccretiontimeinyellow).Toppanel:
cumulativedistributionofthegastemperature.Onlythegas-forming
starswithinthevirialradiusareselected.Thetotaldistributioninte-
gratedoverthetotalaccretiontimeisshownwiththeblackdashedline
inthebottompanel.Thetotaldistributionhasbeenrescaledbyafactor
ofonethirdforvisualisation.Thehalohastwomodesofaccretion:a
coldandahotmode.Athighzthecoldmodedominatesandatlowz
thehotmodedominates.

thegasareextractedfromthelocalgascellvalue.Foreachtracer
particle,themaximumtemperatureTmaxreachedbeforefalling
intothevirialradiusisrecorded.Theinfalltimeisdefinedasthe
lastinwardcrossingofthevirialradius.Themergertreeiscom-
putedfollowingTweedetal.(2009).Theprocedureonlyselects
tracerparticlesfallingontothegalaxyinthegasphase.This
excludesgastracerstrackinggasthatformedstarsinsatellite
galaxiesbutincludesgasfromwetmergers.Figure16presents
thetemperaturedistributionoftheaccretedgasfordifferentbins
ofinfalltime.Atearlytimes(bluelines,z&3)theaccretionis
bi-modal.About50%ofthegasisaccretedviathecoldmode,
asshowninthetoppanelofFig.16.Atlaterredshifts(z.2.5),
theaccretionbecomesdominatedbythehotmode.Therelative
importanceofthecoldaccretiondecreasesandthedistribution
becomelessandlessbimodal,untilitiseventuallyentirelydom-
inatedbythehotmode.Thisisinqualitativeagreementwith
thefindingsofKerešetal.(2005)thoughtheexactquantitative
amountofcoldversushotaccretedgasreliessignificantlyon
i)thenumericalschemetomodelgasdynamics(Nelsonetal.
2013)andii)themodelledfeedbackprocesses(Duboisetal.
2013).

Cautionshouldbetakenhere:contrarytowhatwasdone
intheoriginalstudy,onlytheaccretionontoasinglegalaxyis
investigated.Inparticular,ourresultsaresensitivetotheparticu-
laraccretionandmergerhistoryofthatgalaxy,whichimpactthe
temperaturedistributionofthegas.Inordertoachieveafairer
comparison,onewouldhavetorunafullcosmologicalsimula-
tionandstudythegasaccretionofthefullpopulationwithinthe
box.Whilethiswouldnowtechnicallybepossiblethankstothe
newtraceralgorithm,itisnonethelesswellbeyondthescopeof
thispaper.

4.Performance

Toquantifytheperformanceofthetracerparticlesandtheirasso-
ciatedCPUoverhead(definedastheexcessofcomputationtime
requiredbythetracerparticles),werestartedthesimulationof

0246810
Tracer per cell

0

10

20

30

40

Overhead (%
)

Fig.17.Overheadasafunctionofthenumberoftracerparticlesper
initialcell(symbols).Theorangesymbolisthesimulationwiththe
tracerdeactivated.Thedata(excludingtherunwiththetracerdeacti-
vated)havebeenfittedwithalinearfunction(dashedline).Theesti-
matedoverhead(slopeofthefit)is∼3%pertracerperinitialcellwith
anextraconstantof∼10%.

Table1.Runtimepercoarsetimestepforthedifferentruns.

NameAbsoluteTracerRuntimeOverhead
numberpercell(s)(%)

t10012932511610131039.9
t67862143036.7127035.3
t20646562065121028.7
t33431046213.3116023.1
t20258613102110017.5
t10129290771106013.1
t0.11302500.01106013.4
t00010209.2
not00940–

Notes.Therunnotrwasperformedwithnotracerparticlesandwith
allthetracerparticleroutinesdeactivated.Thecolumn“Tracerpercell”
isthenumberoftracerparticlesperinitialcellinthezoomedregion.
The“Overhead”columncontainstherun-timeoverheaddefinedwith
respecttothenotrrun.

Sect.3.2atredshiftz=2,whilevaryingthenumbersoftracer
particlestotestthescalingofthealgorithm.Atrestart,wedec-
imatethetracerpopulationtokeeponly67,50,33,20,10,or
0.1%oftheinitialpopulation(inthegas,star,andblackholes).
Wealsorunasimulationwithnotracerbutallthetracerroutines
activated(t0)andasimulationwithnotracerandthetracerrou-
tinesdeactivated(notracer).Theparametersoftherunsare
presentedinthefirstthreecolumnsofTable1.Theruntime
isdefinedasthetotalruntimedividedbythenumberofsteps.
Theoverheadisdefinedastherelativeincreaseoftheruntime
withrespecttotherunnot.Alltherunswerestoppedaftertwo
iterationsofthecoarsetimestep(about∼2000sofruntime,
∼2.8Myrofsimulationtime).Theresultsarealsoplottedin
Fig.17.

Bycomparingthetworunst0andnotr,weconcludethat
thetracerparticlemachineryaddsaconstantcostofabout10%
tothecomputation.Thisisduetothefactthatthetracerparticles
requirethefluxesattheinterfaceofeachcell(sixquantitiesper
cell)tobestored,whichthenhavetobecommunicatedbetween
CPUs.Inaddition,therearemultipleloopsthatiterateoverall
thecellsandalltheparticles(seeSect.2formoredetails).In
principle,thiscouldbeoptimisedbysettingtracerparticlesin
theirownlinkedlist,butweexploitedtheparticlemachinery
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as the constraint. With this replacement, equation (15) divided by

pG(S) gives

fup(σ ; r) =
e
−ν2

c,S/2

√
2πVar (δ|S)

μSF (XS ) , (49)

which is the sought conditional distribution, with

μS (r) ≡ 〈δ′|νc,S〉 , XS (r) ≡
μS (r)

√
Var (δ′|νc,S)

, (50)

as in equation (16). The effective threshold νc,S given the saddle

condition is obtained replacing the generic constraint v with S in

equation (18).

The explicit calculation of the conditional quantities needed to

compute νc,S , μS , and XS is carried out in Appendix F. The results

of Appendix F2 [namely, equation (F13)] give

νc,S (r) ≡
δc − 〈δ|S〉
√

Var (δ|S)
=

δc − ξ00νS + 15
2
ξ20Q(r̂)√

σ 2 − ξ 2
, (51)

consistently with equation (45), where

ξ 2(r) ≡ ξ 2
00(r) + 3ξ 2

11(r)r2/R2
⋆ + 5ξ 2

20(r) . (52)

The effective slope parameters, obtained by replacing equations

(F10) and (F11) into equation (50), are

μS (r) = ξ ′
ISI +

σ − ξ ′
I ξI√

σ 2 − ξ 2
νc,S (r) , (53)

XS (r) = μS (r)

/[
〈δ′2〉 − ξ ′2 −

(σ − ξ ′
I ξI )2

σ 2 − ξ 2

]1/2

, (54)

in terms of the vectors

ξ (r) ≡ {ξ00(r),
√

3ξ11(r)r/R⋆,
√

5ξ20(r)} , (55)

ξ ′(r) ≡ {ξ ′
00(r),

√
3ξ ′

11(r)r/R⋆,
√

5ξ ′
20(r)} . (56)

The correlation functions ξαβ (r, R, RS ) and their derivatives ξ ′
αβ =

dξαβ/dσ are given in equations (E11) and (E12), respectively. Note

that throughout the text, ξαβ or ξαβ (r) will be used as a shorthand

for ξαβ (r, R, RS ).

Equation (49), the main result of this subsection, is the conditional

counterpart of equation (11), and is formally identical to it upon re-

placing νc, ν ′
c, and X with νc,S (r), ν ′

c,S (r) = −μS (r)/
√

σ 2 − ξ 2

and XS (r). The position-dependent threshold νc,S (r) and the slope

parameter μS (r), given by equations (51) and (53), respectively,

contain anisotropic terms proportional toQThese terms account for

all the angular dependence of fup(σ ; r). In the large-mass regime,

as {ξ ′
I } ≃ 0, XS ≃ νc,S/(1 − ξ 2) ≫ 1 and F (XS ) ≃ 1. The most

relevant anisotropic contribution is thus the angular modulation of

νc,S , which raises or lowers the exponential tail of fup(σ ; r) along

or perpendicular to the filament. Upcrossing, and hence halo for-

mation, will be most likely in the direction that makes the threshold

νc,S smallest, as this makes it easier for the stochastic process to

reach it.

In analogy to the unconditional case, when a characteristic mass

scale could be defined for which σ = δc, equation (49) suggests

to define the characteristic mass scale σ ⋆ = σ (M⋆) for haloes near

the saddle as the one for which νc,S = 1 in equation (51). In the

language of excursion sets, this request naturally sets the scale

σ 2
⋆ (r) ≡

(
δc − ξ00νS +

15

2
ξ20Q

)2

+ ξ 2(r) . (57)

This is now an implicit equation for σ ⋆, because the RHS has a

residual dependence on σ ⋆ through ξαβ (r, R(σ⋆), RS ), as shown in

Figure 7. Isocontours in the x–z plane of the typical upcrossing scale σ ⋆

around a saddle point [at (0, 0)]. The saddle point is defined using the values

of Table D1. The profiles in the direction of the filament (z-direction) and

of the void (x-direction) are plotted on the sides. The smoothing scale is

R = 1 Mpc h−1. They are obtained by solving equation (57) for σ ⋆ at each

point, with a �CDM power spectrum, and normalized to the value at the

saddle point. In the filament, haloes form at a smaller σ (higher mass) and

conversely in the void.

Appendix E. This equation can be solved numerically for σ ⋆ and

then for M⋆.

The angular dependence of σ⋆(r) is entirely due to ξ20Q. Since

the pre-factor ofQ ≡ r̂iqij r̂j is positive, σ⋆(r) will be smallest when

r aligns with the eigenvector with the smallest eigenvalue, and Q
is most negative. This happens when θ = 0 in equation (46): that

is, in the direction of positive outflow, along which a filament will

form. Thus, in filaments haloes tend to be more massive than field

haloes. The full radial and angular dependence of the characteristic

mass scale σ ⋆ is shown in Fig. 7.

4.3 Conditional accretion rate

The abundance of haloes of given mass and accretion rate at distance

r from a saddle is obtained by replacing the probability distribution

pG(νc, ν
′
c + νc/σα) in equation (23) with its conditional counter-

part given the saddle constraint. As shown by equation (F12), this

conditional distribution is equal to the distribution of the effective in-

dependent variables ν̃ and δ′ − 〈δ′|νc,S〉 introduced in Section 2.2,

times a Jacobian factor of σ/(1 − ξ 2/σ 2). Furthermore, the relation

(19) giving the excursion set slope in terms of the accretion rate

reads in these new variables

δ′ − 〈δ′|νc,S〉 =
νc

α
− μS . (58)

Putting these two ingredients together, equation (23) becomes

fup(σ, α; r) =
ν2

c

σ 2α3
pG(νc, ν

′
c + νc/σα|S) ,

=
ν2

c

α3

e
−
(

ν2
c,S+Y 2

α,S
)

/2

2π
√

(σ 2 − ξ 2)Var (δ′|νc,S)
, (59)
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Fig. 13. Stellar surface density (left panel), star-tracer surface density (centre panel), and relative difference (right panel). The data are the same
as in Fig. 10. In the difference map, regions where no stars are found are indicated in grey. The star and star-tracer distributions are in very good
agreement; their difference shows no spatial dependence. The noise level is higher than in Fig. 10 at large radii where the star surface density is
smaller than the gas surface density, hence the star mass distribution is less resolved than the gas.
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star density (solid orange) vs. the gas tracer density (blue cross) and
the star-tracer density (orange cross). The error bars are given by a
Poisson sampling noise. Top panel: relative difference between the
baryon and the tracer profiles. The tracers match their baryon coun-
terpart at a few percent level.

3.3. Bi-modal accretion at high redshift: a science case for
tracer particles

Low-mass galaxies (embedded in halos Mh . 1011 M⊙) exhibit a
significant amount of “cold-mode” cosmological accretion made
of cold gas streaming in narrow filaments with a temperature typ-
ically below Tmax / 105 K (Birnboim & Dekel 2003; Kereš et al.
2005; Ocvirk et al. 2008; Nelson et al. 2013, 2016). A “hot-
mode” phase made of gas that was shock heated before enter-
ing the virial radius (Tmax ∼ 106 K) appears in halos with higher
mass. At early times (z > 2.5), the accretion is dominated by
the cold mode. As time goes by, halos grow in mass so that an
increasing fraction of the gas heats up before entering the halo.
The outcome of this is a decrease of the relative importance of
cold accretion compared to hot accretion. By z / 2, most of the
accreted material comes from the diffuse hot phase. Hence, get-
ting access to the Lagrangian history of the stars and of the star-
forming gas is key to pinning down the origin of gas acquisition
in galaxies.

0 1 2 3 4 5 6 7 8 9Nt
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10 1
100

Freque
ncy

1.6 M < 2.1 ( =0.55)2.6 M < 3.1 ( =1.11)3.6 M < 4.1 ( =1.66)4.6 M < 5.2 ( =2.21)

Fig. 15. Distribution of the number of star tracers per star for different
star particle mass bins (in units of 104 M⊙) as observed in the simula-
tion (symbols and shaded surfaces) vs. as given by a Poisson distribu-
tion with parameter λ = 〈M⋆〉/mt (dashed). The error bars have been
estimated using a bootstrap method. For all stars, the distribution of the
number of star tracers per star is approximated by a Poisson distribution
with parameter λ.

We revisit this result using ramses and the MC tracer parti-
cles. Using the cosmological simulation of Sect. 3.2, we study
the accretion of gas as a function of time around the central
galaxy. We select all the gas tracers that end up in star particles
(not the star-forming gas) at z = 2 and r < 0.1Rvir. The halos
were detected using the AdaptaHOP halo finder (Aubert et al.
2004). For the positioning of the centre of the DM halo, we start
from the first AdaptaHOP guess of the centre (densest particle
in the halo) and from a sphere the size of the virial radius of
the halo; we use a shrinking sphere (Power et al. 2003) by recur-
sively finding the centre of mass of the DM within a sphere 10%
smaller than the previous iteration. We stop the search once the
sphere has a size smaller than ≃100 pc and take the densest par-
ticle in the final region. Twenty neighbours are used to compute
the local density. Only structures with a density greater than 80
times the average total matter density and with more than 200
particles are taken into account. The original AdaptaHOP finder
is applied to the stellar distribution in order to identify galax-
ies with more than 200 particles. Their Lagrangian history is
reconstructed in post-processing from the 132 equally spaced
(∆t = 25 Myr) outputs, and the thermodynamical properties of
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whereVar
(
δ′|νc,S

)
isgivenbyequation(F17)and

Yα,S(r)≡
νc/α−μS(r)
√

Var(δ′|νc,S)
,(60)

withμS(r)givenbyequation(53).Again,likeequation(23),this

resultcouldbeobtainedbytaking〈δ′|νc,α,S〉=νc/αandthe

limitVar
(
δ′|νc,α,S

)
→0inequation(16),whichwouldgive

F(Xα,S)=1.

Toinvestigatetheanisotropyoftheaccretionrateforhaloesof

thesamemass,oneneedstheconditionalprobabilityofαgiven

upcrossingatσ,thatistheratioofequations(59)and(49).This

conditionalprobabilityreads

fup(α|σ;r)=
νce−Y

2
α,S/2

α3√
2πVar(δ′|νc,S)

νc

μSF(XS)
,(61)

withμS(r)andXS(r)givenbyequations(53)and(54),respec-

tively.Thesecondfractioninthisexpressionisthusanormalization

factorthatdoesnotdependonα,andwhichtendsto1whenνc≫
1inthelarge-masslimit.Equation(61)isthemainresultofthis

subsection.Itdependsontheangularpositionr̂throughtheterms

ξ′
20Qandξ20QcontainedinμS(r),andthusalsoinYαSandXS.

Theangulardependenceisnowweightedbytwodifferentfunctions

ξ20(r)andξ′
20(r),whoserelativeamplitudematterstodeterminethe

overalleffect.

Tounderstandtheangularvariationoftheexponentialtailof

thisdistribution,letusfocusonhowYα(r)dependsonr̂.Thatis,

ontheanisotropicpartof−μS(r).Inthelarge-masslimit,when

σξ′
αβ(r)≪ξαβ(r),equation(53)tellsusthattheanisotropicpart

ofYα(r)isproportionalto−ξ20Q,withaproportionalityfactor

thatisalwayspositiveandO(1).Thus,themodulationhasthe

oppositesignoftheanisotropicpartofνc,S,giveninequation

(51):fortrajectorieswiththesameupcrossingscale,theprobability

ofhavingagivenaccretionrateislowestinthedirectionofthe

eigenvectorofq̄ijwiththelowest(mostnegative)eigenvalue,for

whichYαislargest.Thatis,forhaloeswiththesamemass,the

probabilityofhavingagivenaccretionrateislowestalongtheridge

ofthepotentialsaddle,whichwillbecomethefilament.

Thetypicalaccretionrateα⋆oftheexcursionsethaloesdescribed

bythedistribution(61)correspondstotheconditionYα⋆,S=1.This

definitiontransformsequation(27)into

α⋆(σ,r)≡
νc

√
Var(δ′|νc,S)+μS(r)

,(62)

whereVar
(
δ′|νc,S

)
andμS(r)aregivenbyequations(F17)and

(53).Inthelimitofsmallanisotropy,theangularvariationofthe

typicalaccretionrateis

�α⋆(σ,r)=
α

2
⋆|q̄=0

νc

15

2

[
ξ′

20−
σ−ξ′

IξI

σ2−ξ2ξ20

]
r̂iq̄ijr̂j,(63)

whereα⋆|q̄=0–thevalueofα⋆(σ,r)whenq̄ij=0–isfunctionof

rbutnotoftheangles.Therefore,atafixeddistancerfromthe

saddle,haloesthatforminthedirectionofthefilamenttendtohave

higheraccretionratesthanhaloeswiththesamemassthatformin

theorthogonaldirection.Thefulldependenceofthecharacteristic

accretionrateα⋆forhaloesofthesamemassonthepositionwith

respecttothesaddlepointofthepotentialisshowninFig.8.The

figureshowsthatthesaddlepointisalocalminimumoftheaccretion

ratealongthedirectionconnectingtworegionswithhighdensityof

finalobjects,whichistwopeaksofthefinalhalodensityfield.This

isconsistentwiththeresultthattheaccretionofhaloesinfilaments

issuppressedbytheeffectofthetidalforces(asshownby,e.g.

Hahnetal.2009;Borzyszkowskietal.2016).Thethresholdδ�
δcisreachedatsmallerσinfilamentsthaninvoid,hencetheslope

issmalleratupcrossing.Itisshownschematicallyinthetoppanel

ofFig.B3.Averificationwithaconstrainedrandomfieldisshown

inthebottompanelofFig.B3.Thedetailsofthemethodusedare

giveninAppendixB.

Onecanalsoevaluatethemeanoftheconditionaldistribution(61)

followingequation(26),integratingαfup(α|σ,S)overtherangeof

positiveα.Thisconditionalmeanvalueis

〈α|σ〉(r)=
νc

μS(r)

1+erf(XS(r)/
√

2)

2F(XS(r))
;(64)

inthelarge-massregime,whereXS≫1andthewholesecondfrac-

tiontendsto1,theposition-dependentconditionalmean〈α|σ〉(r)

isessentiallythesameasα⋆(r)definedinequation(62).Asfor

fup(α|σ),allhigherordermomentsareilldefined.Onecanalsofind

usefulinformationinthemostlikelyaccretionrate

αmax(σ,r)=
ν

2
c

6Var(δ′|νc,S)

[√
1+

12

X
2
S(r)

−1

]
,(65)

whichgeneralizesequation(28)tothepresenceofasaddlepoint

atdistancer.Thesameconclusionholdsherenamelythemost

likelyaccretionrateincreasesfromvoidstosaddlesandsaddles

tonodes.Thefollowingonlyconsidersmapsofα⋆(σ,r),since

theinformationencodedinαmax(σ,r)and〈α|σ〉(r)issomewhat

redundant.

4.4Conditionalformationtime

Theformationtimeinthevicinityofasaddleisobtainedbyfixing

thesaddleparametersS={νS,r̂igi,r̂iq̄ijr̂j},withgi=0,besides

ν=νcandν1/2=νf.Afive-dimensionalconstraintontheGaussian

variablesmustnowbedealtwith,andmappedinto{σ,Df,S}.Since

themappingofthesaddleparametersistheidentity,theJacobian

ofthetransformationstillgives|ν′−ν′
c|νf/Df,likeinSection3.2

(wheretherewasnosaddleconstraint).Theformalismoutlinedin

Section2.2stillapplies:thejointprobabilityofupcrossingatσ

withformationtimeDfgiventhesaddleisobtainedreplacing{v}
with{νf,S}inequation(16),multiplyingbytheJacobianνf/Dfand

dividingbytheprobabilitypG(S)ofthesaddle.Theresultis

fup(σ,Df;r)=
νf

Df

pG(νc,νf|S)
μf,S
σ

F(Xf,S)(66)

whichextendsequation(32)byincludingthepresenceofasaddle

pointofthepotentialatdistancer,with

μf,S≡〈δ′|νf,νc,S〉,Xf,S≡
μf,S

√
Var(δ′|νf,νc,S)

.(67)

Theconditionalmeanandvarianceofδ′given{νf,νc,S}areex-

plicitlycomputedinAppendixF4,equations(F30)and(F31).

TheconditionalprobabilityoftheformationtimeDfgivenσ

atadistancerfromthesaddlefollowsdividingequation(66)by

fup(σ|r),givenbyequation(49).Thisratio–whichisthemain

resultofthissection–gives

fup(Df|σ;r)=
νf

Df

pG(νf|νc,S)
μf,S
μS

F(Xf,S)

F(XS)
,

=
(δc/D

2
f)e−ν

2
f,c,S/2

√
2πVar

(
δ1/2|νc,S

)
μf,S
μS

F(Xf,S)

F(XS)
.(68)
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C.Cadiouetal.:TracerparticlesinRamses
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Fig.11.Gasdensityvs.gastracerdensity,colourcodedbycellmass.
Thegreydashedlineshowstheone-to-onerelation.Thegasandgas
tracerdensitiesmatchonnineordersofmagnitude.

particleisattachedtothestarparticleandhasaprobabilityof
p⋆≡M⋆,0/Mcellofbecominga“startracer”,whereM⋆,0isthe
massofthenewlycreatedstarparticle8.BecauseM⋆,0<Mcell–
astarparticlecannotbeformedwithmorematerialthanwhat
isavailable–thisprobabilityiswelldefined:0<p⋆<1.
WhentheheavystarsinastarparticlegointoSN,theyyield
ηM⋆,andthemassofthecorrespondingstarparticlebecomes
M⋆=(1−η)M⋆,0.Thestartracersarethenreturnedtothegas
withaprobabilityofη.BeforetheSNeexplode,thedistribution
oftracersforanindividualstarparticleisgivenbyabinomial
distributionwithparametersNi(theinitialnumberoftracerin
thecellwherethestarparticleformed)andp⋆

pform(Ni;Nf=k)=
(N

i

k

)
pk
⋆(1−p⋆)Ni−k.(20)

ThenumberoftracerparticlesreleasedintheSNeventreads

pSN(Nf;N=k)=
(N

f

k

)
ηk(1−η)Nf−k,(21)

whereNfisthenumberofstartracersinthestarparticlebefore
theSNexplosion.Thenumberoftracersinthestarparticleafter
theSNhasexplodedis,thus,givenbyabinomialdistributionof
parametersNiand(1−η)p⋆,

pf
⋆(Ni;N=k)=

(N
i

k

)
((1−η)p⋆)k(1−(1−η)p⋆)Ni−k.(22)

InthelimitwheretheNibecomeslargeand(1−η)p⋆small,
Eq.(22)convergesmathematicallytoaPoissondistributionwith
parameterNi(1−η)p⋆.

Now,wecomparetheexpecteddistributionoftracerparti-
clestothemeasuredone.Figure15presentsthedistributionof
thenumberoftracerparticlesperstarparticlefordifferentstar
particlemassbins.Thenumberofstartracersperstarparticle
canbeseentobewellapproximatedbyaPoissondistribution
withparameterλ=〈M⋆〉/mt.Thereisacleardeviationatthe
tailofthedistributionwhichdisplaysanexcessofprobability.

8Wenotethatinpracticethestarparticleshaveamassthatisamulti-
pleofthestellarmassresolution.
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Fig.12.Bottompanel:distributionofthenumberofgastracersfor
differentcell-massbinsasobservedinthesimulation(solidlines)vs.
aPoissondistributionwithparameterλ=〈Mcell〉/mt(dashedlines,
reportedinthelegend).Toppanel:relativedifferencebetweenthe
observedmeannumberoftracerparticlesandtheexpectedone,λ,as
afunctionofλ.Forallcells,thedistributionofthenumberofgastrac-
erspercellisgivenbyaPoissondistributionwithparameterλ.

Thisishoweverexpectedaswhenastarformsinacell,asig-
nificantpartofthecellmassisconvertedintothestar,sothat
p⋆≈1.Becauseusually(1−η)≈0.9,theproductp⋆(1−η)
isalsooforderunity.Atthesametime,cellswherestarsform
haveatypicalmassof104M⊙∼mt,meaningthattheycontain
onlyafewgastracersatstarformation.Therefore,weexpecta
significantdeviationfromaPoissondistribution,astherequire-
mentforEq.(22)toconvergetoaPoissondistributionisnot
met.Thisargumentisreinforcedbythefactthat,comparedto
lightstars(e.g.thebluecurveofFig.15),themostmassivestars
haveamoretop-heavydistribution(e.g.theredcurve)thana
Poissondistribution.Indeed,thesemassivestarsarerelatively
moremassivethantheirparentcell,meaningthattheparameter
p⋆islarger.Inthesimulation,starformationisonlyactivated
forcellsaboveagiven(fixed)densitythreshold.Thisisusually
achievedatthemaximumresolution,causingcellsexperiencing
starformationtohavetypicallythesamemass,andthereforethe
samenumberofgastracerparticles,regardlessofthemassof
theformingstars.Consequently,themassivestarparticledistri-
butionisindeedlessPoissonianthanthatofthelightstars,since
theirp⋆islargeratfixedNi.Figure15isinqualitativeagreement
withthis.

3.2.4.SMBHevolution

Usingourcosmologicalsimulations,wehavecheckedthatthe
totalmassofSMBHtracerparticles(MtSMBH,tot=(3.5±
0.3)×106M⊙9)matchesthatofSMBHinthesimulation
(MSMBH,tot/(1−εr)=3.1×106M⊙)atthe10%level,uptoanεr
factor.Thisfactorisduetothemasslostbytheaccretedmate-
rialasitfallsontotheblackhole.Thismassisradiatedawayand
losttothesimulation.Becausethetracerparticleshaveafixed
massinourimplementation,theyareunabletocapturethemass
energythatisradiated.However,onecouldstorethevalueofεr
ataccretiontimeontoeachtracertobeabletoreconstructthe
exactmassthattheSMBHtracerrepresents.

9Theuncertaintyhasbeenestimatedusinga1-σPoissoniannoise.
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Figure 8. Isocontours in the x–z plane of the typical accretion rate α⋆ (upper left) and formation time D⋆ (upper right) around a saddle point [at (0, 0)] and

in the x–y plane of the characteristic upcrossing scale σ ⋆ (lower left) and typical accretion rate ( lower right). The saddle point is defined using the values of

Table D1. The profiles going through the saddle point in the x–z (upper panels) and x–y (lower panels) planes are plotted on the sides. The smoothing scale

is R = 1 Mpc h−1. They were obtained with a �CDM power spectrum, and normalized to the value at the saddle point. Since the filament has higher mean

density, excursion set trajectories upcrossing at a given σ have shallower slopes. Hence, typical haloes are more massive in filaments and at fixed mass, haloes

forming in the filament have larger accretion rates at z = 0 and form later. The same hierarchy exists between the two perpendicular directions.

Equation (68) provides the counterpart of equation (36) near a saddle

point, in terms of the effective threshold

νf,c,S (Df, r) ≡
δc/Df − 〈δ1/2|νc,S〉√

Var
(
δ1/2|νc,S

) , (69)

with

〈δ1/2|νc,S〉 = ξ1/2 · S +
〈δδ1/2〉 − ξ · ξ1/2

σ 2 − ξ 2
(δc − ξ · S) , (70)

Var
(
δ1/2|νc,S

)
= σ 2

1/2 − ξ 2
1/2 −

(〈δδ1/2〉 − ξ · ξ1/2)2

σ 2 − ξ 2
. (71)

It also depends on the effective upcrossing parameters μS (r) and

XS (r), given in equations (50)–(53). The explicit forms of the func-

tions μf,S (Df, r) and Xf,S (Df, r) are reported in Appendix F4 for

convenience [equations (F33) and (F34)].

Note that in equation (68), fup(Df |σ ; r) depends on Df also

through νf,c,S and μf,S . For early formation times (Df ≪ 1), the
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Fig. 10. Density-weighted projection of the gas density (left panels), of the gas tracer density (centre panels), and of their relative difference (right
panels) along the x axis around the most massive galaxy of the cosmological simulation at z = 2. Top panels: large-scale structure of the gas; data
have been selected within 200 kpc of the centre. Bottom panels: zoom on the central galaxy; data have been selected within 10 kpc of the centre of
the galaxy. The MC tracer density is similar to that of the gas. The radial modulations are due to differences in cell mass at fixed cell resolution:
massive cells (closer to the centre at fixed resolution) are best sampled by the MC tracers.

now continue to explore only the distribution of MC tracer parti-
cles with respect to the actual distribution of baryons. Figure 10
shows the density-weighted projected gas density and cloud-in-
cell interpolated gas tracers around the zoomed galaxy of the
simulation. Visual inspection reveals that the gas tracer distribu-
tion matches that of the gas with additional noise. All structures
with a contrast above the noise level are reproduced by the gas
tracers. More quantitatively, Fig. 11 shows the density of trac-
ers versus the density of gas for the entire available range of gas
densities (i.e. 9 orders of magnitude); the expected one-to-one
relation is seen, with some scatter due to MC sampling noise.

More quantitative results can be obtained by computing the
statistical properties of the gas tracer population. A cell of mass
Mcell is expected to contain on average Mcell/mt tracers. For a
sample of cells of similar masses, we expect the mean number
of tracers per cell to be λ ≡ 〈Mcell〉/mt. The distribution of the
number of tracers per cell in the simulation is shown in Fig. 12
for different cell-mass bins. Within a cell-mass bin, the number
of tracers Nt can be seen to be very well approximated by a Pois-
son distribution with parameter λ

pλ(Nt = k) =
λke−λ

k!
· (19)

To confirm this observation, we compared the mean number of
tracers per cell to the expected number λ in the top panel of
Fig. 12. For all cell masses, the mean number of tracer particles
per cell is accurately described by its expected Poisson distribu-
tion. At large values of gas mass within a cell (right of the plot),

the scatter in the histogram count is due to the small number
of massive cells in the simulation. Indeed, these cells can only
be found in the most refined regions (otherwise they would be
refined into smaller cells) where they also tend to be converted
into stars.

In the following we assume that the gas tracer distribution is
given by a Poisson distribution with parameter λ = 〈Mcell〉/mt.
This yields a simple rule of thumb to estimate the precision of
the tracer scheme. The accuracy of the Eulerian distribution of
the tracer can be written 1/

√
λ ∼ √mt/Mcell.

3.2.3. Star formation and feedback

Figure 13 shows the integrated stellar mass and star-tracer mass
around the zoomed galaxy of the cosmological simulation. Both
distributions are visually in agreement and feature the same spa-
tial distribution. At large radii where the star density is smaller
than the gas density (r & 4 kpc, see Fig. 14), the noise level of the
star-tracer distribution is larger than that of the gas. This is due to
the fact that small masses are poorly resolved by the MC tracers.
Close to the galactic centre, the increasing star density induces
a larger star-tracer density, and therefore, at fixed resolution, a
smaller noise sampling. This is illustrated by the right panel of
Fig. 13, where the centre of the plot shows smaller fluctuations
than at large radii. More quantitative results are presented below.

We first present the analytical distribution of tracer parti-
cles for stars and for the number of tracers released in SN
events, derived from first principles. When a star particle is
formed, each tracer in the cell containing the newly created star
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conditionalmean〈δ′|νf,νc,S〉becomeslarge,sincethetrajectory

mustreachaveryhighvalueatσ1/2.Hence,μf,S(Df,r)∝1/Df.

Inthislimit,thelastratioinequation(68)abovetendsto1,and

fup(Df|σ;r)∝(1/D
3
f)exp(−ν

2
f,c,S/2),withaproportionalitycon-

stantthatdoesnotdependontheangle.Then,theprobabilitydecays

exponentiallyforsmallDfasνf,c,Sgrows.Thetypicalformation

timeD⋆=D(z⋆)canbedefinedasthatvalueforwhichνf,c,S=1

andthisexponentialcut-offstopsbeingeffective,thatis

D⋆(r,σ)≡
δc

√
Var

(
δ1/2|νc,S

)
+〈δ1/2|νc,S〉

,(72)

whichprovidestheanisotropicgeneralizationoftheexpression

giveninequation(38).Theexplicitexpressionfortheconditional

mean〈δ1/2|νc,S〉andvarianceVar
(
δ1/2|νc,S

)
aregivenbyequa-

tions(70)and(71),respectively.

Astheangularvariationof〈δ1/2|νc,S〉isapproximately

15

2
�σ1/2ξ20(r)Q(r̂),(73)

whereQ(r̂)≡r̂iq̄ijr̂j,�σ1/2=σ1/2−σ>0,theformationtime

D⋆islargerwhenrisalignedwiththeeigenvectorwiththemost

negativeeigenvalue,correspondingtothedirectionofthefilament.

Onehasinfact

�D⋆(r,σ)=−
D

2
⋆|q̄=0

δc

15

2
�σ1/2ξ20(r)Q(r̂),(74)

whereD⋆dependsonlyontheradialdistancer,whichshowsthat

atafixeddistancefromthesaddlepoint,haloesinthedirection

ofthefilamenttendtoformlater(largerD⋆).Thesaddlepointis

thusaminimumofthehalf-masstimeD⋆alongthedirectionofthe

filament,thatisamaximumofz⋆:haloesthatformatthesaddle

pointassemblemostoftheirmasstheearliest.Fig.8displaysa

cross-sectionofamapofD⋆intheframeofthesaddle.

5ASTROPHYSICALREFORMULATION

ThejointandconditionalPDFsderivedinSections2–4wereex-

pressedintermsofvariables(σ,α,andDf)thatarebestsuitedfor

theexcursionsettheory.Now,forthesakeofconnectingtoobser-

vationsandgatheringawideraudience,letuswriteexplicitlywhat

themainresultsofthosesections–equations(14),(25),and(36),

andtheirconstrainedcounterparts(49),(61),and(68)–implyin

termsofastrophysicallyrelevantquantitieslikethedistributionof

mass,accretionrate,andformationtimeofDMhaloes.

5.1Unconditionalhalostatistics

Theupcrossingapproximationprovidesanaccurateanalyticalso-

lutionoftherandomwalkproblemformulatedintheExtended

Press–Schechtermodel,foraTop-Hatfilterinrealspaceandareal-

isticpowerspectrum.Inthisframework,themassfractioninhaloes

ofmassMis

M

ρ̄

dn

dM
=
∣∣
∣∣dσ

dM

∣∣
∣∣fup(σ(M)),(75)

withfup(σ)givenbyequation(14)andisafunctionofmassvia

equation(1).Forinstance,forapower-lawpowerspectrumP(k)

∝k−n
withindexn=2onehasM/M⋆=(σ/σ⋆)−6

.Thegeneral

power-lawresultM∝σ
6/(n−3)

followsfromequation(E17).

Theexcursionsetapproachalsoestablishesanaturalrelation

betweentheaccretionrateofthehaloandtheslopeofthetrajectory

atbarriercrossing.Onecanthuspredictthejointstatisticsofσand

oftheexcursionsetproxyα≡νc/[d(δ−δc)/dσ]fortheaccretion

rate.InordertogetthejointmassfractioninhaloesofmassM

andaccretionrateṀ,oneneedstointroducetheJacobianofthe

mappingfrom(σ,α)to(M,Ṁ).Sinceσ(M)doesnotdependon

α,thisJacobianhasthesimplefactorizedform|dσ/dM||dα/dṀ|.
Sincedα/dṀ=α/Ṁfromequation(20),onecanwritethejoint

analogueofequation(75)as

MṀ

ρ̄

d
2
n

dMdṀ
=
∣∣
∣∣dlogσ

dM

∣∣
∣∣σαfup(σ,α),(76)

wherefup(σ,α)isnowgivenbyequation(23),whereasσ(M)and

α(M,Ṁ)arefunctionsofMandṀviaequations(1)and(20),

respectively.Fromtheratioofequations(76)and(75),theexpected

meandensityofhaloesofgivenmassandaccretionratecanbe

reformulatedas

Ṁ
d

2
n

dMdṀ
=αfup(α|σ)

dn

dM
,(77)

wherefup(α|σ)isgivenbyequation(25).Thisexpressionrelates

analyticallythenumberdensityofhaloesbinnedbymassandac-

cretionratetotheusualmassfunction.

Similarly,thejointmassfractionofhaloesofmassMandforma-

tiontimezf(definedastheredshiftatwhichthehalohasassembled

halfofitsmass)canbeinferredfromthejointstatisticsofσandDf

≡δc/δ(σ1/2),whereσ1/2≡σ(M/2)isthescalecontaininghalfof

theinitialvolume.Theredshiftdependenceofthegrowthfunction

D(z)isdefinedbyequation(4).Hence,themassfractioninhaloes

ofgivenmassMandformationtimezfis

M

ρ̄

d
2
n

dMdzf

=
dσ

dM

dDf

dzf

fup(σ,Df),(78)

anditsconditionalis

d
2
n

dMdzf

=
dDf

dzf

fup(Df|σ)
dn

dM
,(79)

wherethejointandconditionaldistributionsofDfandσaregiven

byequations(32)and(36),respectively.

Interestingly,whiletheexcursionsetmassfunctionissubject

tothelimitationofupcrossingtheory,theconditionalstatisticsof

accretionrate,orformationredshift,atgivenmassshouldbecon-

siderablymoreaccurate.Thisisbecausethemainshortcomingof

excursionsetsisthelackofaprescriptionforwheretocentre

inspaceeachsetofconcentricspheresgivingatrajectory.These

spheresareplacedatrandomlocations,whereastheyshouldinsist

onthecentreoftheprotohalo.However,choosingabettertheoret-

icalmodel(e.g.thetheoryofpeaks)tosetcorrectlythelocation

oftheexcursionsettrajectorieswouldnotdramaticallymodifythe

conditionalstatistics.Changingthemodelwouldmodifythefunc-

tionF(x),definedinequation(13),thatmodulateseachPDF.In

conditionalstatistics,onlyratiosofthisfunctionappear,whichare

rathermodelindependent,whereastheprobabilityoftheconstraint

doesnotappear.Therelevantpartforouranalysis–theexponential

cut-offofeachconditionaldistributiongiventheconstraint–would

notchange.Hence,eventhoughequation(75)doesnotprovidea

goodmassfunctiondn/dM,onemayarguethattherelations(77)

and(79)arestillaccurateinprovidingthejointabundancestatistics

ofmassandaccretionrate,ormassandformationredshift,oncea

bettermodel–orevenanumericalfit–isusedtoinferdn/dM.

5.2Halostatisticsinfilamentaryenvironments

Inthetideofasaddleofgivenheightandcurvature,equations

(75),(76),and(78)remainformallyunchanged,exceptforthe
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C.Cadiouetal.:TracerparticlesinRamses

z = 6.0110 kpc

GasMC Gas TracersVelocity Advected Tracer

z = 6.0110 kpcz = 6.0110 kpcz = 6.0110 kpc10-3 10-2 10-1 100 101

G
a
s D

en
sity

³
m
p

cm
3 ´

z = 6.0110 kpc100 755025 0255075100

Relative difference [%]

z = 6.0110 kpc
Fig.9.Toppanels:densityweightedprojectionofthegasdensityinacosmologicalsimulation(left),ofthevelocitytracerdistribution(right),and
oftheMCgastracerdistribution(centre).Alltheplotssharethesamecolourmap.Bottompanels:relativedifferencebetweenthetracerandthe
gas.Velocitytracersaccumulateinconvergentregions(e.g.filaments,nodes).TheMCgastracerdistributionreproducesmoreaccuratelythatof
thegasthanvelocitytracers.

(Ntot≈1.3×108particles).Thereisonaverage0.55tracersper
starand22perinitialcell.Cellsofsize35pcanddensity20cm−3

containonaverageonetracerpercell.

3.2.1.VelocitytracersversusMonteCarlotracers

Inadditiontotheabovesimulation,werantheexactsameone
replacingeachMCtracerwithavelocity-advectedtracer.This
simulationwasperformeddowntoz=6andcomparedtothe
fiducialone.Bothhaveasimilargasdistribution,confirmingthat
thetracerparticlesareindeedpassive7.Atthisredshift,99%of
thebaryonsarestillinthegasphase(0.72%instarsand8×
10−5%inSMBHs),meaningthatthecomparisonbetweenMC
tracers(thatcanbetransferredintostars)andvelocitytracers
isfairwhenlookingatcosmologicalscales.Sincethevelocity
tracershavenotbeenlinkedtostarformationorSMBHs,we
expectsignificantdiscrepancieswithingalaxies,wherethegas-
to-starratioismuchsmaller.

ThetoppanelsofFig.9showprojectionsofthedensity-
weighteddensityofgas(topleftpanel),ofMCtracers(top-
centrepanel),andofvelocity-advectedtracers(top-rightpanel).
ThedistributionoftheMCtracersresemblesthatofthegaswith
extranoiseduetosamplingnoise.Alltheprominentstructures

7Theyhavehoweveranindirectimpactonstochasticprocessessuch
asstarformationandSNfeedbackastheyimpacttherandomnum-
bergenerator(hencetheoutcomeoftheserandomprocesseswillvary
dependingonhowmanyandwherethetracerparticlesare).

inthegasarealsopresentintheMCtracerdistribution.On
theotherhand,thevelocitytracerdistributionismuchsharper
thanthatofthegas.Thevelocitytracersaggregateinconverg-
ingflows(filamentsandcentresofgalaxies)whileMCtracers
donot(theyaggregateinhigh-massregions,asexpected).At
suchlargescales,theoriginofthediscrepancyisanintrinsic
issueofvelocitytracers.Thistestshowsthatonaqualitative
level,theMCtracershaveadistributionthatisinmuchbetter
agreementwiththegasdistributionthanthevelocityadvected
tracers.Therelativedifferencebetweenthegasdistributionand
thetracerdistributionispresentedinthebottompanelsofFig.9.
TherelativedifferencebetweentheMCtracerdensityandthe
gasdensity(bottomcentralpanel)issignificantlysmallerthan
therelativedifferencebetweenthevelocityadvectedtracerden-
sityandthegasdensity(bottomrightpanel).Thelatterisalso
muchmorebiased:thevelocityadvectedtracerdensityincon-
vergentflows(e.g.filaments)canbeuptoanorderofmagnitude
largerthanthegasdensity,whileinthevicinityofconverging
regions,thevelocityadvectedtracerdensityislargelyunderes-
timated(e.g.aroundfilaments).Onthecontrary,theMCtracer
densityisfoundtobeinbetteragreementwiththegasdensity
andisnotbiased.

3.2.2.Gastracers

Aswehaveseen,velocitytracerparticlesarealessreliabletracer
oftheactualgasdensitycomparedtoMCtracerparticles,and
thiscanalreadybeseenoncosmologicalscales.Therefore,we
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Figure 9. PDF of σ at upcrossing given the saddle point in the x (void, in

red) and z (filament, in blue) directions at distance r = 10 Mpc h−1 (solid

lines) and r = 5 Mpc h−1 (dashed lines). The saddle point is defined using

the values of Table D1. The PDF without the saddle point is shown in black

and at the saddle point in dashed black. The value of σ ⋆ at the saddle point

is shown by the vertical dashed line. In the filament, the PDF is boosted

for small values of σ : there are more massive haloes in the filament. The

opposite trend is seen in the void.

replacement of fup(σ ), fup(σ , α), and fup(σ , Df) by their position-

dependent counterparts fup(σ ; r), fup(σ, α; r), and fup(σ, Df ; r)

conditioned to the presence of a saddle, given by equations

(49), (59), and (66), respectively. Similarly, in equations (77) and

(79), one should substitute the distribution fup(α|σ ) and fup(Df|σ )

by their conditional counterparts fup(α|σ ; r) and fup(Df |σ ; r)

of accretion rate and formation time at fixed halo mass, given

by equations (61) and (68).

These functions depend on the mass M, accretion rate Ṁ , and

formation time zf of the halo through σ (M), α(M, Ṁ), and Df(zf), as

before. However, conditioning onS introduces a further dependence

on the geometry of the environment (the height νS of the saddle

and its anisotropic shear q̄ij ) and on the position r of the halo

with respect to the saddle point. This dependence arises because

the saddle-point condition modifies the mean and variance of the

stochastic process (δ, δ′) – the height and slope of the excursion set

trajectories – in a position-dependent way, making it more or less

likely to form haloes of given mass and assembly history within

the environment set by S. The mean becomes anisotropic through

Q = r̂i q̄ij r̂j , and both mean and variance acquire radial dependence

through the correlation functions ξαβ and ξ ′
αβ , defined in equation

(E12), which depend on r, RS , and R [the variance remains isotropic

because the variance of q̄ij is still isotropic, see e.g. equation (71)

and Appendix E].

The relevant conditional distributions are displayed in Figs 9–11.

The plots show that haloes in the outflowing direction (in which

the filament will form) tend to be more massive, with larger ac-

cretion rates and forming later than haloes at the same distance

from the saddle point, but located in the infalling direction (which

will become a void). This trend strengthens as the distance from

the centre increases. The saddle point is thus a minimum of the

expected mass and accretion rate of haloes, and a maximum of for-

mation redshift, as one moves along the filament. The opposite is

true as one moves perpendicularly to it. This behaviour is consis-

tent with the expectation that filamentary haloes have on average

lower mass and accretion rate, and tend to form earlier, than haloes

in peaks.

Figure 10. PDF of α at upcrossing given the smoothing scale and the

saddle point in the x (void, in red) and z (filament, in blue) directions at

distance r = 10 Mpc h−1 (solid lines) and r = 5 Mpc h−1 (dashed lines)

(upper panel) compared to the PDF without the saddle point (lower panel).

The saddle point is defined using the values of Table D1. The PDF with

no saddle point is shown in solid black and the PDF at the saddle point in

dashed black. In the filament, the PDF is boosted at its high end: haloes

accrete more. The opposite trend is seen in the void.

Figure 11. PDF of Df at upcrossing given the smoothing scale and the

saddle point in the x (void, in red) and z (filament, in blue) directions at

distance r = 10 Mpc h−1 (solid lines) and r = 5 Mpc h−1 (dashed lines) and

without saddle point (black) compared to the PDF at the saddle point. The

saddle point is defined using the values of Table D1. In the filament, the

PDF is boosted at the late formation end: haloes form later. The opposite

trend is seen in the void.
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few kiloparsecs). This is chosen so that the jet reaches cells at
different levels of refinement and in other CPU domains. Within
50 kpc of the AGN, there are 1200, 24 000, 12 000, 13 000 and
8000 cells at levels 28 to 212 (∆x from 5 kpc to 0.3 kpc) so that the
tracer particles are deposited in regions of different refinement
level. This region also covers 8 of the 16 CPU domains used.
This controlled test enables us to check that the distribution of
tracers sent through the jet matches the expected distribution, in
the presence of deep refinement and parallelism.

Let us first present the theoretical probability distribution
function as a function of the distance to the jet and along the jet.
We then compare theoretical figures to those of the simulation.
The marginal probability density function (PDF) in the direction
of the jet r‖ is given by

p(r‖) =
1
A



√
e − er2

‖ /2r2
AGN , if |r‖| < rAGN,√

e − 1, if rAGN < |r‖| < 2rAGN,
(16)

where

A = 2
√

erAGN

(
2 +
√

2F
(
1/
√

2
)
− 1/

√
e
)
. (17)

Here F is Dawson’s integral. The marginal PDF in the radial
direction r⊥ is

p(r⊥) =
r⊥e−r2

⊥/2r2
AGN

(
1 +

√
1 − r2

⊥/r
2
AGN

)

r2
AGN

(
2 − √2F

(
1/
√

2
)
− 1/

√
e
) · (18)

The marginal PDF in the radial distribution is similar to a χ dis-
tribution with two degrees of freedom with an extra factor due
to the two spherical caps: more particles are found close to the
centre of the jet since the capsule is more extended close to its
centre.

Figure 8 presents the results from the comparison of the sim-
ulation to the expected distribution. The distribution in the radial
direction has been rescaled by a factor of two to span the same
range as in the parallel direction. Theoretical curves (Eqs. (16)
and (18)) are in very good agreement with the observed distri-
butions, confirming that the algorithm is distributing tracer par-
ticles correctly in jets. In addition we have also run the same
idealised simulation without forcing the AGN efficiency. We
report that the tracer mass flux is equal to the gas mass flux. This
confirms that the physical model of the jet is accurately sam-
pled by the tracer particles interacting with it, both in terms of
its mass and for its spatial distribution.

3.2. Astrophysical test

We have run a 50 cMpc/h-wide cosmological simulation down
to z = 2 zoomed on a group of mass 1 × 1013 M⊙ at z = 0, where
the size of the zoom in the Lagrangian volume of initial condi-
tions is chosen to encapsulate a volume of two times the virial
radius of the halo at z = 0. We start with a coarse grid of 1283

(level 7) and several nested grids with increasing levels of refine-
ment up to level 11. The adopted cosmology has a total matter
density of Ωm = 0.3089, a dark energy density of ΩΛ = 0.6911,
a baryonic mass density of Ωb = 0.0486, a Hubble constant of
H0 = 67.74 km s−1 Mpc−1, a variance at 8 Mpc σ8 = 0.8159,
and a non-linear power spectrum index of ns = 0.9667, compat-
ible with a Planck 2015 cosmology (Planck Collaboration XIII
2016).

The simulation includes a metal-dependant tabulated gas-
cooling function following Sutherland & Dopita (1993) allow-
ing the gas to cool down to T ∼ 104 K via Bremsstrahlung

0.0 0.5 1.0 1.5 2.0
Distance

0.0

0.2

0.4

0.6

0.8

Fr
eq

ue
nc

y

|r |/rAGN
2r /rAGN

Fig. 8. Distribution of particles moved by a jet before any hydro-
dynamical time step has occurred. Shown is the parallel distribution
marginalised over the plane of the jet (blue) and the radial distribution
marginalised over the direction of the jet (orange) vs. the expected theo-
retical distributions from Eqs. (16) and (18) (dashed grey). The abscissa
is in units of rAGN in the parallel direction and in units of rAGN/2 in the
radial direction. The distribution of gas tracers sent into the jet perfectly
matches the expected one.

radiation (effective until T ∼ 106 K), and via collisional and
ionisation excitation followed by recombination (dominant for
104 K ≤ T ≤ 106 K). The metallicity of the gas in the sim-
ulation is initialised to Z0 = 10−3 Z⊙ to allow further cool-
ing below 104 K down to Tmin = 10 K. Reionisation occurs
at z = 8.5 using the Haardt & Madau (1996) model and gas
self-shielding above 10−2 mp cm−3. Star formation is allowed
above a gas number density of n0 = 10 H cm−3 according to the
Schmidt law and with an efficiency εff that depends on the gravo-
turbulent properties of the gas (for details, see Kimm et al. 2017;
Trebitsch et al. 2017). The main distinction of this turbulent star-
formation recipe with the traditional star formation in Ramses
(Rasera & Teyssier 2006) is that the efficiency can approach and
even exceed 100% (with εff > 1 meaning that stars are formed
faster than in a free-fall time). The stellar population is sampled
with a Kroupa (2001) initial mass function, where ηSN = 0.317
and the yield (in terms of mass fraction released into metals)
is 0.05. The stellar feedback model is the mechanical feedback
model of Kimm et al. (2015) with a boost in momentum due to
early UV pre-heating of the gas following Geen et al. (2015).
The simulation also tracks the formation of SMBHs and the evo-
lution of AGN feedback in jet mode (radio mode) and thermal
mode (quasar mode) using the model of Dubois et al. (2012b).
The jet is modelled in a self-consistent way by following the
angular momentum of the accreted material and the spin of the
black hole (Dubois et al. 2014b). The radiative efficiency and
spin-up rate of the SMBH is then computed using the MAD
results of McKinney et al. (2012).

We have a minimum roughly constant physical resolution of
35 pc (one additional maximum level of refinement at expan-
sion factor 0.1, 0.2, and 0.4), a star particle mass resolution of
m⋆,res = 1.1 × 104 M⊙, a dark matter (DM) particle mass res-
olution of mDM,res = 1.5 × 106 M⊙, and gas mass resolution of
2.2 × 105 M⊙ in the refined region. A cell is refined according to
a quasi-Lagrangian criterion: if ρDM+ρb/ fb/DM > 8mDM,res/∆x3,
where ρDM and ρb are respectively the DM and baryon den-
sity (including stars plus gas plus SMBHs), and where fb/DM
is the cosmic mean baryon-to-DM mass ratio. The max level of
refinement is also enforced in all cells closer than 4∆x from any
SMBH, where ∆x is the minimum cell size. We add tracer parti-
cles in the refined region with a fixed mass of mt = 2.0 × 104 M⊙
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Figure12.Top:plotofthetypicalmassM⋆,middle:thetypicalspecificaccretionratesṀ/M,andbottom:theformationredshiftsz⋆fordifferentmassesas

afunctionofthedistancetothesaddlepoint,left:inthedirectionofthevoidandright:inthedirectionofthefilament.Thecolourofeachlineencodesthe

smoothingscale(hencethemass),fromdarktolightM=10
11

M⊙h−1
(R=0.8Mpch−1

)toM=10
13

M⊙h−1
(R=3.7Mpch−1

)logarithmicallyspaced;

thedashedlineisevaluatedatM=M⋆.Labelsaregiveninunitof10
11

M⊙h−1
.ThesaddlepointhasbeendefinedusingthevaluesgiveninTableD1.More

massivehaloesaccretemoreandformlaterthanlessmassiveones.Atthetypicalmass,thespacevariationofthespecificaccretionrateandtheformation

redshiftissmallerinthedirectionofthefilamentthaninthedirectionofthevoid.

Tobetterquantifythesetrendsletusdefinethetidallymodified

characteristicquantities

M⋆(r)=M(σ⋆(r)),(80)

Ṁ⋆(r,M)=−
dlogD

dz

dM

dlogσ
α⋆(r,σ),(81)

z⋆(r,M)=z(D⋆(r))≃1/D⋆(r,σ)−1,(82)

givingthetypicalmassandtheaccretionrateandformationtimeat

givenmassasafunctionofthepositionwithrespecttothecentre

ofthesaddle.

Thelastapproximationholdsforhaloesthatassemblehalfoftheir

massbeforez∼2,sinceatearlytimesD≃(1+z)−1
.Thesetypical

quantitiesareknownfunctionsoftheposition-dependenttypical

valuesoftheexcursionsetparametersσ⋆(r),α⋆(r,σ),andD⋆(r,σ)

givenbyequations(57),(62),and(72),respectively.Theygener-

alizethecorrespondingcharacteristicquantitiesobtainedwithout

conditioningonthesaddle,givenbyσ⋆=δc,andbythefunctions

α⋆(σ)andD⋆(σ)definedinequations(27)and(38).

Taylorexpandingequation(57)intheanisotropygivesthefirst-

orderangularvariationofM⋆atfixeddistancerfromthesaddle

�M⋆(r)=−
15

2

δcξ20(r)

|(dσ/dM)M⋆|Q(r̂),(83)

whereξ20(r)istheradialpartoftheshear-heightcorrelationfunction

atfiniteseparation.Sinceξ20ispositive,thisvariationislargest

whenrisparalleltotheeigenvectorwiththesmallesteigenvalue.

Thatis,inthedirectionofpositiveoutflow(withnegativeQ=
r̂iq̄ijr̂j),alongwhichafilamentwillform.Thus,infilamentshaloes

tendtobemoremassive,andhaloesoflargemassaremorelikely.

ThefulldependenceofthecharacteristicmassM⋆asafunction

ofthepositionwithrespecttothesaddlepointofthepotentialis

showninFig.12.

Similarly,likeequations(63)and(74)forα⋆andD⋆,thefirst-

orderangularvariationsofṀ⋆andz⋆are

�Ṁ⋆(r,M)=−
dlogD

dz

dM

dlogσ

α
2
⋆|q̄=0

νc

×
15

2

[
ξ′

20−
σ−ξ′

IξI

σ2−ξ2ξ20

]
Q(r̂),(84)

�z⋆(r,M)=

∣∣
∣∣
∣

dz

dD

∣∣
∣∣
∣
D

2
⋆|q̄=0

δc

15

2

∣∣
∣∣
∣

dσ

dM

∣∣
∣∣
∣
M

2
ξ20(r)Q(r̂).(85)

Theseresultsconfirmthatinthedirectionofthefilament,haloes

haveonaveragelargermassaccretionratesandsmallerformation

redshiftsthanhaloesofthesamemassthatformatthesamedistance

fromthesaddlepoint,butinthedirectionperpendiculartoit.The

spacevariationbecomeslargerwithgrowinghalomassandfixed

RS,asshowninFig.12,becausethecorrelationsbecomestronger

asthedifferencebetweenthetwoscalesgetssmaller.Conversely,

forsmallermasseshaloeshaveonaveragesmalleraccretionrates

(likeintheunconditionalcase,seeFig.3)andlaterformationtimes,

butalsolessprominentspacevariations.

Notethattwoestimatorsofdelayedmassassembly,�Ṁ⋆and�z⋆

donotrelyonthesamepropertyoftheexcursionsettrajectoryand

donotleadtothesamephysicalinterpretation.Inparticular,when

extendingtheimplicationofdelayedmassassemblytogalaxies

andtheirinducedfeedback,oneshoulddistinguishbetweenthe

instantaneousaccretionrate,andtheintegratedhalf-masstimeas

MNRAS476,4877–4906(2018)
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Fig.6.Projectionofthedensity(toppanel)andofthegastracerden-
sity(bottompanel)aroundadevelopingKelvin–Helmoltzinstability.
Toreducethenoiseofthegastracerprojection,wehavesuperposedthe
fourprojectionsoftheformingrollers(eachofsize0.25cm).Thegas
tracerdistributionresemblesthatofthegaswithextranoiseduetotheir
stochasticnature.

TheSedovexplosionisareliablewayoftestingtheabilityof
hydrodynamicalcodestodealwithshocks:morespecificallyit
teststheabilityofthecodetocapturetheshockdynamicsprop-
erlyandalsoteststhatthecoderesolvestheshockinterfacewith
afewcellsinaregimewheretheMachnumberislargelyabove
1.Here,thegastracerdistributionhasbeenshowntomatchthat
ofthegastoahighdegreeofconfidence,confirmingthatthe
gastracersarecorrectlytransportedwiththeflowandareableto
resolveshocks.

3.1.3.Kelvin–Helmholtzinstability

WeranaclassicalKelvin–Helmoltz(KH)instabilityinthree
dimensionstocomparethegasdensitytothegastracerdensity
projectedmaps.Thegashasanadiabaticindexγ=7/55.The
simulationisperformedona1283gridwithaphysicalsizeof
1cmandamaximumlevelofrefinementof210.Cellsarerefined
basedontherelativevariationofthedensity:anewlevelistrig-
geredwhenthelocalrelativevariationofthedensityislarger
than1%.Onlyhydrodynamicsisincluded.Theinstabilityisini-
tialisedwithtworegionsofleftandrightdensityof2gcm−3

and1gcm−3,andoftangentialvelocityuy,L=−1cms−1(resp.
uy,R=1cms−1).Theinstabilitywasinitiallytriggeredbyadding
asmalldampedsinusoidalperturbationoftheperpendicular
velocityfieldux=u0cos(k(x−λ/2))exp(−k|x−x0|),where
λ=0.25cm,k=2π/λ,x0=0.5cmandv0=0.1cms−1.Here
2900000gastracerswereinitiallydistributedinthebox,sothat
theirEuleriandistributionmatchedthatofthegas.

Figure6showsaprojectionofthegasdensityandofthe
tracerdensityattimet=0.3s,whentheKelvin–Helmoltzwas
alreadysettled.Thegastracerdistributionreproduceswellthe
vorticesfoundinthegasdistribution,withextranoiseduetothe
reducednumberoftracerparticles.

Thelargestkwavenumbersoftheperturbationarethefirstto
growfollowingaKHgrowthtimescaleofτKH=2πR1/2/(|∆u|k),
with±R=ρR/ρL,and∆u=uy,R−uy,L.Therefore,astimepro-
ceeds,largerrollersdevelopintheshearinterfacebetweenthe
twophasesofgas,andhence,themixinglayerspreadsfurther.
Wecomputedtheevolutionofthecross-sectionprofileofthe
densityatdifferenttimes.TheresultsarepresentedinFig.7.The
phase-mixingregiongrowsasafunctionoftimeandthegrowth

5Thisvalueisconsistentwiththeadiabaticindexofairat20◦.

0.400.450.500.550.60
x(cm)

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Density (g/cm
3)

Fig.7.Evolutionofthecross-sectionofthegasdensity(solidlines)
andthegastracerdensity(symbolsandshadedregions)fortheKelvin–
Helmoltzinstabilityatdifferenttimes(frombluetoredfromthestart
totheendofthesimulationatt=0.3s).Theprofileshavebeenshifted
vertically(eachby0.6gcm−3)sothatonemayeasilydistinguishthem
fromoneanother.Theshadedregionsare±5σ,whereσhasbeenesti-
matedusingaPoissonsamplingnoise.Thegastracersareaccurately
followingthediffusionofthegas.

iscorrectlycapturedbythetracerparticlesthatareabletotrackit
withintheirintrinsicnoiselevel.Therefore,thegastracerparti-
clesareabletocorrectlycapturetheKHshearinstabilityleading
tomixingoftwogasphases.Interestingly,thepresentalgorithm
doesnotleadtoanyrelativediffusionbetweenthegasandthe
tracers,asisillustratedquantitativelyinSect.3.1.1.

3.1.4.AGNfeedback

Wesubsequentlytestedtheaccuracyofthemasstransferforthe
jetmodeofAGNfeedback,whichtransferspartofthegasofthe
centralcelltothesurroundingcellswithina“capsule”region
(seeSect.2.5fordetails).Werananidealisedsimulationofa
halowithanAGNatitscentre.Thesimulationisperformedon
acoarsegridof1283,refinedaccordingtoaquasi-Lagrangian
refinementcriterion:acellisrefined/derefinedwhereverthe
massresolutionisabove/below1.4×107M⊙uptoamaximum
levelofrefinementof12.Theboxsizeis1.2Mpc,hencewith
aminimumcellsizeof300pc.Themaxlevelofrefinementis
alsoenforcedinallthecellscloserthan4∆xfromtheSMBH,
where∆xistheminimumcellsize.Thegasdistributionfol-
lowsaNFW(Navarroetal.1997)gasdensityprofile,whilethe
darkmatterpartfollowsasimilarNFWprofilemodelledwith
astaticgravitationalprofile(nobackreactionofgasontodark
matter).TheNFWprofilehasparametersV200=200kms−1(at
200timesthecriticaldensityofaH0=70kms−1Mpc−1Uni-
verse),aconcentrationofc=6.8,andis10%gas.Thegasisini-
tiallyputatrestandathydrostaticequilibrium.ASMBHofmass
MSMBH,0=3.5×1010M⊙6issetatthecentreoftheboxand106

tracersaresetinthecellcontainingtheblackhole.Weforcethe
AGNtobeinjetmodewithafixeddirectioninspaceandboost
itsefficiencysothatallthetracerparticlesaresentintothejetin
onetimestep.TheradiusandheightofthejetisrAGN=50kpc.
Thisvalueismuchlargerthanusualvalueswhichareusually
afewtimesthecellresolution(heretypicalvalueswouldbea

6WenotethattheSMBHmassistakenanomalouslyhighforatypical
halomassofM200≃3×1012M⊙.Thisischosensimplytogetasuffi-
cientpowerofthejetthroughtheBondiaccretionrategiventheNFW
distributionofgas.
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they trace different components of the excursion hence different

epochs.

5.3 Expected differences between the isocontours

In order to investigate whether the assembly bias generated by the

cosmic web and described in this work is purely an effect due to

the local density (itself driven by the presence of the filament),

this section studies the difference between the isocontours of the

local density field and any other statistics (mass accretion rate for

instance). The latter will be shown not to follow exactly the isoden-

sity surfaces, but to intersect each other. This misalignment may

only appear if spherical symmetry is broken (all isocontours would

otherwise be spherical). However, it also shows that halo properties

do not depend only on the local density, indicating that the role of

the anisotropy of the nearby filament in the formation of structures

goes beyond the simple creation of an anisotropic density field.

The normals to the level surfaces of Ṁ⋆(r,M), M⋆(r), z⋆(r,M),

and 〈ρ〉(r) ≡ ρ̄(1 + 〈δ|S〉) scale like the gradients of these func-

tions. First note that any mixed product (or determinant) such as

∇Ṁ⋆ · (∇M⋆ × ∇〈ρ〉) will be null by symmetry; i.e. all gradients

are coplanar. This happens because the present theory focuses on

scalar quantities (mediated, in our case, by the excursion set density

and slope). In this context, all fields vary as a function of only two

variables, r and Q = r̂i q̄ij r̂j , hence the gradients of the fields will

all lie in the plane of the gradients of r and Q.9 Ultimately, if one

focuses on a given spherically symmetric peak, then Q vanishes, so

all gradients are proportional to each other and radial. Let us now

quantify the misalignments between two normals within that plane.

In spherical coordinates, the Nabla operator reads

∇ =
(

∂

∂r
,

1

r

∂

∂θ
,

1

r sin θ

∂

∂φ

)
≡
(

∂

∂r
,

1

r
∇̃
)

, (86)

so that for instance

∇Ṁ⋆ ∝
(
∂Ṁ⋆

∂r
,

1

r

∂Ṁ⋆

∂Q ∇̃Q
)

,

where equation (46) implies that

∇̃Q =

(
sin 2θ

(
q̄3 cos2 φ + q̄2 sin2 φ − q̄1

)

sin θ (q̄2 − q̄3) sin 2φ

)
. (87)

Hence, for instance the cross product ∇M⋆ × ∇Ṁ⋆ reads

(
∂Ṁ⋆

∂r

∂M⋆

∂Q −
∂Ṁ⋆

∂Q
∂M⋆

∂r

)
∇̃Q . (88)

It follows that the two normals are not aligned, since the pre-factor

in equation (88) does not vanish: the fields are explicit distinct

and independent functions of both r and Q. The origin of the mis-

alignment lies in the relative amplitude of the radial and ‘polar’

derivatives (with respect to Q) of the field. For instance, even at

linear order in the anisotropy, since �Ṁ⋆ in equation (84) has a

radial dependence in ξ ′
20 as a pre-factor to Q, whereas M⋆ has only

ξ 20 as a pre-factor in equation (83), the bracket in equation (88) will

involve the Wronskian ξ ′
20∂ξ20/∂r − ξ20∂ξ ′

20/∂r which is non-zero

9 In order to break this degeneracy, one would need to look at the statistics

of higher spin quantities. For instance, the angular momentum of the halo

would depend on the spin-one coupling εijk r̂j q̄kl r̂l , with εijk the totally anti-

symmetric tensor (see e.g. Codis, Pichon & Pogosyan 2015), or to consider a

barrier that depends on the local shear at r filtered on scale R (e.g. Castorina

et al. 2016), like e.g. δc + βσ q̄ij (r, R)q̄ij (r, R) with some constant β.

because ξ 20 and its derivative with respect to filtering are linearly

independent. This misalignment does not hold for M⋆ and 〈ρ〉 at

linear order, since �M⋆ (equation 83) and 〈ρ〉 (equation 45) are

proportional in this limit. Yet it does arises when accounting for

the fact that the contribution to the conditional variance in M⋆ also

depends additively on ξ 2(r) in equation (57) [with ξ 2(r) given by

equation (52) as a function of the finite separation correlation func-

tions ξαβ computed in equation (E12) for a given underlying power

spectrum]. Indeed, one should keep in mind that the saddle condi-

tion not only shifts the mean of the observables but also changes

their variances. Since the critical ‘star’ observables (M⋆, z⋆, etc.)

involve rarity, hence ratio of the shifted means to their variances

(e.g. entering equation 60), both impact the corresponding normals.

It is therefore a clear specific prediction of conditional excursion

set theory relying on upcrossing that the level sets of density, mass

density, and accretion rates are distinct.

Physically, the distinct contours could correspond to an excess

of bluer or reddened galactic hosts at fixed mass along preferred

directions depending on how feedback translate inflow into colour

as a function of redshift. Indeed feedback from active galactic nu-

clei (AGNs), triggered during merger events, regulates gas inflows

(Dubois et al. 2016), which in turn impacts star formation: when

it is active, at intermediate and low redshift, it may reverse the

naive expectation (see Appendix H). This would be in agreement

with the recent excess transverse gradients (at fixed mass and den-

sity) measured both in cosmological hydrodynamical simulation

Horizon-AGN (Dubois et al. 2014) and those observed in spectro-

scopic (e.g. VIPERS or GAMA, Malavasi et al. 2017; Kraljic et al.

2018) and photometric (e.g. COSMOS, Laigle et al. 2017) surveys:

bluer central galaxies at high redshifts when AGN feedback is not

efficient and redder central galaxies at lower redshift.

Our predictions are formulated in the initial conditions. How-

ever, one should take into account a Zel’dovich boost to get the

observable contours of the quantities derived in the paper. Regions

that will collapse into a filament are expected to have a convergent

Zel’dovich flow in the plane perpendicular to the filament and a

diverging flow in the filament’s direction. As such, the contours of

the different quantities will be advected along with the flow and will

become more and more parallel along the filament. This effect is

clearly seen in Fig. 13 which shows the contours of both the typical

density and the accretion rate10 (bottom panel) after the Zel’dovich

boost (having chosen the amplitude of the boost corresponding to

the formation of the filamentary structure). The contours are com-

pressed towards the filament and become more and more parallel.

Hence, the stronger the non-linearity, the more parallel the con-

tours. This is consistent with the findings of Kraljic et al. (2018),

whose colour and (stellar) mass gradients follow the underlying

mean density, when the density is averaged on sufficiently small

scales.

6 A SSEMBLY B IAS

The bias of DM haloes (see Desjacques, Jeong & Schmidt 2016,

for a recent review) encodes the response of the mass function to

variations of the matter density field. In particular, the Lagrangian

bias function b1 describes the linear response to variations of the

initial matter density field. For Gaussian initial conditions, the

10 Interactive versions can be found online https://cphyc.github.io/

research/assembly/with boost.html and https://cphyc.github.io/research/

assembly/no boost.html.

MNRAS 476, 4877–4906 (2018)
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Fig. 4. Top panel (bottom):: gas density profile (solid line) and gas den-
sity profile (plus symbols) at different times (reported in the legend).
The profiles have been recentred and shifted horizontally by −0.12 cm,
0, 0.12 cm, and 0.24 cm for t = 0, 1, 9, and 100 s, respectively. Top panel
(top):: relative difference between the gas and gas tracer density profiles
in units of the expected noise level σ = 1/

√
Mcell/mt. Bottom panel:

evolution of the spatial extent of an advected overdensity as a function
of time for the gas (dashed) and the gas tracer particles (dot symbols)
for a high-resolution run (blue) and a low-resolution run (orange, see
text for details). The difference shows no spatial dependence. The gas
tracers diffuse exactly as the gas.

no spatial modulation. Their distributions are the same with an
extra factor that is entirely due to sampling noise, which in turn
depends only on the local cell mass and the (constant) tracer
mass.

In more quantitative terms, let us compare the time evolu-
tion of the spatial extent of the gas tracer overdensity to that
of the gas. We rerun the simulation on a 322 grid (low resolu-
tion) in addition to the previous run (high resolution). We com-
pute the spatial extent by fitting a Gaussian function ρ(x) =
ρ0 + H exp(−(x − x0)2/(2σ2

ρ)) to the gas and gas tracer profiles,
with free parameters ρ0 the base density, H the amplitude of the
overdensity, x0 the position of the overdensity, and σρ its spa-
tial extent. The results are shown in the bottom panel of Fig. 4.
As expected due to the numerical diffusion, the spatial extent of
the overdensity increases as a function of time and the diffusion
becomes larger when the resolution is decreased. In both cases,
the Eulerian distribution of tracer particles is diffused exactly as
much as the gas4.

4 This result complements that of Genel et al. (2013). Indeed we study
here the diffusion of the Eulerian distribution of the tracer particles,
while the original paper presents the Lagrangian diffusion of the tracer
particles.
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3 )
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Fig. 5. Bottom panel: radial profile at different times of a Sedov explo-
sion (from blue to yellow) for the gas (solid lines) and the gas tracer
(dots). The error bars are 2σ errors. Top panel: relative difference
between the gas profile and the gas tracer profile. Data have been shifted
by −0.25, −0.125, 0, 0.125 and 0.25 radius units respectively (from blue
to yellow) so that one may easily distinguish the different data points.
Details of the simulation are discussed in the text. The gas tracer parti-
cles are accurately advected with the gas.

3.1.2. Sedov-Taylor explosion

We ran a classical Sedov-Taylor explosion in three dimensions
and compare the gas density radial profile to the density profile
of gas tracer particle. The simulation was performed on a coarse
grid of 1283, refined on the relative variation of the density and
of the pressure: a new level is triggered when the local relative
variation of one of these quantities is larger than 1% with up to
two levels of refinement. The simulation was initialised with a
uniform density and pressure of 1 g cm−3 and 10−5 dyne cm−2,
respectively, and an over-pressure in the central cell of the box
of 6.7 × 106 dyne cm−2. 2 900 000 tracers, statistically uniformly
distributed initially in the box, hence, with around ∼1.4 tracer
per initial cell.

The evolution of the spherically averaged radial density pro-
file of the gas and of the tracers is shown in Fig. 5. The tracer
density has been computed by deposing the gas tracer mass in
the nearest cell. The axes have been normalised so that the radius
of the blast is one at the latest output. The error bars have been
estimated assuming that the number of tracers per radial bin is
given by a Poisson distribution. This assumption is discussed in
more detail in Sect. 3.2.2.

At all stages of the blast, the tracer particles radial profile
matches that of the gas at percent levels. This is more easily seen
in the top panel of Fig. 5 where the relative difference between
the gas tracer density and the gas density is plotted. The errors
are all within a few percent and consistent with random fluctua-
tions. As the explosion expands, the swept-up mass of gas in the
shocked region increases. This is well tracked by the tracer dis-
tribution. Because the mass increases, the total number of tracer
particles in the shock increases proportionally, causing the sam-
ple noise to decrease. In this particular test, the tracer distribu-
tion accurately reproduces that of the gas in the pre- (which is
trivially that of the initial distribution) and post-shocked regions
(shocked shell plus hot bubble interior). The noise level is a func-
tion of the number of tracer particles; its expected value is pro-
portional to the total gas mass only.
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Figure13.Levelsurfacesofthetypicaldensityρ⋆(lighttodarkblue)and

oftheaccretionrateα⋆(lighttodarkred)withnoZel’dovichboost(upper

panelandwithaZel’dovichboost(lowerpanel).Thesaddleisrepresented

byaball.Onceboosted,thestructureofthefilamentinthez-directionis

clearlyseenandtheisocontoursalignonewitheachother.

correlationofthehalooverdensitywithaninfinitewavelengthmat-

teroverdensityδ0isthen(Fry&Gaztanaga1993),

〈δ0δh(r,M)〉=
∫

dr1〈δ0δm(r1)〉b1(r,r1,M),(89)

whereformallyb1(r,r1,M)≡〈∂[δh(r,M)]/∂[δm(r1)]〉istheex-

pectationvalueofthefunctionalderivativeofthelocalhaloover-

densitywithrespecttothe(unsmoothed)matterdensityfieldδm(r)

(Bernardeau,Crocce&Scoccimarro2008).Inthestandardsetup,

becauseoftranslationalinvariance(whichdoesnotholdhere),itis

onlyafunctionoftheseparation|r−r1|.
Thedependenceofthehalofieldonthematterdensityfield

canbeparametrizedwithapotentiallyinfinitenumberofvariables

constructedintermsofthematterdensityfield,evaluatedatthesame

point.Withasimplechainruleappliedtothefunctionalderivative,

equation(89)canbewrittenasthesumofthecross-correlationof

δ0witheachvariable,timestheexpectationvalueoftheordinary

partialderivativeofthehalopointprocesswithrespecttothesame

variable.Thelatteraretheso-calledbiascoefficients,andaremath-

ematicallyequivalenttoordinarypartialderivativesofthemass

functionwithrespecttotheexpectationvalueofeachvariable.

Themostimportantofthesevariablesisusuallyassumedtobe

thedensityδ(r,R)filteredonthemassscaleofthehaloes,which

mediatestheresponsetothevariationofaninfinitewavelength

modeofthedensityfield,theso-calledlarge-scalebias.Because

thesmootheddensitycorrelateswiththek=0modeofthedensity

field,thisreturnsthepeak-backgroundsplitbias.Itsbiascoefficient

isalsoequalto(minus)thederivativewithrespecttoδc.

Excursionsetsmaketheansatzthatthenextvariablethatmat-

tersistheslopeδ′(r,R)(Musso,Paranjape&Sheth2012).Inthe

simplestexcursionsetmodelswithcorrelatedstepsandaconstant

densitythreshold,trajectoriescrossingδcwithsteeperslopeshave

alowermeandensityonlargerscales(Zentner2007).Theyarethus

unavoidablyassociatedwithlessstronglyclusteredhaloes.This

predictionisinagreementwithN-bodysimulationsforlarge-mass

haloes,butthetrendisknowntoinvertforsmallermasses(Sheth

&Tormen2004;Gaoetal.2005;Wechsleretal.2006;Dalaletal.

2008).Althoughmoresophisticatedmodelsarecertainlyneededin

ordertoaccountforthedynamicsofgravitationalcollapse,wewill

seethatthepresenceofasaddlepointcontributestoexplainingthis

inversion.

Noneoftheconceptsoutlinedabovechangesinthepresenceof

asaddlepoint:thebiascoefficientsarederivativesofdn/dM,that

isoftheupcrossingprobabilitythroughequation(75).Becausewe

areinterestedinthebiasofthejointsaddle-halosystem,wemust

differentiatethejointprobabilityfup(σ;r)p(S),ratherthanjust

fup(σ;r),anddividebythesameafterwards.Ofcourse,theresult

picksupadependenceonthepositionwithintheframeofthesaddle.

Therelevantuncorrelatedvariablesareδ−〈δ|S〉,δ′−〈δ′|ν,S〉,
νS,r̂igi=0,andQ=r̂iq̄ijr̂j.Differentiatingequation(49),the

biascoefficientsofthehaloare

b10(M;r)≡
∂log

[
fup(σ;r)

]

∂〈δ|S〉
=

δc−ξISI

σ2−ξ2,(90)

b01(M;r)≡
∂log

[
fup(σ;r)

]

∂〈δ′|νc,S〉
=

1+erf(XS(r)/
√

2)

2μS(r)F(XS(r))
,(91)

whichwithoutsaddlereduceto(alinearcombinationof)those

definedbyMussoetal.(2012).Thecoefficientsofthesaddleare

b
(S)
100≡−

∂

∂δs

logpG(S)=
νS
σS

,(92)

b
(S)
010≡−

∂

∂(r̂igi)
logpG(S)

∣∣
∣∣
∣gi=0

=0,(93)

b
(S)
001≡−

∂

∂Q
logpG(S)=

15

2

3Q
2

.(94)

Aconstantδ0doesnotcorrelatewithq̄ij,sincethereisnozero

modeoftheanisotropy.Onecanseethisexplicitlybynotingthat

ξ20(R0,RS,r)→0asR0→∞.Theonlycoefficientsthatsurvive

inthecross-correlationwithδ0arethusb10,b01andb
(S)
100,sothat

equation(89)becomes

〈δ0δh(r,M)〉=b
(S)
100〈δ0δs〉+b10Cov(δ0,δ|S)

+b01Cov
(
δ0,δ′|νc,S

)
.(95)

MNRAS476,4877–4906(2018)
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Fig.3.Schematicrepresentationofthejetmodel.Gasistransported
fromthecentralcell(hatchedregion)containingtheSMBH(blackdot)
intothejet(blueshadedregion).TheradialprofileofthejetisaGaus-
sianofscalerAGN.Theshapeofthejetisa“capsule”(acylindercapped
withtwohalfspheres).

matchtheBH-to-galaxymassrelation;Duboisetal.2012b)is
releasedasthermalenergyinallcellswithinasphereofsize
RAGNandthemassofthegasisleftuntouched.Thisfeedback
modehasonlyanindirecteffectonthegasmassdistribution(and
henceontracerparticles),turningsomefractionofthereleased
thermalenergyintokineticenergyandlaunchingaquasar-like
wind.

Inradiomode,ajetislaunchedfromtheAGN.Thejetmoves
massfromthecentralcellonlyandspreadsitintothejetand
injectslinearmomentum,andenergy.Thereleasedenergy(and
hence,momentumwithinthejet),asforthequasarmode,ispro-
portionaltotherest-massaccretedenergywithanefficiencyof
εf,R,whichiseithertakenasaconstantvalueof1(tomatchthe
SMBH-to-galaxymassrelation;Duboisetal.2012b)oravary-
ingfunctionofthespinoftheSMBHfollowingtheresultsof
magneticallyarresteddiscs(MADs)fromMcKinneyetal.2012;
seeDuboisetal.,inprep.fordetails).Thejetismodelledbya
“capsule”(acylinderwithsphericalcaps)ofsizerAGN,asillus-
tratedinFig.3.TheradiusofthejetrAGNisusuallysettoa
fewtimesthecellresolution.Themasssentthroughthejetis
proportionaltotheaccretedmassontotheSMBH

Ṁjet=fLoadṀSMBH,(13)

wherefLoadisamass-loadingfactor,usually100.Themass
transportedbythejetisdistributedtoallthecellsintersecting
withthecapsule.Eachcellireceivesarelativefractionψiofthe
mass(andoftheinjectedlinearmomentum)

ψi=
ρi

∫
Ie−r2/2r2

AGNd3V
∑

jρj
∫
Je−r2/2r2

AGNd3V
,(14)

whereI(resp.J)isthevolumeoftheintersectionbetweenthe
AGNcapsuleandthecelli(resp.j)andρiisthecellmeanden-
sity.TheradiusrinEq.(14)isthepolarradiusinthecylindrical
framecentredontheAGNandalignedwithitsdirection(itis
thedistancetothejetcentre).Thisintegraliscomputedapprox-
imately,usinganumericalintegrationscheme.

Thetracerparticlesareinterfacedwiththejetmodelasfol-
lows.EachgastracerparticleinthecellicontainingtheSMBH
ismovedintothejetvolumewithaprobabilityof

pjet=
Ṁjet∆t

Mi·(15)

Foreachoftheseparticlesarandomnumberrisdrawnfroma
uniformdistributionbetween0and1.Ifr<pjet,thetraceris
selectedandmovedintothejet.Thenewpositionofthetracer
(x,y,z)isdrawnrandomly,zbeingthecoordinateinthedirection
ofthejet;xandyaredrawnfromanormaldistributionofvari-
ancerAGNandzisdrawnuniformlybetween−2rAGNand2rAGN.
Thealgorithmusesadraw-and-rejectmethoduntiloneposition
insidethecapsuleisfound.Wenotethatthegastracerdistribu-
tion(asgivenbyEq.(15))isconsistentwiththedistributionof
thegassentthroughthejet(asgivenbyEq.(14))3.

MoredetailsaboutthealgorithmaregiveninAppendixA.

3.Validationsandtests

Letusnowpresentvariousvalidationtestsofthealgorithm.
Section3.1presentstheresultsofidealisedtestsforgas-only
tracerparticles.Section3.2presentstheresultsobtainedfroma
cosmologicalzoom-insimulationofagalaxywithitsSMBHat
z=2andprovidesthedetailsoftheobserveddistributionof
tracerparticles.Unlessstatedotherwise,thegashydrodynam-
icsissolvedwithanadiabaticindexofγ=5/3andtheHLLC
approximateRiemannsolver(Toro2009),applyingtheMinMod
slopelimiteronthelinearlyreconstructedstates.

3.1.Idealisedtests

Inthissection,weintroducedifferentidealisedteststocon-
firmthattheevolutionofthegasiscorrectlytrackedby
gastracers.Section3.1.1presentsasimpletwo-dimensional
(2D)advectionofanoverdensitytoquantifydiffusioneffects.
Sections3.1.2and3.1.3presentaSedov–Taylorexplosionand
aKelvin–Helmoltzinstabilityandconfirmthatthegastracers
areabletoaccuratelyfollowthemotionofthegasforastrong
shockcaseandamixinglayerofgas,respectively.Section3.1.4
presentsanidealisedhalowithanAGNatitscentretoconfirm
thatthegastracerscorrectlytracktheevolutionofthegasin
AGNjets.

3.1.1.Uniformadvection

InordertoquantifythelevelofdiffusionofMCtracers,werun
asimulationsimilartothatrunforFig.6ofGeneletal.(2013).
Thesimulationisaregionof1cminsizewithaconstantden-
sityof1gcm−3andavelocityof0.01cms−1.Anoverdensity
of14gcm−3issetat0<x<0.05cm.Thesoundspeedis
cs=1.3cms−1intheunder-denseregionand0.35cms−1inthe
over-denseregion.Thesimulationisperformedonauniform2D
1282gridincluding250000tracerparticles,initiallydistributed
inthesamewayasthegas.Duetotheintrinsicnumericaldiffu-
sion(advectionerror)ofthehydrodynamicalsolver,thespatial
extentoftheoverdensityincreasesasafunctionoftimeasitis
advectedaway.ThisisillustratedinthecentralpanelofFig.4.
Wenotethatthedensityprofileshaveeachbeenshiftedalong
theirxcoordinateforvisualisationpurposesanddonotreflect
theirrealabsoluteposition(infacttherightmostpeaktravelled
5cmin100s).ThetoppanelofFig.4showsthat,whenrescaled
bytheexpectednoiselevelσ≡1/√Mcell/mt=1/√N(Nis
theexpectednumberoftracerparticlesinthecell),therelative
errorbetweenthegastracersandthegasdistributionsshows

3Inpractice,thenumericalevaluationoftheintegralsofEq.(14)may
leadtosmallyetundetecteddiscrepanciesbetweenthegastracerand
thegasdistributions.
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Similarly, in this limit δ0 does not correlate with gi either, while

〈δ0δ〉 becomes independent of R. Thus, 〈δ0δ〉 ≃ 〈δ0δs〉 and 〈δ0δ
′〉 ≃

0. Hence,

〈δ0δh〉
〈δ0νS〉

≃ νS +
δc − ξISI

σ 2 − ξ 2
(σs − ξ00)

−b01

[
ξ ′

00 +
σ − ξ ′

I ξI

σ 2 − ξ 2
(σs − ξ00)

]
. (96)

Setting νS = ξαβ = ξ ′
αβ = 0 recovers Musso et al.’s (2012) results.

The anisotropic effect of the saddle is easier to understand looking

at the sign of the terms in the round and square brackets, correspond-

ing to Cov (δ0, δ|S) and −Cov
(
δ0, δ

′|νc,S
)

respectively. One can

check that for R = 1 Mpc h−1 and RS = 10˜Mpc h−1 both terms

are negative near r = 0, but become positive at r ≃ 0.75RS . This

separation marks an inversion of the trend of the bias with νc,S ,

the parameter measuring how rare haloes are given the saddle en-

vironment. Far from the saddle, haloes with higher νc,S are more

biased, which recovers the standard behaviour since νc,S → νc as r

→ ∞. However, as r/RS � 0.75, the trend inverts and haloes with

higher νc,S become less biased. Therefore, one expects that at fixed

mass and distance from the saddle-point haloes in the direction of

the filament are less biased far from the saddle, but become more

biased near the saddle point. The upper panel of Fig. 14, displaying

the exact result of equation (96), confirms these trends and their

inversion at r ≃ 0.75RS . The height of the curves at r = 0 depends

on the chosen value for νS , but the inversion at r ≃ 0.75RS and the

behaviour at large r do not. Fig. 14 also shows that a saddle point

of the potential need not be a saddle point of the bias (in the present

case, it is in fact a maximum).

The inversion can be interpreted in terms of excursion sets. Near

the saddle, fixing νS at r = 0 puts a constraint on the trajectories

at r that becomes more and more stringent as the separation gets

small. At r = 0, the value of the trajectory at RS is completely

fixed. Therefore, trajectories constrained to have the same height

at both RS and R, but lower 〈δ|S〉 at R, will tend to drift towards

lower values between RS and R, and thus towards higher values for

R0 ≫ RS . This effect vanishes far enough from the saddle point,

since the constraint on the density at RS becomes looser as the

conditional variance grows. Hence, trajectories with lower 〈δ|S〉
at R will remain lower all the way to R0. Note however that inter-

preting these trends in terms of clustering is not straightforward,

because the variations happen on a scale RS ≪ R0 (they are thus

an explicit source of scale-dependent bias). The most appropriate

way to understand the variations of clustering strength is looking

at the position dependence of dn/dM, which is predicted explicitly

through fup(σ ; r) in equation (49).

When one bins haloes also by mass and accretion rate, the bias is

given by the response of the mass function at fixed accretion rate.

That is, to get the bias coefficients one should now differentiate the

joint probability fup(σ, α; r)pG(S) with respect to mean values of

the different variables, with fup(σ, α; r) given by equation (59). The

only bias coefficient that changes is b01, the derivative with respect

to 〈δ′|νc,S〉, which becomes

b01(M, Ṁ, r) ≡
∂ log

[
fup(σ, α; r)

]

∂〈δ′|νc,S〉
=

νc/α − μS (r)

Var (δ′|νc,S)
, (97)

with α defined by equation (20). Inserting this expression in equa-

tion (96), returns the predicted large-scale bias at fixed accretion

rate. Notice that in this simple model, the coefficient multiplying

the 1/α term is purely radial. The asymptotic behaviour of the bias

at small accretion rates will then always be divergent and isotropic,

Figure 14. Upper panel: large-scale Lagrangian bias as a function of the

distance from the saddle point, along the filament and perpendicularly to it,

for haloes of mass M = 2.0 × 1011 M⊙ h−1 (R = 1 Mpc h−1). Haloes in

the perpendicular direction are less biased at small separation, but the trend

inverts at r/RS ≃ 0.75. Lower panel: bias as a function of accretion rate,

for different values of the separation r/RS in the direction of the filament.

For haloes closer to the centre, bias decreases with accretion rate, but the

trend inverts at r/RS ≃ 0.75. In the perpendicular direction, the effect is

30 per cent smaller, but the relative amplitudes and the inversion point do not

change appreciably. As discussed in the main text, both inversions depend

on the fact that δ − 〈δ|S〉 and δ0 correlate at large distance from the saddle,

but they anticorrelate at small separation.

with a sign depending on that of the square bracket in equation (96).

If this term is positive, the bias decreases as α gets smaller, and vice

versa. Clearly, the value of α for which the divergent behaviour

becomes dominant depends on the size of all the other terms, and

is therefore anisotropic.

As one can see from Fig. 14, the sign of the small-α divergence

depends on the distance from the saddle point. It is negative for

r � 0.75RS , but it reverses closer to the centre. This effect is again

a consequence of the constraint on the excursion set trajectories at

RS . Trajectories with steeper slopes at R will sink to lower values

between RS and R, then turn upwards to pass through δ(RS ), and

reach higher values for R0 ≫ RS . The haloes they are associated

with are thus more biased. This trend is represented in Fig. 15. This

inversion effect is lost as the separation increases, and the constraint

on the density at RS becomes loose, and trajectories that reach R

with steeper slopes are likely to have low (or even negative) values

at very large scales. These haloes are thus less biased, or even

antibiased.
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Fig. 2. Scheme of the 48 neighbouring virtual cells (only the 24 rear
ones are shown) where mass and momentum are deposed during a SN
event. The cell containing the SN has a size of ∆x and is outlined in red.

distribution between 0 and 1. If r < pSN, the star-tracer parti-
cle is released in the gas and turned into a gas tracer particle.
Otherwise, the tracer is left attached to the stellar remnant.

The transfer of star-tracer particles to the gas by SNII is
described here for the so-called mechanical feedback model of
(Kimm & Cen 2014; see also Kimm et al. 2015)2. In this model,
the gas is released into the neighbouring cells. The mechani-
cal feedback scheme is designed to overcome the consequences
of radiative losses in SN bubbles due to the lack of resolution.
Where the cooling time of the SN-heated gas is shorter than the
hydrodynamical time step, the energy-conserving phase (with
Sedov-Taylor solution), during which the momentum is growing
by the pressure work of the bubble, cannot be captured properly,
and leads to spurious energy and momentum loss. To circum-
vent this problem, Kimm & Cen (2014) introduced a model that
correctly accounts for the momentum injection according to the
Sedov-Taylor or snow-plough solution (Thornton et al. 1998),
which depends on the cooling rate of the gas, or more precisely
on the energy release, local gas density, and metallicity. The cell
containing the exploding star particle is virtually represented by
8 cells refined by an additional level, which are equivalently
surrounded by 48 such virtual neighbouring cells, as illustrated
in Fig. 2 (Kimm & Cen 2014). The mass ejecta together with
the mass of the swept-up gas of the central true cell is released
evenly in all the virtual cells, and is attributed back accordingly
to the true existing cells.

The tracer particles are interfaced with this feedback model
as follows: For each released star to gas tracer particle, a random
integer number l ∈ [1, 48] is drawn uniformly. The star tracer is
then moved to the centre of the lth virtual cell and attributed to
the corresponding true existing cell as a new gas tracer particle.

2.4. SMBH formation and gas accretion

Supermassive black holes are modelled as sink particles that
can form out of the dense star-forming gas, grow by accretion
of gas, and coalesce following the implementation described
in Dubois et al. (2012b).

2 We have extended this implementation to i) simple thermal pulses of
energy (with or without delayed cooling; Teyssier et al. 2013), where
the mass is released to the central cell only, and ii) to the so-called
kinetic model of (Dubois & Teyssier 2008; in its more recent form
described in Rosdahl et al. 2017) where “debris” particles are replaced
by a bubble injection region of energy, momentum, and mass according
to the Sedov-Taylor solution.

A SMBH forms according to several user-defined criteria,
typically above a given gas density threshold ρ0 and outside an
exclusion distance radius rex within which SMBH is artificially
prevented if any other SMBH already exists (in order to prevent
creation of multiple SMBHs within the same galaxy). When a
SMBH forms with an initial seed mass MSMBH,0, gas tracer par-
ticles in the cell of mass Mi containing the SMBH are attached
to the SMBH and become SMBH tracer particles according to a
probability

pSMBH =
MSMBH,0

Mi
· (8)

SMBHs can continuously accrete gas according to the
Bondi–Hoyle–Littleton accretion rate, capped at Eddington with

ṀSMBH = (1 − εr) Ṁacc = (1 − εr) min(ṀB, ṀEdd), (9)

ṀB =
4πρG2M2

SMBH

(c2
s + u2)3/2

(
ρ

ρboost

)α
, (10)

ṀEdd =
4πGmpMSMBH

σTεrc
, (11)

where Ṁacc, ṀSMBH, ṀB, and ṀEdd are the disc, SMBH, Bondi–
Hoyle–Littleton, and Eddington accretion rates, respectively, mp
is the mass of a proton, G the gravitational constant, σT the
Thomson cross-section, εr the radiative efficiency, cs the speed
sound, u the mean velocity of the gas with respect to the SMBH,
and c the speed of light. ρboost and α are free parameters set,
here, to ρboost = 8mp cm−3 and α = 2 introduced to boost
the accretion rate due to unresolved small-scale larger densi-
ties (Booth & Schaye 2009). The value of εr is either chosen as
a constant value equal to 0.1, or, here, as a varying function of
the spin of SMBH, whose evolution is governed by gas accre-
tion and BH coalescence (see Dubois et al. 2014a,b, and Dubois
et al., in prep., for details).

The mass taken from the gas cell in one time step is ∆Macc ≡
∆t min(ṀBH, ṀEdd). We note that ∆Macc > ṀSMBH∆t as part of
the accreted mass is radiated away due to relativistic effect (and
lost to the simulation). Each gas tracer in the cell containing the
SMBH at a given time is accreted into the black hole with a
probability of

pacc =
∆Macc

Mi
. (12)

Tracer particles also model SMBH merger events. All the tracer
particles attached to the two parent SMBHs are moved to the
newly formed SMBH. There is no mechanism to extract tracers
from the SMBH (reflecting the fact that there is no way to extract
matter from a BH). One should also note that the total mass of
SMBH tracers is larger than the total mass of SMBHs, as part of
the energy-mass has been radiated away during accretion (and
tracers have a fixed mass).

2.5. AGN feedback

In Dubois et al. (2012b), there are two modes of AGN feed-
back: a quasar/heating mode and a radio/jet mode. The mode is
selected based on the ratio of the Bondi–Hoyle–Littleton accre-
tion rate to the Eddington accretion rate χ = ṀB/ṀEdd. If
χ < 0.01, the AGN is in jet mode, and, otherwise, it is in quasar
mode (Merloni & Heinz 2008).

In quasar mode, all the energy of the AGN proportional to
EAGN,Q = εf,QεrṀaccc2∆t (the value εf,Q = 0.15 is calibrated to
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Figure15.Plotofthemeanofdensitygiventhesaddlepoint,theupcrossing

conditionandtheslopeatRfordifferentslopes.Thesaddlepointwasdefined

usingthevaluesofTableD1.Thedetailsofthecalculationareprovidedin

AppendixB.Forsteepslopes(smallaccretionrate),themeanofthedensity

overshootsatsmallσ,resultinginalargerbias.

Itfollowsthatthebiasofhaloesfarfromstructuresgrowswith

accretionrate(theusualbehaviourexpectedfromexcursionsets),

whilethetrendinvertsforhaloesnearthecentreofthefilament.

Becausetypicalmassofhaloesalsodependsonthepositionalong

thefilament,withhaloestowardsthenodesbeingmoremassive,the

differentcurvesofFig.14correlatewithhaloesofdifferentmass.

Thiseffectexplainswhylow-masshaloeswithsmallaccretionrate

(orearlyformationtime,orhighconcentration)aremorebiased,

whenmeasuringhalobiasasafunctionofmassandaccretionrate

(orformationtimeorconcentration,whichstrictlycorrelatewith

accretionrate),withoutknowledgeofthepositioninthecosmicweb.

Conversely,thehigh-massonesarelessbiased(Sheth&Tormen

2004;Gaoetal.2005;Wechsleretal.2006;Dalaletal.2008;

Faltenbacher&White2010;Paranjape&Padmanabhan2017).It

isalsointriguingtocomparethisresultwiththemeasurementsby

Lazeyrasetal.(2017,,namelytheirfig.7)whichshowthesame

trends(althoughtheirmassesarenotsmallenoughtoclearlysee

theinversion).

Noteinclosingthattheconditionalbiastheorypresentedhere

doesnotcapturechangesinaccretionrateandformationtimepre-

sentedinSections4.3and4.4.

7CONCLUSIONANDDISCUSSION

7.1Conclusion

Withtheadventofmodernsurveys,assemblybiashasbecomethe

focusofrenewedinterestasaprocesswhichcouldexplainsomeof

thediversityofgalacticmorphologyandclusteringatfixedmass.

Itisalsoinvestigatedasameantomitigateintrinsicalignmentsin

weak-lensingsurveysuchasEuclidorLSST.Bothobservationsand

simulationshavehintedthatthelarge-scaleanisotropyofthecosmic

webcouldberesponsibleforstallingandquenching.Thispaper

investigatedthisaspectinLagrangianspacewithintheframeworkof

excursionsettheory.Asameasureofinfall,wecomputedquantities

relatedtotheslopeofthecontrastconditionedtotherelativeposition

ofthecollapsinghalowithrespecttoacriticalpointofthelarge-

scalefield.Wefocusedhereonmassaccretionrateandhalf-mass

redshiftandfoundthattheirexpectationvarywiththeorientation

anddistancefromsaddlepoints,demonstratingthatassemblybias

isindeedinfluencedbythegeometryofthetidesimposedbythe

cosmicweb.

Morespecifically,wederivedthePress–Schechtertypicalmass,

typicalaccretionrate,andformationtimeofdarkhaloesinthe

vicinityofcosmicsaddlesbymeansofanextensionofexcursion

settheoryaccountingfortheeffectoftheirlarge-scaletides.Our

principalfindingsarethefollowing:wehavecomputedthe(i)up-

crossingPDFforhalomass,accretionrate,andformationtime;they

aregivenbyequations(14),(23),and(32),andtheirconstrained-

by-saddlescounterpartsequations(49),(61),and(68).ThesePDFs

allowedustoidentifythe(ii)typicalhalomass,andtypicalac-

cretionrateandformationtimeatgivenmassasfunctionsofthe

positionwithintheframeofthesaddleviaequations(83)–(85).

Allquantitiesareexpressedasafunctionofthegeometryofthe

saddleforanarbitrarycosmologyencodedintheunderlyingpower

spectrumviathecorrelationsξαβandξ′
αβgivenbyequations(E11)

and(E12).Inturn,thishasallowedustocomputeandexplainthe

corresponding(iii)distinctgradientsforthethreetypicalquanti-

tiesandforthelocalmeandensity(Section5.3).Themisalignment

ofthegradients,definedasthenormalstothetheirisosurfaces,

arisesbecausethesaddleconditionisanisotropicandbecauseit

doesnotonlyshiftthelocalmeandensityandthemeandensity

profile(theexcursionsetslope)butalsotheirvariances,affecting

differentobservablesindifferentway.Finally,wehavepresented

(iv)anextensionofclassicallarge-scalebiastheorytoaccountfor

thesaddle(Section6).

Oursimpleconditionalexcursionsetmodelsubjecttofilamentary

tidesmakesintuitivepredictionsinagreementwiththetrendsfound

inN-bodysimulations:haloesinfilamentsarelessmassivethan

haloesinnodes,andatequalmasstheyhaveearlierformation

timesandsmalleraccretionratestoday.Thesamehierarchyexists

forhaloesinwallswithrespecttofilaments.Fortheconfiguration

weexamined,theeffectisstrongerasonemovesperpendicularly

tothefilament.Thetypicalmasschangesbyafactorof5along

thefilament,andbytwoordersofmagnitudeperpendicularly.The

relativevariationofaccretionratesandformationtimesisofabout

5–10percentalongthefilament,andofabout20–30percentinthe

perpendiculardirection,forhaloesof10
11

M⊙h−1
.Furthermore,

ourmodelpredictsthatatfixedhalomass,thetrendofthelarge-scale

biaswithaccretionratedependsonthedistancefromthecentreof

thefilament.Farfromthecentre,thelarge-scalebiasgrowswith

accretionrate(whichisthenaiveexpectationfromexcursionsets),

whilenearthecentrethetrendinvertsandhaloeswithsmaller

accretionratesbecomemorebiased.Sincehaloesnearthecentre

arealsoonaveragelessmassive,thiseffectshouldcontributeto

explainingwhythetrendofbiaswithaccretionrate(orformation

time)invertsatmassesmuchsmallerthanthetypicalmass.

Thesefindingsconflictwiththesimplisticassumptionthatthe

propertiesofgalaxiesofagivenmassareuniquelydeterminedby

thedensityoftheenvironment.Thepresenceofdistinctspacegradi-

entsforthedifferenttypicalquantitiesisalsopartandparcelofthe

conditionalexcursionsettheory,simplybecausethestatisticsofthe

excursionsetproxiesforhalomass,accretionrate,andformation

time(thefirst-crossingscaleandslope,andtheheightatthescale

correspondingtoM/2)aredifferentfunctionsofthepositionwith

respecttothesaddlepoint.Theyhavethusdifferentlevelsurfaces.

Atthetechnicallevel,thecontoursdependonthepresenceofthe

conditionalvarianceofδ(r),besidesitsconditionalmean,andof

thecorrelationfunctionsofδ′(r).Atfiniteseparation,thetraceless

shearofthelarge-scaleenvironmentmodifiesinananisotropicway

thestatisticsofthelocalmeandensityδ(r)(andofitsderivativeδ′(r)

withrespecttoscale).ThevariationsaremodulatedbyQ=r̂iq̄ijr̂j,

MNRAS476,4877–4906(2018)
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C.Cadiouetal.:TracerparticlesinRamses

stellar 
feedback

AGN
feedback

star formation

SMBH accretion
SMBH

gas

stars

AGN jet

Fig.1.Schemeofthedifferent“buckets”thatcanholdtracerparti-
clesandtheprocessthatmovesthemaround.Thethreebucketsaregas
cells,stars,andSMBHs.Arrowsindicateoutgoingmassfluxesbetween
bucketsandthephysicalprocessassociated,andgreysquaresrepresent
tracerparticles.ThejetmodefeedbackfromAGNs(aroundSMBHs)is
abletomovegastracerparticlesfromthecentralcelltothesurround-
ingcells.Theparticleshavenospatialdistributionwithinthebucketsor
anyphase-spacedistribution.Tracerparticlesareexchangedprobabilis-
ticallybetweenbucketsbasedonthemassfluxes.Forexample,forthe
gas,theyareexchangedbasedonthemassfluxesattheboundaryofthe
cells.

tobetheprobabilityofdisplacingagastracerparticlefromone
celltoanyotherofitsneighbouringcell,and

pj=max
(∆Mij

∆M
,0

)
,(3)

tobetheprobabilityofmovingthistracerparticleintocellj.
Foreachtracerparticleincelli,arandomnumberrisdrawn
fromauniformdistributionbetween0and1.Ifr<pgas,the
tracerisselected.Foreachselectedtracer,anotherrandomnum-
berr′isdrawn.Foreachneighbouringcelljwithapositiveflux
(suchthat∆Mij>0),ifr′<pjthetracerparticleismovedinto
celljandthealgorithmproceedstothenextparticle;else,r′is
decreasedsothatr′←r′−pjandthealgorithmproceedstothe
nextneighbouringcell.Becausethesumofallthepjis1,this
procedurewillassignthetracertoasinglecell.

WhenacellofmassM0isrefinedbetweentwotimesteps,
allitstracersaredistributedrandomlytooneoftheeightnewly
createdcells,theprobabilityforatracerparticletobeattachedto
thenewcellibeingp=Mi/M0(refineddensitycanbeinterpo-
latedfromneighbouringvaluesorequallydistributedamongst
newcells).Converselywhenacellisderefinedallitstracersare
attachedtotheparentcell.

2.2.Starformation

Thispartofthealgorithminvolvesmovingtracersfromthegas
phaseintostarparticles,andmovingthestar-tracerparticles
alongwiththeirstarparticles.

WefirstrecallthatthestarformationprocessinRamsesis
usuallymodelledbyaSchmidtlaw,wherethestarformation
ratedensityisnon-zeroand

dρ⋆
dt
=ǫ⋆

ρg

tff
,(4)

whenρg>ρ0,andwhereρgisthegasdensity,ρ0agasdensity
threshold,tff=(3π/(32Gρg))1/2thegasfree-falltime,andǫ⋆
theefficiencyofstarformation,whichcanbetakenasanadhoc
constant,orasafunctionofthelocalgravo-turbulentproperties

ofthegas(Krumholz&McKee2005;Hennebelle&Chabrier
2011;Padoan&Nordlund2011).Asinglestarparticlemadeof
N⋆starsofmassresolutionM⋆,0iscreated,whereN⋆isdrawn
accordingtorandomPoissonprocess(Rasera&Teyssier2006):

Psf=
λN⋆

N⋆!
exp(−λ),(5)

wherePsfistheprobabilityofcreatingN⋆particlesfromthegas
(andaccordinglyremovingM⋆≡N⋆M⋆,0massfromthegas
cell),and

λ=
ρg∆x3

M⋆,0

∆t
ǫ−1
⋆tff·(6)

Finally,thetransferofgastracerparticlestostar-tracerpar-
ticlesattimeofcreationtofM⋆isgivenbytheprobability

p⋆=
M⋆

Mi·(7)

Inmoredetails,weloopoverallthegastracerparticlescon-
tainedinthecellwherethenewstariscreated.Foreachof
them,arandomnumberrisdrawnfromauniformdistribution
between0and1.Ifr<p⋆,thegastracerparticleisturned
intoastar-tracerparticleatthesamepositionasthatofthestar
particle(i.e.atthecentreofthecell).Thestar-tracerparticleis
“attached”tothestarparticlebymovingalongwiththestarpar-
ticle,whichisdonethroughaclassicleap-frogintegrationofits
motion.Therefore,atalltimesteps,thepositionofthetraceris
updatedtomatchthepositionofitsstar.Theindexofthestaris
alsorecordedonthetracerforconvenience.

Theimplementationalsocomeswithtwoalternativestoini-
tialisethetracerparticles.Onecanfeedinalistofpositionsto
thecode;onetracerwillbecreatedateachlocation.Alterna-
tively,wedevelopedaninitialisationschemethattakesasinput
themassthateachtracerparticlerepresents,mt.Theschemeis
called“in-placeinitialisation”asitisperformeddirectlywithin
thecode:theschemeiscalledonceatstartup,aftertheAMR
gridhasbeenbuilt.Itloopsoverallcells,andforeachofthem
computesthenumberoftracerparticlestocreate.Theexpected
numberoftracerscreatedinacellofmassMcellisN=mt/Mcell.
LetuswriteN0=⌊N⌋.TheschemecreatesN0≡⌊N⌋particles
inthecellandthencreatesanadditionalonewithprobability
N−N0.Intheend,theexpectednumberoftracerparticlescre-
atedinthecellisN,meaningthatonaverageeachcellispopu-
latedwiththecorrectnumberoftracerparticles.Inthefollowing,
unlessstatedotherwise,thetracerparticledistributionisalways
initialisedusingthein-placemethod.

2.3.Supernovafeedback

Letusdescribethetransferofmassofastarparticletothegas
accordingtotypeIISNexplosions(referredtohenceforthas
SNII)andtheirassociatedtracerparticles.Thiscanbetrivially
extendedtothemorecompletedescriptionoftheevolutionof
stellarmassloss.

Whenastarparticlesamplinganinitialmassfunction(IMF)
ofmassM⋆explodesintotypeIISNe,itreleasesamassηSNM⋆,
whereηSNcanbecrudelyapproximatedbythemassfractionof
theIMFgoingSNII.Theprobabilityofreleasingastar-tracer
particleintothegasispSN=ηSN.Foreachstarparticleturning
intoSNe,weloopoverallthestar-tracerparticlesattachedtoit.
Foreachofthese,arandomnumberrisdrawnfromauniform
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Figure 16. Scheme of the intensity of the accretion rate at different locations

near a filament-type saddle for different final halo masses. The darkness

of the colour encodes the intensity of the accretion rate (darker is more

accretion). At fixed mass, the accretion rate increases from voids to saddle

points and from saddle points to nodes (along dotted line which marks the

filament’s direction). At a given location, the accretion rate increases with

mass.

i.e. the relative orientation of the separation vector in the frame set

by the tidal tensor of the saddle. This angular modulation enters

different quantities with different radial weights, which results in

different angular variations of the local statistics of density, mass,

and accretion rate/formation time. It provides a supplementary vec-

tor space, ∇̃Q, beyond the radial direction over which to project

the gradients, whose statistical weight depend on each specific ob-

servable. These quantities have thus different isosurfaces from each

other and from the local mean density, a genuine signature of the

traceless part of the tidal tensor. The qualitative differences in terms

of mass accretion rate and galactic colour is sketched in Fig. 16.

7.2 Discussion and perspectives

In contrast to the findings of Alonso et al. (2015), Tramonte et al.

(2017), and von Braun-Bates et al. (2017), we focused our attention

on variations of mass accretion rates with respect to the cosmic web

rather than mass functions. We have found that, even in a very simple

model like excursion sets, halo properties are indeed affected by the

anisotropic tides of the environment (involving the traceless part of

the tidal tensor), and not just by its density (involving the trace of the

tidal tensor). This effect cannot be explained by a simple rescaling

of the local mean density (the average density in a sphere of radius

of the order of the Lagrangian radius, centred around the halo).

Our predictions are in qualitative agreement with the observational

results of Kraljic et al. (2018), who detect a misalignment between

the isocontours of mass, secondary halo property (type/colour in

their case), and local mean density averaged on sufficiently large

scales. This misalignment tends to disappear as the scale of the

smoothing becomes small, and the signal is increasingly driven by

the density alone: this can be interpreted as a consequence of the

dynamical stretching of all contours as the filament forms.

Although the excursion set approach is rather crude, and addi-

tional constraints (e.g. peaks) would be needed to pinpoint the exact

location of halo formation in the initial conditions, we argued that

the effect we are investigating does not strongly depend on the

presence of these additional constraints. The underlying reason is

that the extra constraints usually involve vector or tensor quantities

evaluated at the same location r as the excursion set sphere, which

do not directly correlate with the scalars considered here (they only

do so through their correlation with the saddle point). They may

add polynomial corrections to the conditional distributions, but will

not strongly affect the exponential cut-offs on which we built our

analysis. Our formalism may thus not predict exactly whether a

halo will form (hence, the mass function), but it can soundly de-

scribe the secondary properties and the assembly bias of haloes that

actually form. A more careful treatment would change our results

only at the quantitative level. For this reason, we chose to prefer

the simplicity of the simple excursion set approach. Furthermore,

in order to describe the cosmic web, we focused on saddle points of

the initial gravitational potential, rather than of the density field, as

these are more suitable to trace the dynamical impact of filamentary

structures in connection to the spherical collapse model.

The present Lagrangian formalism only aims at describing the be-

haviour of the central galaxy: it cannot claim to capture the strongly

non-linear process of dynamical friction of subclumps within dark

haloes, nor strong deviations from spherical collapse. We refer to

Hahn et al. (2009) which captures the effect on satellite galaxies, and

to Ludlow et al. (2014), Castorina et al. (2016), and Borzyszkowski

et al. (2016) which study the effect of the local shear on haloes

forming in filamentary structures. Incorporating these effects would

require adopting a threshold for collapse that depends on the local

shear, as discussed in the Introduction. Such a barrier would not

pose a conceptual problem to our treatment;11 technically, however

it requires two extra integrations (over the amplitude of the local

shear and its derivative with respect to scale), and cannot be done

analytically. The shear-dependent part of the critical density (and

its derivative) would correlate with the shear of the saddle at r = 0,

and introduce an additional anisotropic effect on top of the change

of mean values and variances of density and slope we accounted

for. Evaluating this effect will be the topic of future investigation.

Our analysis demonstrated that the large-scale tidal field alone

can induce specific accretion gradients, distinct from mass and den-

sity ones. One would now like to translate those distinct DM gradi-

ents into colour and specific star formation rate (SFR) gradients. At

high redshift, the stronger the accretion, the bluer the central galaxy.

Conversely at low redshift, one can expect that the stronger the ac-

cretion, the stronger the AGN feedback, the stronger the quenching

of the central. Should this scaling hold true, the net effect in terms

of gradients would be that colour gradients differ from mass and

density ones. The transition between these two regimes (and in gen-

eral, the inclusion of baryonic effects) is beyond the scope of this

paper, but see Appendix H for a brief discussion.

Beyond the DM-driven processes described in this paper, differ-

ent explanations have been recently put forward to explain filamen-

tary colour gradients. On the one hand, it has been argued (Aragon-

Calvo, Neyrinck & Silk 2016) that the large-scale turbulent flow

within filaments may explain the environment dependence in ob-

served physical properties. Conversely, the vorticity of gas inflow

within filaments (Laigle et al. 2015) may be prevalent in feeding

galactic discs coherently (Pichon et al. 2011; Stewart et al. 2011).

Both processes will have distinct signatures in terms of the effi-

ciency and stochasticity of star formation. A mixture of both may

11 The details of the impact on the present derivation are given in

Appendix G.

MNRAS 476, 4877–4906 (2018)

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

-a
b
s
tra

c
t/4

7
6
/4

/4
8
7
7
/4

8
2
6
0
4
0
 b

y
 C

N
R

S
 u

s
e
r o

n
 0

8
 M

a
rc

h
 2

0
1
9

A&A 621, A96 (2019)

can also impact the modelling itself (e.g. Federrath et al. 2008;
Silvia et al. 2010).

In this paper we present a new implementation of tracer par-
ticles in the AMR Ramses code (Teyssier 2002). This imple-
mentation is based on the one developed by Genel et al. (2013)
for the moving mesh arepo code (Springel 2010). It has been
extended to track the full Lagrangian history of baryons in
any phase, including their conversion from gas to stars, from
stars back into the gas via supernova feedback, their interac-
tion with feedback from black holes, and their accretion onto
them. This Monte Carlo (MC) tracer particle implementation
improves the previous implementation, velocity-advected trac-
ers. With the velocity-based approach, tracer particles are moved
based on the interpolated local values of the gas velocity field.
While this yields qualitative results, it suffers from systematic
effects: tracer particles over-condensate in regions of converg-
ing flows (Genel et al. 2013). Monte Carlo tracer particles fol-
low a different idea. They are moved so that the tracer particle
mass flux at each cell interface is statistically equal to that of the
gas. Thanks to this property, the Eulerian distribution of tracers
converge to that of the gas when the number of tracer particles
goes to infinity. In addition to matching the gas distribution, the
implementation of tracer particles here is also able to match the
distribution of baryons in stars and in black holes.

The paper is structured as follows. Section 2 details the
implemented algorithm. Section 3 presents tests and validations
of the new implementation. In particular, Sect. 3.1 presents the
results from idealised tests and Sect. 3.2 presents an analysis of
the properties of tracers in a real astrophysical simulation. Using
the same simulation, Sect. 3.3 illustrates the efficiency of the
scheme applied to a specific science case – the bimodal accretion
of gas onto galaxies at high redshift. Section 4 assesses the per-
formance of the scheme. Section 5 provides a discussion of our
results and our conclusions. Appendix A provides more details
about the algorithm.

2. Implementation

The Ramses code (Teyssier 2002) solves the full set of Euler
equations by formulating the equations in terms of finite-volume,
that is, by calculating fluxes at the interfaces of cells of the adap-
tive mesh. This is done by using a MUSCL-Hancock method
with a second-order Godunov solver calculating the fluxes from
linearly interpolated values at cell faces from the cell-centred
values limited by a total-variation-diminishing scheme. Such a
Eulerian-based method has proven efficient at capturing shock
discontinuities and achieves efficient mixing of shear layers of
gas; however, its main drawback is that it does not naturally pro-
vide the Lagrangian trajectories of gas elements.

To address this problem, it is possible to introduce the so-
called tracer particles of the flow that should follow the flow
lines of the gas. A naive approach to track the motion of the
gas is to use the velocity of the gas itself, assign it to tracer par-
ticles, and move them accordingly. This is done with a cloud-
in-cell interpolation of the velocity values of the overlapped
cells where the volume of the cloud is that of the host cell,
though the level of the interpolation is not particularly impor-
tant (nearest grid point or triangular shape cloud; Federrath et al.
2008). Such a velocity-based approach was implemented in
Ramses (Dubois et al. 2012a) and used to probe the link between
cosmic gas infall and galactic gas feeding, and its acquisition
of angular momentum (Pichon et al. 2011; Dubois et al. 2012a;
Tillson et al. 2015). While this approach yields smooth trajec-
tories, it falls short of reproducing the gas density distribution

accurately in regions with strong convergence of the velocity
field (Genel et al. 2013).

To address this shortcoming, we have implemented in
Ramses the MC approach of tracer particles introduced
by Genel et al. (2013) for arepo (Springel 2010). Instead of hav-
ing proper velocities and positions, MC tracers are attached to
individual cells and are allowed to “jump” from the centre of
one cell to the centre of another according to the mass fluxes
obtained through the Godunov solver.

We have generalised the MC method to track exchanges
of baryons between gas, star particles, and supermassive black
hole (SMBH) particles, and in the following we refer to them
as “buckets”. At each time step, tracers are allowed to jump
from any bucket i to any bucket j with a probability (gas→gas,
gas↔star, gas→black hole) of

pi j =



∆Mi j

Mi
, if∆Mi j ≥ 0,

0, if∆Mi j < 0,
(1)

where ∆Mi j is the mass flowing from bucket i to bucket j
between t and t + ∆t and Mi is the mass of the depleted bucket
i at time t. This probability is also the fraction of baryons flow-
ing from one bucket to another. If the initial Eulerian distribu-
tions of tracers and baryons are equal, then in the limit where the
number of tracers becomes large, satisfying Eq. (1) is sufficient
for the Eulerian distributions to remain equal at all times. Here
is an outline of the proof. For any bucket i containing Nt trac-
ers of equal mass mt, let the total tracer mass read Mt ≡ Ntmt.
Because tracers are moved stochastically, the tracer mass flux
∆Mt,i j is a random variable. If at time t, Mt = Mi (i.e. the Eule-
rian distributions are the same), then the expected tracer flux is
E

[
∆Mt,i j

]
= Nt × pi jmt = Mi pi j = ∆Mi j. When the number

of tracers becomes large, the tracer mass flux converges to the
baryon flux, ∆Mt,i j → ∆Mi j. The buckets have the same initial
mass and are updated with the same mass fluxes, so they remain
equal at the next time step, t + ∆t. Therefore, if the initial Eule-
rian distributions are equal, by induction they remain equal at all
times (in the limit of a large number of tracers)1.

All the processes that are able to move tracers from bucket
to bucket are summarised in Fig. 1. Tracers can move from one
gas cell to another through gas dynamics, and the jet mode of
AGN feedback from SMBHs, from gas to stars via star forma-
tion, from stars to gas via supernova (SN) feedback, and from
gas to SMBHs via black hole accretion. Below, we present the
different algorithms used for each of these processes.

2.1. Gas dynamics

The algorithm moving tracer particles from one gas cell to
another is the following. For each level of refinement, all the
unrefined leaf cells are iterated over. For each leaf cell i con-
taining tracer particles, the total outgoing mass is computed as
∆M ≡ ∑2Nd

j=1 max(∆Mi j, 0), where j runs over the index of the
neighbouring cells, Nd is the number of dimensions, and ∆Mi j
is the mass transferred between cell i and cell j in one time
step and obtained from the Godunov flux of mass Fm,ij, that is,
∆Mij = Fm,ij∆t. We take

pgas =
∆M
Mi

, (2)

1 In general, any stochastic scheme for which the expected tracer flux
equals that of the baryons is able to track the Eulerian distribution at all
times.
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Howdoesthecosmicwebimpactassemblybias?4897

infactbetakingplace,giventhatthekinematicofthelarge-scale

flowisneitherstrictlycoherentnorfullyturbulent.Yet,evenif

ram-pressurestrippinginfilamentsoperateasefficientlyasinclus-

ters,itwillremainthattheanisotropyofthetideswillalsoimpact

theconsistencyofangularmomentumadvection,whichisdeemed

importantatleastforearly-typegalaxies.Theamplitudeofthermo-

dynamicalprocessesdependsontheequationofstateofthegasand

ontheamplitudeoffeedbackwhicharenotfullycalibratedtoday.

Recallthatshockheating,AGNandstellarfeedbackaredrivenby

coldgasinfall,whichinturnissetbygravity(asthedominant

dynamicalforce).Sincegravityhasadirecteffectthroughitstides,

unlessonecanconvincinglyarguethatitsdirectimpactisnegligible

ongalacticscales,itshouldbetakenintoaccount.

Codisetal.(2015),followingaformallyrelatedroute,investi-

gatedtheorientationofthespinofdarkhaloesinrelationtotheir

positionwithrespecttothesaddlepointsofthe(density)cosmicweb

(seealsoWang&Kang2018,foraslightlydifferentapproach).To-

getherwiththeirpredictionsonspinorientation,thisworkcouldbe

extendedtomodelgalaxycoloursbasedonbothspinandmassac-

cretion.Itcouldalsoguidemodelsaimingatmitigatingtheeffectof

intrinsicalignments(Joachimietal.2011)impactingweak-lensing

studies,whilerelyingoncolourgradients.Moregenerally,galactic

evolutionascapturedbysemi-analyticalmodelswillundoubtedly

gainfromajointdescriptionofinvolvingbothmassandspinacqui-

sitionasrelevantdynamicalingredients.Indeed,ithasbeenrecently

showninhydrodynamicalsimulation(e.g.Zavalaetal.2016)that

theassemblyoftheinnerDMhaloanditshistoryofspecificangular

momentumlossiscorrelatedtothemorphologyofgalaxiestoday.

Oneshouldattempttoexplaintheobserveddiversityatagiven

massdrivenbyanisotropiclarge-scaletides,whichwillimpactgas

inflowtowardsgalaxies,hencetheirproperties.Animprovedmodel

forgalaxypropertiesshouldeventuallyexplicitlyintegratethege-

ometryofthelargeenvironment(following,e.g.Hanami2001)and

quantifytheimpactofitsanisotropyongalacticmassassembly

history.

Thankstosignificantobservational,numerical,andtheoretical

advances,thesubtleconnectionbetweenthecosmicwebandgalac-

ticevolutionisonthevergeofbeingunderstood.
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PoudelA.,HeinämäkiP.,TempelE.,EinastoM.,LietzenH.,NurmiP.,2017,

A&A,597,A86

PressW.H.,SchechterP.,1974,ApJ,187,425

RednerS.,2001,AGuidetoFirst-PassageProcesses.CambridgeUniversity

Press,Cambridge

ShenJ.,AbelT.,MoH.J.,ShethR.K.,2006,ApJ,645,783

ShethR.K.,TormenG.,2004,MNRAS,350,1385

ShethR.K.,MoH.J.,TormenG.,2001,MNRAS,323,1

ShethR.K.,ChanK.C.,ScoccimarroR.,2013,Phys.Rev.D,87,083002

SousbieT.,PichonC.,ColombiS.,PogosyanD.,2008,MNRAS,383,1655

StewartK.R.,KaufmannT.,BullockJ.S.,BartonE.J.,MallerA.H.,

DiemandJ.,WadsleyJ.,2011,ApJ,738,39

TramonteD.,Rubino-MartinJ.A.,Betancort-RijoJ.,DallaVecchiaC.,

2017,MNRAS,467,3424

MNRAS476,4877–4906(2018)

D
o
w

n
lo

a
d
e
d
 f
ro

m
 h

tt
p
s
:/
/a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rt
ic

le
-a

b
s
tr

a
c
t/
4
7
6
/4

/4
8
7
7
/4

8
2
6
0
4
0
 b

y
 C

N
R

S
 u

s
e
r 

o
n
 0

8
 M

a
rc

h
 2

0
1
9

A&A621,A96(2019)
https://doi.org/10.1051/0004-6361/201834496
c©ESO2019

Astronomy &
Astrophysics

Accuratetracerparticlesofbaryondynamicsintheadaptivemesh
refinementcodeRamses

CorentinCadiou1,YohanDubois1,andChristophePichon1,2

1Institutd’AstrophysiquedeParis,CNRS&UPMC,UMR7095,98bisBoulevardArago,75014Paris,France
e-mail:corentin.cadiou@iap.fr

2KoreaInstituteofAdvancedStudies(KIAS),85Hoegiro,Dongdaemun-gu02455,Seoul,RepublicofKorea

Received23October2018/Accepted9November2018

ABSTRACT

WepresentanewimplementationofthetracerparticlesalgorithmbasedonaMonteCarloapproachfortheEulerianadaptivemesh
refinementcodeRamses.ThepurposeoftracerparticlesistokeeptrackofwherefluidelementsoriginateinEulerianmeshcodes,so
astofollowtheirLagrangiantrajectoriesandre-processinghistory.Weprovideacomparisontothemorecommonlyusedvelocity-
basedtracerparticles,andshowthattheMonteCarloapproachreproducesthegasdistributionmuchmoreaccurately.Wepresenta
detailedstatisticalanalysisofthepropertiesofthedistributionoftracerparticlesinthegasandreportthatitfollowsaPoissonlaw.We
extendtheseMonteCarlogastracerparticlestotracerparticlesforthestarsandblackholes,sothattheycanexchangemassbackand
forthbetweenthemselves.Withsuchascheme,wecanfollowthefullcycleofbaryons,thatis,fromgas-formingstarstotherelease
ofmassbacktothesurroundinggasmultipletimes,oraccretionofgasontoblackholes.Theoverallimpactoncomputationtimeis
∼3%pertracerperinitialcell.Asaproofofconcept,westudyanastrophysicalsciencecase–thedualaccretionmodesofgalaxies
athighredshifts–,whichhighlightshowtheschemeyieldsinformationhithertounavailable.Thesetracerparticleswillallowusto
studycomplexastrophysicalsystemswherebothefficiencyofshock-capturingGodunovschemesandaLagrangianfollow-upofthe
fluidarerequiredsimultaneously.

Keywords.hydrodynamics–methods:numerical–cosmology:theory–Galaxy:formation

1.Introduction

Manyastrophysicalproblemsofinterestrequireustosolve
equationsofhydrodynamicsonverydifferenttimescalesand
physicalscales.Twomainmethodshavebeendevelopedtosolve
theseequations.Ontheonehand,onecanstudythemotion
ofthegasbyfollowingtheevolutionofinteractingparticles.
ThisLagrangianapproachistheoneusedbysmoothparticle
hydrodynamics(SPH,e.g.Springel2005;Wadsleyetal.2004;
Priceetal.2018)codes.Thesecodessamplethegasdistribu-
tionusingasetoffixed-massmacro-particlessmoothedwitha
givenkernel,andmoveparticlesaccordingly.Byconstruction,
thisapproachprovidestheLagrangianevolutionofthegas.This
propertyisalsooneofitsshortcomings:low-densityregionsare
populatedbylargeparticlesandhencelackresolution.Onthe
otherhand,gashydrodynamicscanalsobedescribedonagrid,
wheregasdistributionissampledonfinitevolumes,andsolved
withefficientshock-capturingGodunovsolvers.Adaptivemesh
refinement(AMR,e.g.Kravtsovetal.1997;Teyssier2002;
Springel2010;Bryanetal.2014)codesfollowthisapproachand
allowforadynamicalrefinementofthemesh.Thoughquasi-
Lagrangianrefinementismostcommonlyadoptedinsituations
addressinggalaxyformationproblems,super-Lagrangianreso-
lutionscanalsobeachievedbyrefiningthegridbasedongas
quantitiessuchastheJeanslengthtofollowgravitationalyunsta-
blestar-formingregions(Agertzetal.2009),thevorticitytofol-
lowtheseedingofturbulence(e.g.Iapichino&Niemeyer2008),
therelativevariationofanyhydroquantity(suchase.g.the
ionisedfractionofhydrogen;Rosdahl&Blaizot2012),orusing

apassivescalartokeeptrackofaparticulargasphase(suchas
forjets,see,e.g.Bourne&Sijacki2017),amongothers.While
super-Lagrangianrefinementprovidesaveryflexiblemethodto
triggerrefinement,itfallsshortofprovidingtheLagrangianhis-
toryofthegas.

Toovercomethisissue,AMRcodeshavebeenequipped
with“tracer”particles.Tracerparticlesarepassivelydisplaced
withthegasflow,andhencetrackitsLagrangianevolution.
Eachtracercanalsobeusedtorecordinstantaneousquantities,
suchasthethermodynamicalpropertiesofthegasoranyother
property.Manyastrophysicalproblemscancanbenefitgreatly
fromthisLagrangianinformation.Forexample,whenstudying
galaxyformation,thepastLagrangianhistoryofthegasiscru-
cialtounderstandhowgashasbeenaccretedandhowithas
beenejectedinlarge-scalegalacticoutflows.Tracerparticlescan
beusedtostudythedensityandtemperatureevolutionofthe
gas(e.g.Nelsonetal.2013;Tillsonetal.2015)thatwilleven-
tuallyformstars.Forexample,onecouldusetracerparticlesto
studythetemperatureevolutionofthegasasitfallsontogalax-
ies,tostudythenumberofdynamicaltimesbeforeitbecomes
starformingortoquantitythenumberoftimegasisrecycledin
starsorsentingalacticfountains.Anotherproblemthatrequires
theuseoftracerparticlesisthestudyofmixing.Particularly
inturbulentenvironments,suchastheinterstellarortheinter-
galacticmedium,theLagrangianinformationprovidesinforma-
tionabout,forexample,mixingtimescale(e.g.Federrathetal.
2008),theoriginofturbulence(e.g.Vazzaetal.2011,2012),or
howitcontributestocorebuildupMitchelletal.(2009).Inaddi-
tiontothis,thepastLagrangianevolutionofaparceloffluid

OpenAccessarticle,publishedbyEDPSciences,underthetermsoftheCreativeCommonsAttributionLicense(http://creativecommons.org/licenses/by/4.0),
whichpermitsunrestricteduse,distribution,andreproductioninanymedium,providedtheoriginalworkisproperlycited.
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A P P E N D I X A : D E F I N I T I O N S A N D N OTAT I O N S

Table A1 presents all the definitions introduced in the paper.

Table 1 gives also the motivation behind the choice of variables.

The following conventions is used throughout:

(i) unless stated otherwise, all the quantities evaluated at (halo)

scale R have their dependence on R omitted (e.g. σ = σ (R));

(ii) the quantities that have a radial dependence are evaluated at

a distance r when the radius is omitted. Sometimes, the full form is

used to emphasize the dependence on this variable;

(iii) unless stated otherwise, the quantities are evaluated at z = 0

and D(z) = 1 (e.g. δc = 1.686);

(iv) a prime denotes a derivative with respect to σ of the excursion

set (e.g. δ′ = dδ/dσ );

(v) variables carrying a hat have unit norm (e.g. |r̂| = 1), matrices

carrying an overbar are traceless (e.g. tr(q̄ij ) = 0);

(vi) the Einstein’s convention on repeated indexes is used

throughout, except in Appendix F2.

APPENDI X B: VALI DATION W ITH G RFS

Let us first compare the prediction of Section 4 to statistics derived

from realization of GRF, while imposing a saddle-point condition.

The values used at the saddle point are reported in Table D1. We

further imposed the saddle point’s eigenframe to coincide with the

x, y, z frame, which in practice has been done by imposing q̄ij to

be diagonal. We have used two different methods to validate our

results, by generating random density cubes (Appendix B1) and by

computing the statistics of a constrained field (Appendix B2).

B1 Validation for σ ⋆

The procedure is the following: (i) 4000 cubes of size (128)3 and

width Lbox = 200 Mpc h−1 centred on a saddle point were gen-

erated following a �CDM power spectrum; (ii) each cube has

been smoothed using a Top-Hat filter at 25 different scales rang-

ing from 0.5 to 20 Mpc h−1; (iii) for each point of each cube, the

first-crossing point σ first was computed; and (iv) the 4000 realiza-

tions were stacked to get a distribution of σ first and to compute

the median value. It is worth noting that the value of Ŵ(σ (R)) in

the GRF is not the same as in theory. This is a well-known effect

(see e.g. Sousbie et al. 2008) that arise on small scales due to the

finite resolution of the grid and on large scale because of the finite

size of the box. The Ŵ measured in a GRF is correct at scales ver-

ifying �L � R ≪ Lbox, where �L is the grid spacing. In our case,

the largest smoothing scale is 20 Mpc h−1 = Lbox/10. However,

the smallest scale is comparable to the grid spacing. To attenuate

the effect of finite resolution, we have measured Ŵ(σ (R)) in the

GRF and used its value to compute the theoretical cumulative dis-

tribution function (CDF). The results of the measured CDF Ffirst and

Table A1. Summary of the variables used throughout the paper.

Variable Definition Comment

ρ̄m (2.8 × 1011 h2M⊙/Mpc3) × �M Uniform matter background density

R, M, M⋆ M = 4/3πR3ρ̄m Smoothing scale, mass, and typical mass

δm (ρm − ρ̄m)/ρ̄m Linear matter overdensity

W(x) 3j1(x)/x Real-space Top-Hat filter (Fourier representation)

δ

∫
d3k

(2π)3
δm(k)W (kR)eik·r Linear matter overdensity smoothed at scale R, position r

σ 2 Var(δ) Variance of the overdensity at scale R

ν δ/σ Rescaled overdensity

δc, νc 1.68, δc/σ Critical overdensity

δ′, ν′ dδ/dσ , dν/dσ Slope of the E.S. trajectories

Ŵ−2 Var(δ′) − 1 = 〈(σν′)2〉 = Var
(
δ′|ν

)
Conditional variance of δ′ at fixed ν

RS , σS σS = σ (RS ) Smoothing scale used at the saddle point

R2
⋆ (42)

∫
dk

P (k)

2π2

W 2(kRS )

σ 2
S

. Characteristic length-scale of the saddle (squared)

gi , qij , νS (41) and (43) Mean acceleration, tidal tensor, and overdensity at saddle (see Table D1 for their value)

q̄ij ,Q q̄ij = qij − νSδij /3, r̂i q̄ij r̂j Traceless tidal tensor and anisotropy ellipsoidal-hyperbolic coordinate

ξαβ , ξ ′
αβ (E11) and (E12); ξ ′

αβ = dξαβ/dσ Two-point correlation functions at separation r and scales R, RS
α, α⋆ νc/[σ (ν′ − ν′

c)]; (27) and (62) Accretion rate and typical accretion rate

R1/2, σ 1/2 R/21/3, σ (R1/2) Half-mass radius and variance

δ1/2, ν1/2 δ(σ 1/2), δ1/2/σ 1/2 Overdensity at half-mass

Df, D⋆ δc/δ1/2; (38) and (72) Formation time and typical formation time

νf δc/(σ 1/2Df) Density threshold at formation time

ω, ω′ (E14) and (E15); ω′ = dω/dσ Zero-distance correlation functions between scales R and R1/2

�, �′ (F27) and (F32); �′ = d�/dσ Zero-distance conditional covariance between scales R and R1/2 given the saddle point

δ0 δ(R0 ≫ R) Large-scale overdensity

δh Local halo number density contrast

MNRAS 476, 4877–4906 (2018)
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4.6 “Accurate tracer particles of baryon dynamics in the adaptive mesh refinement code Ramses”
(article) 153
at high redshift. I have underlined that AM acquisition is dominated by the interaction between
the inner halo, the outer halo, the disk, cold flows and hot-accreted material. Cold flows are able
to reach the inner halo and the disk while hot-accreted gas interacts mostly with the outer halo.

4.6 “Accurate tracer particles of baryon dynamics in the adaptive mesh refinement
code Ramses” (article)
This section presents the results obtained using the new tracer particle scheme developed during
my thesis. These results have been published in Cadiou et al., 2019 and have already been
presented in section 4.2.3.
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FigureB1.TheoreticalCDFofσatupcrossing(boldlines)andnumerical

CDF(steps)atfirst-crossingatfourlocationsaroundthesaddlepoint(the

distancesareinMpch−1
inthex(void)andz(filament)directions).TheCDF

havebeennormalizedtosharethesame50˜percentquantile(thehorizontal

line).Seethetextforthedetailsofthenormalization.

FigureB2.Meanvalueofαusinganumericalmethod(purpletoyellow)

versusitstheoreticalvalue(greycontours).Botharenormalizedbythe

theoreticalvalueatthesaddlepoint.

theoreticalCDFFup(withthemeasuredŴ)atfourdifferentpositions

areshownonFig.B1.ThemeasuredCDFshavebeennormalized

sothatF−1
first(0.5)=F−1

up(0.5):weimposethattheCDFmatchatthe

‘median’(definedastheσsuchthatF(σ)=0.5
12

).Asshownon

Fig.B2,theabscissaofthepeakofthePDFinthedirectionof

thevoidisaroundσ≈2.7.Asσ(Rmin)≈3,itmeansthatinthe

directionofthevoid,thePDFisonlysampleduptoitspeak.The

experimentalCDFatsuchlocationishenceonlyprobinglessthan

50˜percentofthedistributionandthemedianisnotreached.Inthis

case,wearenormalizingtheexperimentalCDFtohavethesame

12
Thisdefinitionmatchestheclassicalonefordistributionsthathavea

normalizedCDF,whichisnottrueforFup.

valueatthelargestσasthetheoreticalCDF.AsshownonFig.B1,

theexperimentalandtheoreticalCDFsstartdivergingatF�0.5.

Atlargerσ,theupcrossingapproximationusedinthetheorybreaks

asmoreandmoretrajectoriescrossmultipletimethebarrier(they

arecountedonceforthefirstcrossingandmultipletimesforup-

crossing).Theorangeandbluelines,inthedirectionofthefilament

showthisclearlyastheydivergeonefromeachotheratlargeσ.As

σ⋆isameasureofthelocationofthepeakofthePDF(whichis

wheretheCDFisthesteepest),itissufficientthattheexperimental

andtheoreticalCDFmatchuptotheirflatendtohavethesameσ⋆

values.

B2Validationforα⋆usingconstrainedfields

Asecondcheckwasimplementedontheaccretionrateasfollows:

(i)foreachlocation,thecovariancematrixofν,δ′,ν
S,q̄ij,giwas

computedatfinitedistance.Thesequantitiesallhaveanullmean;

(ii)thecovariancematrixandthemeanofν,δ′conditionedtothe

valueatthesaddlepointwascomputedusingthevaluesofTableD1;

(iii)thevarianceandmeanofν,δ′werecomputedgivenν=νc

andthesaddlepoint;and(iv)asampleof10
6

pointswerethen

drawnfromthedistributionofδ′>0(upcrossing).(v)Thevalues

ofα∝1/δ′werecomputedtoobtainasampleofα.Eachdraw

wasweightedby1/α(theJacobianofthetransformfromδ′toα).

Finally,thenumericalvalueof〈α|σ,S〉wasestimatedfromthe

samplesandcomparedwiththetheoreticalvalue.Theresultsare

shownonFig.B2andarefoundtobeinverygoodagreement.

WecomputedFig.B3byfollowingsteps(i)–(iii)at10Mpch−1

inthedirectionofthefilament(blue)andofthevoid(orange)and

plottingthemeanandstandarddeviationofδgiventhesaddleand

thethreshold.Fig.15wascomputedbyfollowingsteps(i)–(iii)at

thesaddlepoint(r=0).Anextraconstrainonthevalueofδ′was

thenaddedtocomputethedifferentcurves.

APPENDIXC:OTHERCRITICALPOINTS

Forthesakeofgenerality,letusdiscussheretheconditionalexcur-

sionsetexpectationsinthevicinityofothercriticalpointsofthe

potential.Atthetechnicallevel,alltheformulaewederivedinSec-

tion4dependontheeigenvaluesofqijwithnoaprioriassumptionon

theirsign.Theexpressionswillthusremainformallythesame,with

allinformationabouttheenvironmentbeingchannelledthroughthe

valuesofνSandr̂iq̄ijr̂j.Forinstance,thetypicalquantitiesM⋆,Ṁ⋆,

andz⋆parametrizingthePDFsofinterestwillbedefinedinexactly

thesamewayasinequations(80)–(82).However,theirlevelcurves

willhavedifferentprofilesindifferentenvironments.

Asphysicalintuitionsuggests,andequation(47)explicitly

shows,thedependenceofthevarioushalostatisticsonthedis-

tancefromthestationarypoint(whethertheprobabilityofagiven

halopropertyincreasesordecreaseswithseparation)isencoded

inthesignsoftheeigenvaluesqiofqij.Besidesfilaments(hav-

ingtwopositiveeigenvalues),onemaythusbeinterestedinwall-

typesaddles(onepositiveeigenvalue),maxima(allnegative),and

minima(allpositive),correspondingtovoidsandnodes,respec-

tively.Ingeneral,q1+q2+q3=νSparametrizesthemeanvaria-

tionwithdistance(averagedovertheangles),whereasthetrace-

lessshearq̄ijisresponsiblefortheangularvariationatfixed

distance.

Inallcases,however,foragivendirectionM⋆,Ṁ⋆,and−z⋆will

eitherallincrease(ifriqijrj<0)oralldecrease(ifriqijrj>0).

MNRAS476,4877–4906(2018)
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152Chapter4.Anisotropicgalaxyformation—numericalexploration

4.5Conclusion

large scale filament

cold flow

hot accretion

DM

DM + star

star

Spin-up by 
cosmic web

DM + gas

Main torque

Figure4.23:SketchoftheevolutionoftheAMatlargez(nottoscale).hotgas(red
dashedline)isspun-upbythecosmicwebandlosesmostofitsAMatthevirialradius
intheshock.Coldgas(bluedashedline)isspun-upbythecosmicwebandretainsits
AMdowntotheinnerhalo.Betweentheinnerhaloandthedisk,mostoftheAMislost
duetointeractionswiththeDMhaloandthedisk.

Usingasetofhigh-resolutionzoom-insimulations,IhavestudiedtheevolutionoftheAMofgas
accretedviathecoldandthehotmodearoundsixgroupprogenitorsatz&2.Ialsopresentednew
numericalmethodstoextractthecontributionsofthedifferentforcesandtorques(gravitational
andpressuretorques).Myfindingsarethefollowing:

1.themagnitudeofthesAMofthecoldgasisconserveddowntotheinnerhalo,themagnitude
ofthesAMofthehotgasislostoutsidethehalo,

2.theorientationofthesAMofthecoldgasisconserveddowntotheinnerhaloand,
3.thesAMofthehotgasissignificantlylessalignedtothelargescaleenvironment,
4.thedominantlocalforcesinthecoldgasarepressureforcesandDMgravitationalforcesin

theouterhalo,andDMgravitationalandstargravitationalforcesintheinnerhaloandthe
disk,

5.thepressureforceslackaspatialstructure,sothattheirnetcontributeaveragesoutinthe
coldgas,

6.thedominanttorquesinthecoldcoldgasaregravitationaltorques:DMgravitational
torquesdominateintheouterhalo,stargravitationaltorquesdominateinthedisk.

Theresultsonthemajortorquesaresketchedonfigure4.23.Myfindingsindicatethatthe
acquisitionoftheAMforgroupprogenitorsatz&2isdrivenbytheAMacquiredatlarge-scale,
consistentwiththefindingsthatthespinofgalaxiesisalignedwiththeirenvironment.Most
oftheAMisabletoflowdowntotheinnerhalowheregravitationaltorquesredistributeitto
theDMandthediskcomponent,effectivelytransportingAMfromthescalesofthecosmicweb
tothescalesinvolvedindiskformation.Thesefindingsindicatethatgalaxyformationmodels
aimedatunderstandingAMacquisitionshouldtakeintoaccountthecoldaccretionmode,atleast



4900 M. Musso et al.

Figure B3. Top: scheme of the mean value of the density in the direction

of a filament (red) and void (blue) close to a saddle point smoothed at

σ = σS with the constrain that δ(σ (R)) = δc. (1) The value of the density

imposed at the saddle point forces both mean densities to increase. (2) In

the direction of the filament, a large-scale overdensity, the mean density at

a given point increases quickly, but (3) the constrain δ(σ ) = δc prevents any

further increase at σ � σ (R), hence the slope δ′ is small at upcrossing. (4)

In the direction of the void, a large-scale underdensity, the mean density

at a given point cannot increase with σ . (5) At σ � σ (R), the upcrossing

constrain forces a sharp increase of the density to reach δ(R) = δc, hence

the slope is high at upcrossing. Bottom: a validation using constrained GRF

at a distance of 10 Mpc h−1 in the direction of the filament (blue) and of the

void (orange). See the text for the details.

Their increase will be fastest (or their decrease slowest) in the di-

rection of q̄3, the least negative eigenvalue, and slowest in that of

q̄1. The rationale of this behaviour will always be that an increase

of the conditional mean density will make it easier for excursion set

trajectories to reach the threshold. Upcrossing will happen prefer-

entially at smaller σ , corresponding to the formation of haloes of

bigger mass. At fixed mass (fixed crossing scale σ ), the crossing

will happen preferentially with shallower slopes, corresponding to

higher accretion rates and more recent formation (i.e. assembly of

half-mass).

C1 Walls

A wall will form in correspondence of a saddle point of the potential

filtered on scale RS , for which q1 < q2 < 0 < q3. This combina-

tion of eigenvalue signs generates collapse in one spatial direction

and expansion in the other two. As argued, a saddle point of the

potential induces a saddle point of the opposite type in M⋆, Ṁ⋆,

and −z⋆, which will increase along two space directions following

the increase of the mean density, and decrease along one. Since for

walls (like for filaments), the value of νS is likely to be smaller

than
√

tr(q̄2), they will tend to have an angular modulation larger

Figure C1. Isocontours in the x–z plane of the typical accretion rate α⋆

around a wall-type saddle point [at (0, 0)]. The saddle point is defined

using the values of Table D1. The profiles in the main direction of the

wall (z-direction) and of the void (x-direction) are plotted on the sides. The

smoothing scale is R = 1 Mpc h−1. The typical accretion rate is computed

using a �CDM power spectrum. Similarly to what happens in filaments,

haloes accrete more in the direction of the wall than in the direction of the

void.

than the radial angle-averaged variation. Walls are thus likely to be

highly anisotropic configurations also of the accretion rate and of

the formation time. This is illustrated for example in Fig. C1 for the

accretion rate. On average, νS will be smaller for a wall-type saddle

(which has two negative eigenvalues) than for a filament-type one.

Thus, haloes in walls tend to be less massive, and at fixed mass, they

tend to have smaller accretion rates and earlier assembly times.

C2 Voids

A void will eventually form (although not necessarily by z = 0)

when r = 0 is a local maximum of the potential filtered on scale

RS (from which matter flows away), for which q1 < q2 < q3 < 0.

The centre of the void is a minimum of M⋆, Ṁ⋆, and −z⋆. All

these quantities will gradually increase with the separation. As |νS |
may be large (in particular for a large, early-forming void), halo

statistics in voids may not show a large anisotropy relative to their

radial variation. However, because voids have the most negative νS ,

they are the environment with the least massive haloes, the smallest

accretion rates and the earliest formation times (at fixed mass).

C3 Nodes

Nodes form out of local minima of the gravitational potential, for

which 0 < q1 < q2 < q3 (corresponding to three directions of infall).

The centre of the node is thus a maximum of M⋆, Ṁ⋆, and −z⋆, all

of which decrease with radial separation. Like voids, large early-

forming nodes (whose density νS must reach νc when σS is very

small) are relatively less anisotropic, since the relative amplitude of

the angular variation induced by q̄ij is likely to be small compared

to the radial variation. Since νS is the largest for nodes, they host

the most massive haloes, and at fixed mass, those with the largest

accretion rates and the latest formation times.

MNRAS 476, 4877–4906 (2018)
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4.4 Discussion 151

radius of the halo at z = 2.
Interestingly, I find that, even though most of the AM has been lost before entering the halo,

the orientation of the AM of the hot gas is well-conserved between Rvir and Rvir/3. This can be
explained either by the fact that the spin of the halo, which has been reported to be well aligned
with the first axis of the large scale tides (Danovich et al., 2012) do not reorient significantly the
AM of hot gas, or that the infall of the hot gas coincides with the loss of most, but not all, of its
angular momentum. In this scenario, the hot gas starts infalling at the sweet spot where most of
the angular momentum has been lost, but before all of it has been removed.

As reported in (Rosdahl and Blaizot, 2012), the trajectory the cold gas is different and follows
a mostly radial (with a non-null impact parameters) free-fall trajectory. In our simulation, the cold
gas typically takes one (500± 350)Myr to go from 3Rvir toRvir/3, so that the halo gravitational
torques are not large enough to reduce the AM of the cold gas. As the cold gas plunge into the
halo, the influence of the disk increases up to the point where torques become dominated by
stars. I report here that most of the AM of the cold gas is lost at the same location as where the
disk component become important. While the AM loss seem to be a combination of the torques
of the inner halo and, to a smaller extent, the disk, most of the realignment of the gas before it
actually settles in the disk is due to gravitational torques of the disk, reaching a similar conclusion
as Danovich et al., 2015. Most of the AM of the cold gas, that was acquired at large scales and
conserved down to the inner regions, is lost to the inner halo and the disk. One can then suggest
that both the inner halo and the disk will then tend to be aligned to the mean orientation of the
inflowing material in a similar way, resulting. This may explain why galactic spin is well aligned
with the internal halo’s, while being only mildly aligned with the global halo spin.
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APPENDIXD:PDFOFSADDLES

Thissectionpresentsthedistributionoftheeigenvaluesofthe

anisotropic(i.etraceless)partofthetidaltensoratcriticalpointsof

thepotentialfield.Bydefinition,acriticalpointissuchthatgi=0

anditskindisgivenbythesignature(thesignsoftheeigenvalues

ofthehessianofthepotential,qij):+++forapeak,−++for

afilament-typesaddlepoint,−−+forawall-typesaddlepoint,

and−−−foravoid.Becausetheanisotropictidaltensorreads

q̄ij=qij−δijνS/3,thetypeofthecriticalpointisthengivenby

thenumberofeigenvaluesofq̄ijabove−νS/3.

Thedistributionoftheeigenvaluesofthe(normalized)tidaltensor

denotedq1<q2<q3isdescribedbytheDoroshkevichformula

(Doroshkevich1970;Pogosyanetal.1998)

p(qi)=
675

√
5

8π
exp

[15

2
I2−3I

2
1

]
(q3−q1)(q3−q2)(q2−q1),

(D1)

where{In}denotestherotationalinvariantswhichdefinethechar-

acteristicpolynomialofqij,namelyitstraceI1=q1+q2+q3,

traceofthecomatrixI2=q1q2+q2q3+q1q3,anddeterminant

I3=q1q2q3.Subjecttoafilament-typesaddle-pointconstraint,this

PDFbecomes

p(qi|−++)=
540

√
5π

29
√

2+12
√

3
q1q2q3ϑ(q2)ϑ(−q1)p(qi),(D2)

afterimposingtheconditionofasaddle|detqij|δD(gi)ϑ(q2)

ϑ(−q1)forwhichastheaccelerationisdecoupledfromthetidal

tensor,onlytheconditiononthesignoftheeigenvaluesandthe

determinantcontribute.FromthisPDF,itisstraightforwardtocom-

putethedistributionofsaddlesofheightsνS=q1+q2+q3

p(νS|−++)=p+(νS)ϑ(νS)+p−(νS)ϑ(−νS),(D3)

with

p+(νS)

=
5
√

10πe−
ν2
S
2(

3νS−ν
3
s

)
Erfc

(√
5νS

2
√

2

)
+e−

9ν2
s

8(
32+155ν

2
s

)
(

29
√

2+12
√

3
)√

π
,

p−(νS)

=
5
√

10πe−
ν2
S
2(

3νS−ν
3
s

)
Erfc

(−
√

5νS √
2

)
+e−3ν2

s(
32−10ν

2
S
)

(29
√

2+12
√

3)
√
π

.

Inparticular,theheightoffilament-typesaddleshasmeanand

standarddeviationgivenby

〈νS|−++〉=250
(

3(29
√

2+12
√

3)
√
π
)−1

≈0.76,

Std(νS|−++)=

√
696

√
6+75π(10−3

√
6)−2114

15
√
π

≈0.55.

Forothertypesofcriticalpoints,asimilarcalculationcanbe

done.Asexpected,theheightsofwall-typesaddlepointsfol-

lowthesamedistributionas−νS.Peakandvoidheightshave

mean±
√

2114+696
√

6/15
√
π≈±2.3andstandarddeviation √

75π(10+3
√

6)−(2114+696
√

6)/15
√
π≈0.62.

Thisworkpicksatypicalvalueforthefilament-typesaddleat

roughly1σfromthemeanνS=1.2.Forwall-typesaddles,νS=0

ischosen.Thedistributionofeigenvaluesoftheanisotropictidal

tensorq̄iforafilament-typesaddlepointwithagivenpositive
13

heightcanthenbeeasilyobtainedfromequation(D2)

p(q̄1|νS)=
15(3q̄1+νS)

[
a1e−

4ν2
S
3+

5
2q̄1νS−

15q̄2
1

2−a2e−
ν2
S
2−

45q̄2
1

8

]

16(29
√

2+12
√

3)
√
πP+(νS)

,

whereq̄1<−νS/3anda1anda2aretwopolynomialsofq̄1andνS
givenby

a1(q̄1,νS)=32[5|νS−6q̄1|(3q̄1+νS)+12],

and

a2=6075q̄
4
1−8100q̄

3
1νS+900q̄

2
1

(
3ν

2
S−4

)
+480q̄1νS

−160ν
2
S+384.

Similarly,thePDFoftheintermediateandmajoreigenvaluesare,

respectively,givenby

p(q̄2|νS)=
15(3q̄2+νS)a1e−

11
12ν2

S+
5
4q̄2νS−15q̄2

2−
5
12(νS+3q̄2)|νS−6q̄2|

16(29
√

2+12
√

3)
√
πP+(νS)

whereq̄2>−νS/3anda1=a1(q̄2,νS),and

p(q̄3|νS)=
15(3q̄3+νS)

[
a1e−

ν2
S
2−

45q̄2
3

2+ā1e−
4ν2
S
3+

5
2q̄3νS−

15q̄2
3

2

]

16(29
√

2+12
√

3)
√
πP+(νS)

whereq̄3>νS/6,havingdefineda1=a1(q̄3,νS)andā1(q̄3,νS)

=−a1(−q̄3,−νS).Similarexpressionscanbeobtainedforwall-

typesaddles(togetherwithpeaksandvoids).Thetoppanelof

Fig.D1showsthedistributionofeigenvaluesforafilament-type

saddlepointofheightνS=1.2andthebottompanelshowsthe

distributionforawall-typesaddlepointofheightνS=0.Typical

valuesofq̄ijwereselectedtocorrespondroughlytothemaximum

oftheabove-mentioneddistributionsofq̄1,q̄2,q̄3andarereported

inTableD1.Notethatalltheresultsobtainedinthissectionare

independentofthepowerspectrum.Theonlyassumptionisthatthe

densityisaGRF.

APPENDIXE:COVARIANCEMATRICES

Letuspresentherethecovariancematrixofallvariablesintroduced

inthemaintext.Thedensityδandslopeδ′areevaluatedatpositionr

andsmoothedonthehaloscaleR,thehalf-massdensityδ1/2isalso

evaluatedatthehalopositionrbutsmoothedonR1/2=2−1/3
R,

whilethesaddlerarenessνS,accelerationgi,anddetracedtidal

tensorq̄ijareevaluatedattheoriginandsmoothedonascaleRS≫
R.ThecorrelationmatrixofX≡

{
δ,δ′,ν

1/2,νS,gi,q̄ij

}
,avector

with12Gaussiancomponents,is

C=

⎛
⎜⎜
⎜⎜
⎜⎜
⎝

σ
2

σωC14C15C16

σ〈δ′2〉ω′C24C25C26

ωω′σ
2
1/2C34C35C36

C14C24C34100

C
T
15C

T
25C

T
350C550

C
T
16C

T
26C

T
3600C66

⎞
⎟⎟
⎟⎟
⎟⎟
⎠

,(E1)

withω=〈δν1/2〉,ω′=〈δ′ν
1/2〉,and

C14=〈δνS〉=ξ00,C15=〈δgi〉=
ri

R⋆

ξ11,(E2)

C16=〈δq̄ij〉=
(δij

3
−r̂ir̂j

)
ξ20,(E3)

13
Asimilarexpressioncanbeobtainedfornegativeheights.
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Figure4.22:Top:Massweighteddensityprojectionsaroundt=2.5GyrforhaloD
andbottom:massweightedtemperatureprojections.Thecentralhalo(withvirialradius
showninwhite)hasalotofmergersthatareabletodisruptthecoldgasaccretion.

work,Ifindthatthepressureforcesaredominantinthehotphaseandareasimportantasthe
DMgravitationalforcesintheouterhalo,inparticularintheortho-radialdirection.Intheinner
halo,atransitionoccurssothatthedominantforcesbecomestargravitationalforces.Ialsoreport
asignificant“pressurering”intheinnerhalothatmayaffectthekinematicsoftheinfallinggas
inwhichpressureforcesdominateoverallforcesinboththecold-andhot-accretedgas.This
pressureringmayhavesignificantimplicationsonthethermodynamicalevolutionofthegas,as
wellastocontributetomixingthecold-accretedmaterialtothehotgas,effectivelyblurringthe
linebetweenhot-andcold-accretedmaterial.Thestudyofthispressureringwillbethetopicof
futurework.

Whilepressureforcescanactlocallyasthedominantforces,Ireportthattheirnetcontribution
totheevolutionofthecoldgasisnegligible.Indeed,pressureforcesdonotpossessanystructure
overhundredsofparsecs,sothattheirindividualcontributiontotheevolutionofthecoldgas
cancelout.Onthecontrary,gravitationalforces,thatdependonthedistributionofmatteron
largerscales,areabletocoherentlyapplytorquesontheinfallingmaterial,resultinginmostof
thespin-downsignal.

Theneteffectofthegravitationalforcesisreportedtobeaspin-downoftheaccretedgas,
asaresultofdynamicalfrictionandgravitationaltorques.Mostofthespin-downofthehot
gashappensbeforeenteringthehaloandisduetoDMtorques.Onepossiblereasonforthis
isthefollowing:undertheeffectofgasinfall,theDMhalobecomeslightlypolarisedwhich
inturncreatesatidalfieldthatwilltorquethehotgasdown.Usingtheortho-radialgravita-
tionalforcesreportedinfigure4.10,thetypicalangularmomentumofthegasuponitsentry
inthehalo(∼104km/skpc)wouldbedepletedinatimettorque(R=100kpc)=|l|/|τ|≈
104km/skpc/10−1km/s/Myr×80kpc≈1250Gyr,whichisabouttwicethefree-falltime
ofthehalotff(z=2)=500Myratz=2.Ifthehotgaslingersintheoutskirtsoftheouter
haloduringtwofree-falltimes,theDMgravitationaltorquesarelargeenoughtogetridof
mostoftheangularmomentumbeforeaccretion.Inoursimulations,hotgastakesonaverage
(10.0±0.5)Gyrtofallfrom3Rvir(z=2)toRvir(z=2)/3whereRvir(z=2)isthefinalvirial
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Figure D1. Top panel: distribution of heights of critical points of various

signatures (peaks, filament-type saddles, wall-type saddles, and voids) for

GRF with any power spectrum. Middle panel: PDF of the eigenvalues, q̄1

(blue), q̄2 (yellow), and q̄3 (green), of the anisotropic tidal tensor given a

filament-type constraint at νS = 1.2. Bottom panel: same as middle panel

for a wall-type constraint at νS = 0.

Table D1. Eigenvalues q̄i = qi − νS/3 of the traceless tidal tensor q̄ij ,

height νS , and smoothing scale used to define the saddle points. See Ap-

pendix D for details.

Traceless tide Height Scale Saddle type

Quantity q̄1 q̄2 q̄3 νS RS
Value −0.7 0.1 0.6 1.2 10 Mpc h−1 Filament-type

Value −0.6 −0.2 0.8 0 10 Mpc h−1 Wall-type

C24 = 〈δ′νS〉 = ξ ′
00, C25 = 〈δ′gi〉 =

ri

R⋆

ξ ′
11, (E4)

C26 = 〈δ′q̄ij 〉 =
(

δij

3
− r̂i r̂j

)
ξ ′

20, (E5)

C34 = 〈ν1/2νS〉 =
ξ

(1/2)
00

σ1/2

, C35 = 〈δ1/2gi〉 =
ri

R⋆

ξ
(1/2)
11

σ1/2

, (E6)

C36 = 〈δ1/2q̄ij 〉 =
(

δij

3
− r̂i r̂j

)
ξ

(1/2)
20

σ1/2

, (E7)

C55 = 〈gigj 〉 =
δij

3
, C66 = 〈q̄ij q̄kl〉 =

2Pij ,kl

15
. (E8)

Hence, C14, C24, and C34 are scalars, C15, C25, and C35 are three

vectors, C16, C26, and C36 are 3 × 3 traceless matrices (or five

vectors in the space of symmetric traceless matrices), C55 is a 3 × 3

matrix, and C66 is a 5 × 5 matrix. The matrix C66 involves

Pij ,kl ≡
δikδj l + δilδjk

2
−

δij δkl

3
, (E9)

a projector that removes the trace and the antisymmetric part from a

matrix. Since Pij, abPab, mn = Pij, mn and so P −1
ij ,mn = Pij ,mn, it acts as

the identity in the space of symmetric traceless matrices. Pij, kl can

be written in its matrix form by numbering the pairs {(1, 1), (2, 2),

(1, 2), (1, 3), (2, 3)} from 1 to 5, the dimensionality of the space,

resulting in a 5 × 5 matrix. The element (3, 3) has been dropped

because it is linearly linked to (1, 1) and (2, 2). The explicit value

of C66 is therefore

C66 =
1

45

⎛
⎜⎜⎜⎜⎝

4 −2 0 0 0

−2 4 0 0 0

0 0 3 0 0

0 0 0 3 0

0 0 0 0 3

⎞
⎟⎟⎟⎟⎠

. (E10)

The finite separation correlation functions ξαβ (r, R, RS ) and

ξ ′
αβ (r, R, RS ) are defined as

ξαβ ≡
∫

dk
k2P (k)

2π2
W (kR)

W (kRS )

σS

jα(kr)

(kr)β
, (E11)

ξ ′
αβ ≡

∫
dk

k2P (k)

2π2
W ′(kR)

W (kRS )

σS

jα(kr)

(kr)β
, (E12)

where W′(kR) = [dW(kR)/dR]/(dσ/dR). Similarly, the correlation

functions at the two different mass scales M and M/2 are

ξ
(1/2)
αβ ≡ ξαβ (r, R1/2, RS ) , (E13)

where R1/2 ≡ R/21/3. At null separation (r = 0), it yields

ω =
〈δδ1/2〉
σ1/2

=
∫

dk
k2P (k)

2π2
W (kR)

W (kR1/2)

σ1/2

, (E14)

ω′ =
〈δ′δ1/2〉

σ1/2

=
∫

dk
k2P (k)

2π2
W ′(kR)

W (kR1/2)

σ1/2

. (E15)

Recall that for a Top-Hat filter, one has

W (kR) =
3j1(kR)

kR
and W ′(kR) =

3j2(kR)

R|dσ/dR|
, (E16)

and notice that W′(kR) is suppressed by a factor of k2R2 with

respect to W(kR)/σ when k ≪ 1/R. In fact, in this limit

jn(kR) ∼ (kR)n/(2n + 1)!!. Hence, the action of d/dσ is proportional

to that of R2∇2, and σξ ′
αβ ∝ R2∇2ξαβ ∼ (R/RS )2ξαβ . It follows that

for R ≪ RS one has σξ ′
αβ ≪ ξαβ . In presence of a strong hierarchy

of scales, the terms containing ξ ′
αβ are negligible (see Fig. E1).
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(b) DM gravitational forces

Figure 4.21: Projection of the pressure gradients (top panel) and of the DM gravita-
tional force (bottom panel) for the hot gas (top rows) and the cold gas (bottom rows)
in simulation A. From left to right in the xy, xz and yz plane. Pressure forces have a
smaller magnitude in the cold gas than in the hot gas. DM gravitational forces have
comparable magnitude in the cold and hot gas.
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FigureE1.Plotasafunctionofrofthecorrelationfunctionsdefinedinequation(E12).Fromlefttorightonthetoprowξ00,ξ11,andξ20.Thebottomrow

showsthesamequantitiesderivedwithrespecttoσ.ThecorrelationfunctionsareevaluatedatRS=10˜Mpch−1
fordifferentvaluesofRlogarithmically

spacedbetween10−1
Mpch−1

(lightcolour)and10Mpch−1
(darkcolours)witha�CDMpowerspectrumandplottedasafunctionofthedistancer.

ForascaleinvariantpowerspectrumP(k)=A(k/k0)−n
,ξαβand

ξ′
αβhaveananalyticalexpressionthatdependsontherelationbe-

tweenr,RS,andR.Forexample,whenRS>r+R:

ξαβ(r,R,RS)

σS

=BF4

(α−β−n

2
,

3+α−β−n

2
;

5

2
,α+

3

2
;
R

2

R
2
S

,
r

2

R
2
S

)

and

ξ′
αβ(r,R,RS)=

2(α−β−n+3)(n−α+β)

5(n−3)

(R

RS

)7−n
2

B

×F4

(2+α−β−n

2
,

5+α−β−n

2
;

7

2
,α+

3

2
;
R

2

R
2
S

,
r

2

R
2
S

)
,

whereF4istheAppellHypergeometricfunctionofthefourthkind

(Gradshteyn&Ryzhik2007,p.677),
14

while

B=−
(r

RS

)α−β

×
π(n+3)csc

(nπ
2

)
Ŵ
(3+α−β−n

2

)

2β+2n+23(n−1)Ŵ
(3+2α

2

)
Ŵ(−n−1)Ŵ

(n−α+β+2

2

)

and

σ
2
(R)=σ

2
8

(R

R8

)n−3

,
dlogσ

2

dlogR
=n−3,(E17)

whereR8=8Mpch−1
andσ8=σ(R8)arenormalizationfactors.

Forthesamepower-lawpowerspectrum,settingα=1+nand

β=R1/2/R=2−1/3
,ωandω′definedinequations(E14)and(E15)

havetheanalyticalexpressions

ω

σ
=

(1+β)
α(

β
2
−αβ+1

)
−(1−β)

α(
β

2
+αβ+1

)

2α(2−α)β
α+2

2

,(E18)

and

ω′=
(
3β

3
+βn

2
+3β

2
n+n

)
(1−β)

n

2nβ
n+3

2(n−3)(n−1)

+
(
3β

3
+βn

2
−3β

2
n−n

)
(1+β)

n

2nβ
n+3

2(n−3)(n−1)
.(E19)

14
http://mathworld.wolfram.com/AppellHypergeometricFunction.html

APPENDIXF:CONDITIONALSTATISTICS

Thegoalofthissectionistoderiveexplicitlytheconditionalstatis-

ticsneededinthepaper.Assumingthattheunderlyingdensity

fieldobeysGaussianstatistics,thePDFofthe12-dimensional

vectorX≡
{
δ(r),δ′(r),ν1/2(r),νS,gi,q̄ij

}
alreadydefinedin

AppendixEinvolvesinvertingthe12×12covariancematrix

C≡〈X·X
T
〉,givenbyequation(E1).Sincehoweverthefocus

hereisonconditioningheightsandslopes,whicharescalarquan-

tities,theircorrelationwiththesaddleisthecorrelationwiththe

threeunit-varianceGaussiancomponents

S(r̂)≡{νS,
√

3r̂igir/R⋆,−
√

5(3r̂iq̄ijr̂j/2)}.(F1)

Hence,thesix-dimensionalvectorX̃≡{δ(r),δ′(r),ν1/2(r),S}is

sufficient,andhasa6×6covariancematrixgivenby

C̃(r)=

⎛
⎜⎜
⎝

σ
2

σωξ(r)

σ〈δ′2〉ω′ξ′(r)

ωω′σ
2
1/2ξ1/2(r)

ξ
T

(r)ξ′T(r)ξ
T
1/2(r)13×3

⎞
⎟⎟
⎠,(F2)

where

ξ(r)≡
{

ξ00,
√

3ξ11r/R⋆,
√

5ξ20

}
,

ξ′(r)≡
{

ξ′
00,

√
3ξ′

11r/R⋆,
√

5ξ′
20

}
,

ξ1/2(r)≡
{

ξ
(1/2)
00,

√
3r/R⋆ξ

(1/2)
10,

√
5ξ

(1/2)
20

}
/σ1/2.(F3)

ThePDFofX̃isthesix-variateGaussian

pG(X̃)=
1

(2π)3√
detC̃

exp

(
−

1

2
X̃·C̃

−1
·X̃

)
,(F4)

sothatineachcase,thetaskistoinverttheappropriatesectionofthe

covariancematrixC̃≡〈X̃·X̃
T
〉,marginalizingoverthevariables

thatarenotinvolved.

F1Thegeneralconditionalcase

Tospeedupthecomputationofconditionalstatistics,ratherthan

doingabruteforceblockinversionofC̃,itisbesttousethedecor-

relatedvariables

νv≡
δ−〈δ|{v}〉
√

Var(δ|{v})
,andν′

v≡
dνv

dσ
,(F5)

wherethepossible{v}consideredinthisworkareν1/2,Sor

{ν1/2,S}.Byconstruction,νvandν′
vareuncorrelated,becauseνv

hasunitvariance.Furthermore,ifeachvIisindependentofσ(as

MNRAS476,4877–4906(2018)
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Figure4.20:Mass-weightedprojectionoftheratiobetweenthemagnitudeofthe
torquesandthelocalstandarddeviationofthetorquesinhaloAatz=2fromleftto
right,forpressuretorques,stargravitationaltorques,DMgravitationaltorquesandgas
torques.Thelocalstandarddeviationiscomputedusingthevalueofthetorqueinthe
8nearestcells.Blueregionsindicateregionswheretorquesaredistributedrandomly
andredregionsindicatewheretorqueshaveasmoothandcoherentdistribution.The
innerhalo(Rvir/3)isindicatedbythegraydashedcircle,whilethedottedgraycircle
indicatesRvir/10.Inallregions,pressuretorqueshavenospatialcoherenceonkpc
scales.Allgravitationalsourceshaveamuchlargercoherencescale,apartinafew
regionsinthefilamentsandinthedisk.

Notethatduetothethedefinition,ratioscanexceedone3.Thefigureshowsthatafterasettling
timeofabout1Gyr(z=5.7),theratiosofeachtorquesareconstantatallradii,withtheDM
gravitationalforcesdominatingintheouterhaloandstargravitationaldominatingaroundthe
disk.Atearlytimes,thepotentialofthehaloisdominatedbyDM,sothattorquesarealso
dominatedbytheDMcomponent.Interestingly,Ireportthatpressuretorquescansporadically
contributetothetorqueofthecoldgas,inparticularatlatetimes.Thisisparticularlythecasein
haloD,whichatabout2.5Gyrshowsaspikeintheimportanceofthepressuretorques.This
coincideswithanumberofmergereventsthatareabletodisruptthecoldgasstructure,as
illustratedonfigure4.22.

4.4Discussion
Atlargeradii,theevolutionoftheAMfollowsthetidesimposedbythecosmicweb,asexplained
bytheTTT(e.g.Codisetal.,2012).Thegasthenflowsontheforminggalaxyviatwodifferent
channels:thehotandcoldaccretion,inparticularformassiveenoughgalaxiesatz&2(Birn-
boimandDekel,2003;DekelandBirnboim,2006;Nelsonetal.,2013;Pichonetal.,2011).The
predominanceofoneortheotherchannelofaccretioncanbeusedtounderstandtheformation
ofdiskygalaxiesandtheinternalevolutionofthegalaxy.Indeed,incoldflowsthatresultfrom
coldaccretion,thegasisabletopenetratedeepinthehaloandcanfeedthegalaxywithfreshgas,
withatsteadyAMorientation(Danovichetal.,2015).Innumericalsimulations,ithashowever
beenobservedthatcoldgashasahigherAMatlargerradii,asmeasuredbytheirspinparameter
(Danovichetal.,2015;Kimmetal.,2011;Tillsonetal.,2015)whichisuptooneorderofmagnitude
largerthanthatoftheDM.Intheinnerhaloandthediskhowever,thespinparameterofthe
cold-accretedgasisfoundtobeonlythreetimeslargerthanthatoftheDMatthesamelocation.
ThenatureofthetorquesactingtoreducetheAMofthegasisstilldebatedtoday.WhileDanovich
etal.,2015arguethatthedominanttorquesgravitationalforcesregardlessofthedistancetothe
galaxy,Prietoetal.,2017insteadfoundthatthedominanttorqueswerepressuretorques.Inthis

3Thiscanhappeniftwotorqueshavesimilarmagnitudesbutoppositedirections.
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it will be the case in the following), ν ′
v does not correlate with the

constraint either, since 〈ν ′
vvI 〉 = 〈νvvI 〉′ = 0. Then, being a linear

combination of δ′, ν, and {v} that does not correlate with ν nor vI,

ν ′
v must be proportional to δ′ − 〈δ′|ν, {v}〉 (the only such linear

combination by definition), and 〈ν ′2
v 〉 to Var

(
δ′|ν, {v}

)
. That is,

〈δ′|ν, {v}〉 = δ′ −
√

Var (δ|{v}) ν ′
v ,

= 〈δ′|{v}〉 +
[Var (δ|{v})]′

2Var (δ|{v})
(δ − 〈δ|{v}〉) , (F6)

Var
(
δ′|ν, {v}

)
= Var (δ|{v}) 〈ν ′2

v 〉 ,

= Var
(
δ′|{v}

)
−

[Var (δ|{v})]′2

4Var (δ|{v})
, (F7)

providing the conditional statistics of δ′ given ν and {v} in

terms of those of δ and δ′ given {v} alone. Since [Var (δ|{v})]′ =
2Cov

(
δ, δ′|{v}

)
, these formulae reduce to the standard results for

constrained Gaussian variables, but taking derivatives makes their

calculation easier.

To compute νv and ν ′
v explicitly, one needs to insert (using Ein-

stein’s convention on repeated indices)

〈δ|{v}〉 = ψIC
−1
IJ vJ , (F8)

Var (δ|{v}) = σ 2 − ψIC
−1
IJ ψJ , (F9)

in equation (F5), where CIJ ≡ 〈vIvJ〉 is the covariance matrix of the

constraint, and ψ I ≡ 〈δvI〉 is the mixed covariance. The conditional

statistics obtained from equations (F6) and (F7) are then

〈δ′|ν, {v}〉 = ψ ′
IC

−1
IJ vJ +

σ − ψ ′
IC

−1
IJ ψJ√

σ 2 − ψIC
−1
IJ ψJ

νv, (F10)

Var
(
δ′|ν, {v}

)
= 〈δ′2〉 − ψ ′

IC
−1
IJ ψ ′

J −
(σ − ψ ′

IC
−1
IJ ψJ )2

σ 2 − ψIC
−1
IJ ψJ

, (F11)

[where νv is given by equation (F5)] from which one can evaluate

equations (15) and (16), after setting δ = δc. Since 〈δ′|νc〉 = νc and

Var
(
δ′|νc

)
= 1/Ŵ2, equation (11) is recovered in the unconstrained

case. For later convenience, let us also note that the conditional

probability of ν and ν ′ given the constraint {v} is

pG(ν, ν ′|{v}) = σ
pG(νv) pG(δ′ − 〈δ′|νc, {v}〉)√

1 − ψIC
−1
IJ ψJ /σ 2

, (F12)

since by construction νv and δ′ − 〈δ′|νc, {v}〉 ∝ ν ′
v are independent.

F2 Conditioning to the saddle

Equation (F8) and its derivative guarantee that conditioning on the

values of S (that is, fixing the geometry of the saddle) returns

〈δ|S〉 = ξ · S , Var (δ|S) = σ 2 − ξ 2 ,

〈δ′|S〉 = ξ ′ · S , Var
(
δ′|S

)
= 〈δ′2〉 − ξ ′2 ,

〈ν1/2|S〉 = ξ1/2 · S , Var
(
ν1/2|S

)
= 1 − ξ 2

1/2. (F13)

To make the equations less cluttered, here and in the following,

scalar products of these vectors are denoted with a dot, rather than in

Einstein’s notation. Equation (F13) effectively amounts to replacing

in all unconditional expressions

δ → δ − ξ · S,

δ′ → δ′ − ξ ′ · S,

ν1/2 → ν1/2 − ξ1/2 · S, (F14)

reducing the problem to three zero-mean variables that no longer

correlate with S (but still do with each other!). The covariance of

δ, δ′ and ν1/2 at fixed S reads

Cov
(
δ, δ′|S

)
= σ − ξ · ξ ′,

Cov
(
δ, ν1/2|S

)
= ω − ξ · ξ1/2,

Cov
(
δ′, ν1/2|S

)
= ω′ − ξ ′ · ξ1/2, (F15)

with ω and its derivative ω′ given by equations (E14) and (E15).

The first equation in (F15) is one half the derivative of Var (δ|S)

with respect to σ from equation (F13), consistently with taking the

conditional expectation value of the relation δδ′ = (1/2)dδ2/dσ .

The third is the derivative of the second, since ξ 1/2 depends on

σ 1/2 and not on σ (the relation between the two scales arising since

σ 1/2 = σ (M/2) should be imposed after taking the derivative).

F3 Slope given height at distance r from the saddle

The saddle point being fixed, it can now be assumed that the excur-

sion set point is at the critical overdensity ν = νc. The conditional

mean and variance of the slope are then

〈δ′|νc,S〉 = 〈δ′|S〉 +
Cov

(
δ′, δ|S

)

Var (δ|S)
(δc − 〈δ|S〉)

= ξ ′ · S +
σ − ξ · ξ ′

σ 2 − ξ 2
(δc − ξ · S) , (F16)

after using equations (F13) and (F15), and

Var
(
δ′|νc,S

)
= Var

(
δ′|S

)
−

Cov
(
δ′, ν|S

)2

Var (ν|S)
,

= 〈δ′2〉 − ξ ′2 −
(σ − ξ · ξ ′)2

σ 2 − ξ 2
, (F17)

respectively. This result is equivalent to decorrelating the effective

variables δ − ξ · S and δ′ − ξ ′ · S introduced in equation (F14),

whose covariance is in fact σ − ξ ′ · ξ .

Equation (F16) contains an angle-dependent offset r̂i q̄ij r̂j ξ20 and

a density dependent one ξ00νS , entering through S. On the contrary,

the conditional variance does not depend on the angle nor the height

of the saddle. At large distance from the saddle, when ξ = ξ ′ = 0,

equations (F16) and (F17) tend as expected to the unconditional

mean νc and variance 1/Ŵ2 = 〈δ′2〉 − 1.

From equations (F16) and (F17), one can compute the effective

upcrossing parameters presented in the main text

μS (r) = ξ ′ · S +
σ − ξ ′ · ξ

σ 2 − ξ 2
(δc − ξ · S) , (F18)

XS (r) = μS(r)/
√

Var (δ′|νc,S) . (F19)

F4 Upcrossing at σ with given formation time but no saddle

Recalling that ω = 〈δδ1/2〉/σ 1/2 and ω′ = 〈δ′δ1/2〉/σ 1/2, as defined

by equations (E14) and (E15), the conditional statistics of δ and δ′

given that ν1/2 = νf are

〈δ|νf〉 = ωνf , Var (δ|νf) = σ 2 − ω2 ,

〈δ′|νf〉 = ω′νf , Var
(
δ′|νf

)
= 〈δ′2〉 − ω′2 ,

Cov
(
δ, δ′|νf

)
= σ − ωω′ . (F20)

Hence, the conditional mean and variance of δ′ given νc = δc/σ

and νf are

〈δ′|νc, νf〉 = ω′νf +
σ − ω′ω

σ 2 − ω2
(δc − ωνf) , (F21)
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Figure 4.19: Same as figure 4.17 for halo C.

using the mean sAM of the gas or the individual value of the sAM of each tracer particle lead to
similar results.

Figure 4.16 shows that, once averaged over the entire cold phase, pressure forces do not
contribute significantly to the variation of the sAM of the gas. Indeed, I have seen on figure 4.20
that pressure forces are noise-dominated, with a signal-to-noise ratio of the order of 10−3. While
the magnitude of the pressure forces are comparable to the DM gravitational forces, their net
contribution to the torque budget is shown to be at least three order of magnitude smaller. As gas
falls towards the galaxy, gravitational forces exert increasing torques resulting in a spin-down
of the gas. In the inner halo down, torques become weakly coupled with the mean sAM of the
gas at Rvir, so that their projection can either contribute to the spin-up or spin-down in this
specific frame. Similar results can be found if one project the torques on the axis of the AM
vector of the galaxy at the end of the simulation, L⋆(z = 2), as shown for halos A, B and C on
figures 4.17 to 4.19. These plots also feature individual Lagrangian trajectories of the gas and
illustrate the pressure torques spin the gas up as much as they spin it down. Instead, gravitational
torques are coherent over the Lagrangian evolution of the gas, so that their contribution add up
to spin the cold gas down. The bottom-right panels of figures 4.17 to 4.19 show the ratio of the
DM gravitational torques to the star gravitational torques. Similarly to the results presented in
figure 4.16, star gravitational torques are negligible in the outer halo but become dominant in the
inner halo and in the disk.

The hierarchy between the different torques can, in principle evolve with redshift. In order to
study their relative importance, I have computed the total pressure torques, DM gravitational
torques and star torques and compared the magnitude of each torques to the total torques from
all sources τall = τP + τDM + τ⋆. The ratio r is then defined as

ri =
|∑particles τi|
|∑particles τall|

. (4.11)

Here i can be any of P,DM, ⋆ and sums run over all cold gas particles. The results are presented
on figure 4.12, where torque ratios are presented as a function of the radial distance to the galaxy.
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Var
(
δ′|νc,νf

)
=〈δ′2〉−ω′2−

(σ−ω′ω)
2

σ2−ω2.(F22)

whichisequivalenttodecorrelatingthezero-meaneffectivevari-

ablesδ−ωνfandδ′−ω′ν
f,whosecovarianceisσ−ω′ω.From

equations(F21)and(F22),onecancomputetheparametersofthe

effectiveupcrossingproblem

μf(Df)=〈δ′|νc,νf〉,(F23)

Xf(Df)=μf(Df)/
√

Var(δ′|νc,νf),(F24)

introducedinSection2.2.

F5Upcrossingatσgivenformationtimeandthesaddle

Similarly,thankstoequations(F13)and(F15),themeanandco-

varianceofpG(ν|νf,S)are

〈δ|νf,S〉=〈δ|S〉+
Cov

(
δ,ν1/2|S

)

Var
(
ν1/2|S

)(
νf−〈ν1/2|S〉

)
,

=ξ·S+�νf,S,(F25)

Var(δ|νc,S)=Var(δ|S)−
Cov

(
δ,ν1/2|S

)2

Var
(
ν1/2|S

),

=σ
2
−ξ

2
−�

2
,(F26)

where[recallingthatξhasthedimensionsofδbutξ1/2hasthose

ofν,seeequation(F3)]

νf,S≡
(νf−ξ1/2·S)
√

1−ξ
2
1/2

,�≡
ω−ξ·ξ1/2
√

1−ξ
2
1/2

.(F27)

AsdiscussedinAppendixF1,thestatisticsofpG(δ′|νc,νf,S)can

bederivedfromthoseofpG(δ|νf,S)asfollows:

〈δ′|νc,νf,S〉=〈δ|νf,S〉′+Var(δ|νf,S)′

2Var(δ|νf,S)
(δc−〈δ|νf,S〉)(F28)

thankstotherelations〈δ|νf,S〉′=〈δ′|νf,S〉andVar(δ|νf,S)′=
2Cov

(
δδ′|νf,S

)
,and

Var
(
δ′|νc,νf,S

)
=Var

(
δ′|νf,S

)
−

[Var(δ|νf,S)′]2

4Var(δ|νf,S)
.(F29)

Hence,takingderivativesofequations(F25)and(F26)give

〈δ′|νc,νf,S〉=ξ′·S+�′ν
f,S

+
σ−ξ′·ξ−�′�

σ2−ξ2−�2(δc−ξ·S−�νf,S),(F30)

and

Var
(
δ′|νc,νf,S

)
=〈δ′2〉−ξ′2−�′2

−
(σ−ξ′·ξ−�′�)

2

σ2−ξ2−�2,(F31)

where

�′=
ω′−ξ′·ξ1/2
√

1−ξ
2
1/2

,(F32)

whichcanfinallybeusedtocomputetheeffectiveslopeparameters

μf,S(Df,r)=〈δ′|νc,νf,S〉,(F33)

Xf,S(Df,r)=μf,S(Df,r)/
√

Var(δ′|νc,νf,S).(F34)

APPENDIXG:GENERICANDMOVING

BARRIER

Theresultspresentedherebyholdforaconstantbarrier,however,

onecaneasilyrecovertheresultsforanon-constantone–where

theupcrossingconditionsbecomesδc>δ′
c–byreplacingμvby

μv−δ′
cinthegeneralformulaofequations(15)and(16),yielding

μv≡〈δ′|νc,{v}〉−δ′
c,(G1)

andbytakingintoaccountcontributionsfromδ′
cinν′

c

ν′
c=

δ′
c

σ
−

δc

σ2,(G2)

andinthedefinitionofaccretionrate

α=
δc

σ(δ′−δ′
c)

(G3)

inequation(19).Inpracticalterms,dealingwithamovingbarrier

simplyamountstoreplacing

μ→〈δ′|νc〉−δ′
c,(G4)

μf→〈δ′|νc,νf〉−δ′
c,(G5)

μS→〈δ′|νc,S〉−δ′
c,(G6)

μf,S→〈δ′|νc,νf,S〉−δ′
c,(G7)

inequations(12),(33),(50),and(67),whichautomaticallyaffects

alsothecorrespondingX,Xf,XS,andXf,S,aswellasYαandYα,S
inequations(24)and(60).

Forinstance,forabarrierofthetypeδc+βσq̄ij,Rq̄ij,R(Castorina

etal.2016),whereq̄ij,Risthetracelesstidaltensorsmoothedon

scaleR,andβissomeconstant,onewoulduse

δ′
c→β(q̄ij,Rq̄ij,R+2σq̄′

ij,Rq̄ij,R).(G8)

Moregenerally,barriersshouldinvolve{In},therotationallyinvari-

antsofq̄ij,RdefinedinAppendixD.

APPENDIXH:IMPLIEDGALACTICCOLOURS

Letusinclosingattempttoconverttheposition-dependentaccretion

rates,computedinthemaintext,intermsofcolourmodulosome

reasonableassumptionontherespectiveroleofAGNandhowstar

formationproceedsatlowandhighredshifts.Galaxycoloursare

proportionaltotheamountofrecentstarformation,whichinturnis

drivenbytherecentlyaccretedgasfromcosmicinfall.Onecompli-

cationcomesfromtheimpactoffeedbackonheatingthegastobe

accretedontogalaxies.Cosmologicalhydrodynamicalsimulations,

whichincludethefeedbackofsupermassiveblackholes,suggest

that,atintermediateandlowredshift,massaccretionthroughmerg-

erstriggersAGNfeedbackinmassivegalaxies.Thisinturnheatsup

thecircumgalacticmediumandpreventssubsequentsmoothgasac-

cretionfromfeedingcentralgalaxiesefficiently(e.g.Duboisetal.

2010),quenchingstarformationandreddeningmassivegalaxies

(hostedinhaloeswithmassof10
12

M⊙h−1
ormore).Conversely,

athigherredshift,coldflowsarelessimpactedbygalacticfeedback

andreachthecentreofdarkhaloesunimpaired,sothatmatterin-

falltranslatesintobluergalaxies(thoughithasbeensuggestedthat

inmassivehaloes,thedisruptionofcoldflowscanbesignificant,

Duboisetal.2013).Fig.H1sketchestheseideas,whiledistin-

guishinglow-andhigh-masshaloes.Asarguedinthemaintext,

this
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146Chapter4.Anisotropicgalaxyformation—numericalexploration
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Figure4.17:Trajectories(greylines)ofcoldaccretedgasparticleswithafirstinfallat
z=2.5(verticaldottedline)inhaloA.Upperle�:Theradialdistancetothegalaxy,upper
centre:Thetotalgravitationaltorque,upperright:thepressuretorques,bottomle�:the
DMgravitationaltorques,bottomcentre:thestargravitationaltorquesandbottomright:
theratiooftheDMtostargravitationaltorques.Allthetorquesareprojectedontothe
normalisedAMvectorofthegalaxyL̂⋆.Median(blue)andmean(orange)valuesare
shownasafunctionoftime.DMisresponsibletosAMacquisitionatlargeradii.Stars
andDMareresponsibleforthedecreaseofsAMat∼2Rvir>r>Rvir/3.Intheinner
halo,torquesbecomedominatedbystars.
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Figure4.18:Sameasfigure4.17forhaloB.
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Figure H1. Scheme of the intensity of expected colour/SFR at different

location near a filament-type saddle for different final halo mass. The dis-

played colour encodes galactic colour (or equivalently sSFR from high blue

to low red). Massive galaxies in the filament (respectively, nodes) are ex-

pected to accrete more cold baryonic matter at high redshift and be bluer

than less massive ones and than their counterparts in voids (respectively,

filaments). At lower redshifts, AGN feedback is expected to quench cold

gas accretion, thus reddening the massive ones – they are more likely to be

central ones. The impact on lower mass satellite galaxies may also depend

on the efficiency of processes such as starvation or ram-pressure stripping.

scenario remains speculative, if only because the impact of AGN

feedback is still a fairly debated topic. For instance ram-pressure

stripping on satellites plunging into clusters is known to induce

reddening, but its efficiency within filaments is unclear. Fig. 16

encodes the robust result of the present investigation.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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Figure 4.16: Evolution of the radius (le� panel) and the specific torques projected
(top:) onto the direction of the sAM of the gas at r = 5Rvir, r = Rvir and r = Rvir/2
and (bottom:) on the mean direction of the sAM at the same radii. Solid lines indicate
negative values (spin down) and dashed lines positive values (spin up). Particle are
selected to cross Rvir/3 at t = 2Gyr (z = 3.2) (vertical dotted lines). The mean time at
which the sAM is measured is shown as vertical dashed lines. In all regions, pressure
torques are negligible
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3.3Atheoryofmergereventsinthelargescalestructures

[♠citerconfluence+rossi+?]Thevalueofsciencelaysinitspredictivepower.Hence,inthe
contextofstructureformation,acentralquestionthattheoreticalcosmologymustaddressisthe
following:towhatextentcantoday’spropertiesofgalaxiesbepredictedfromtheinitialGaussian
randomfieldfromwhichtheyemerge?Morespecifically,canweidentifyspecialsetsofpointsvia
amulti-scaleanalysisoftheinitialconditionsasameanofpredictingtheirfateandcompressing
therelevantinformationcontentoftheinitialfield?

Withintheparadigmofthesphericalcollapse,onecandrawarelationshipbetweenthetime
ofcollapseofagivenoverdensityandthescaleatwhichitsinitialpatchmustbesmoothed
soastopassagiventhreshold.Inthissense,thefateofagivenregionisencodedinitsinitial
conditionandiscapturedbythemulti-scalepropertiesofthecorrespondingGaussianrandom
field(Bondetal.,1996).Thetopologyofthisfieldatagivensmoothingscaleisencodedinthe
positionandheightofitscriticalpoints.Thedriftofthesecriticalpointswithsmoothingdefine
theso-calledskeletontree(Hanami,2001)whichcapturesthevariationofthistopologywith
scale,hencetime.Onecanidentifyspecialscalesatwhichtwosuchpointscoalesce,whichvia
theaforementioneddualitycorrespondstospecialevents.Itisthesequenceandgeometryof
thesespecialeventswhichwillshapethefateofitshostgalaxy.InHanami,2001;Manriqueand
Salvador-Sole,1995thefocuswasonthecoalescenceoffilamentsaddleswithmaximawhichthe
authoridentifiedassloppingsaddles(astheyarevanishingsaddlepointsontheslopeofpeaks),
whichareproxyformergingevents.Moregenerallyherewewillconsiderthecoalescenceof
minimawithwall-saddlesandwall-saddleswithfilament-saddlescorrespondingrespectivelyto
thedisappearanceofatunnelandavoid.Indeedthesecoalescenceimpactthegeometryofcosmic
web(inparticularthefilaments)whichinturndefinepreferreddirectionsalongwhichgalaxies
arefedcoldgasandacquiretheirspin.Mergereventsarealsoknowntoplayanimportantrolein
triggeringAGNfeedback,whichinturnimpactsgasinflowandthereforegalacticmorphology.
HencewewillextendHanami,2001bystudyingtheclusteringoftheseothercriticaleventsin
themulti-scalelandscape.

Inrecentyearstheconceptofpersistencehasplayedacentralroleinidentifyingspecial
pairingbetweencriticalpoints(Sousbieetal.,2011b).Herethefocusisonsingularpointsin4D
smoothing-positionspace,whichoccuratthescalewherethesecriticallypairedpointsmerge,i.e.
whenthepersistenceleveltendstozeroasafunctionofsmoothing.Usingthedualitybetween
scaleandcosmictimeprovidedbythesphericalcollapsemodel,thesecanbematchedtospecial
structurallyimportanttimeswhichmodifythetopologyofthedensityfield.Forinstance,when
twohalosmerge,thetopologyoftheexcursionsetofthedensityfieldischanged,becauseit
decrementsthenumberofcomponentsaboveagiventhreshold.Mappingthegeometryofthe
Gaussianrandomfieldtotheknowledgeofthesesingulareventsonlyisaveryefficientanduseful
compressionoftheinformationencodedinthefield.Itisefficientbecauseitmapsa3Dspace
intoafinitesetofpointsin4D.Itisusefulbecauseastronomersknowhowtocharacterisethe
correspondingpointprocessintermsofthepropertiesoftheunderlyinginitialGaussianfield.
Sincethesepointsbearsignificanceintermsofgalaxyformationwecanthereforerelatethis
processtotheunderlyingpowerspectrum.Ourmotivationsaremany-fold:

i)Studythegeneralisedhistoryofaccretion:whatkindofmergershappenswhen,andwhere?
ii)Quantifytheconditionalrateoffilamentandwalldisappearanceinconjunctiontothatof

anexistinglargerscalepeaks,
iii)connectmultiscalelandscapeofinitialconditionstothemorphologyofagivengalaxy.

Identifythedistributionofcriticaleventswithinitspastlightcone.Studyhowtheanisotropic
largescalesmodesbiasitsassemblyhistory;

iv)Understandtheoriginofvoiddisappearanceanditsusefulnessasacosmicprobe.
Inordertoachievethesegoals,wewillre-derivetheconditionforacriticaleventinan
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Figure4.15:Le�:RelativeorientationofthesAMofthecoldgasatRvircomparedtoits
valueat3Rvir(le�),Rvir/3(middle)andRvir/10(right)foreachhalo(thinlines).The
bluethicklineshowsthemedianvalueforthecoldgas,smoothedover11consecutive
outputs(550Myr)usingafourth-orderSavgolfilterandtheredthicklineshowsthe
medianvalueforthehotgassmoothedinasimilarway.Inallsimulations,theorientation
ofthesAMofthecoldgasisconserveddownto∼Rvir/3.Upontheentryinthedisk,
thesAMisreorientedandlosesitsconnectiontothelargescale.ThesAMofthehot
gasstartdecouplingatlargerradii.

scalessimilarorsmallerthanthesizeoffilamentarystructures,sothatthenetcontributionof
thepressuretorqueonaslaboffilamentcancelsout.Gravitationaltorqueshaveanet(positiveor
negative)contributionthankstotheirlarge-scalecoherence,sothattheireffectaddsup.More
quantitatively,thecoherenceofthetorquescanbeestimatedbycomparingthelocaltorquevalue
tothelocaltorquestandarddeviation.Thisissimilartocomputingthe“signaltonoise”ratio,
wherethesignalisthetorquemagnitudeandthenoiseisitslocaldeviation.Largevaluesofthis
quantityarefoundinregionswheretorquehaveacoherentstructureswhilesmallvaluesare
foundinregionswithnostructure.Infigure4.20,Ipresentmass-weightedprojectionsofthe
signaltonoiseratio,wherethelocalstandarddeviationiscomputedusingthe33nearestcells
inthecoldgas.Thisillustratesthatpressuretorqueshavenospatialcoherence,sothatthey
mayspinthegasupandthenimmediatelydownatthenexttimestep.Onthecontrary,large
patchesofthecoldflowsundergocoherentgravitationaltorquesthatcanaddup.Interestingly,
gasgravitationaltorquesseemtohavemorefluctuationsthanothergravitationaltorques,so
thattheirneteffectissmall,eventhoughtheymaycontributetothelocalforcebudgetinthe
innerhalo.Inthedisk,alltorquesourceslosetheirlong-rangespatialcoherenceandappear
noisy.Thisratioforpressuretorquesisoftheorderof10−3,sothatitisexpectedthatthenet
contributionofpressuretorquescanbedecreasedbythreeorderofmagnitudescomparedtotheir
meanmagnitude.

Inordertogoonestepfurther,letusstudytheevolutionofthecoldgasbycomputingthe
contributionsofthedifferenttorquestothespin-uporspin-downofthegas,projectedontheaxis
ofthemeansAMatagivenradius.Thisisdoneonfigure4.16,whichpresentstheLagrangian
evolutionoftheprojectionofthetorquesonthesAMat5Rvir(leftpanel),Rvir(centerpanel)and
Rvir/2(rightpanel)forhaloA.Inthisplot,thecoldgashasbeenselectedtocrossr=Rvir/3at
t=2Gyr(z=3.2).TheresultspresentedarenotsensibletotheradiusatwhichthesAMhas
beenmeasured.Indeed,infigure4.15IhaveshownthatthesAMofthecoldgasiswell-aligned
betweenlargescalesandtheinnerhalo,sothattheorientationisconserved.Ialsoreportthat
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Figure 3.1: Top: Snapshot and zooms of a hydrodynamical simulation showing filaments
(in red) walls (in shades of blue to green) and peaks (at the node of the filament network)
as traced by Disperse. The cosmic evolution of these large scale structure features
impacts the geometry of infall, the size of voids. As this simulation forms galaxies their
properties reflect partially the corresponding tides and the funnelling of cold gas along
the filamentary structure. Understanding when and how the topology of this network
changes is therefore of interest in this context. Bottom: The walls w1 and w2 within
the centre of the simulation identified in two consecutive snapshots. The colour coding
scales with the log density of dark matter on the walls. Note the change in topology in
the set of walls, highlighted in particular by the four spheres.
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Figure 4.14: Evolution of the magnitudes of the mean sAM of the cold gas (solid lines)
and of the hot gas (dashed lines) as a function of the distance to the halo center for all
halos. Bottom right: Mean value of the sAM averaged over all halos. The gas has been
selected to cross the virial radius inward for the first time at t = 2.2Gyr (z = 2.9).
In the outskirts of the halos (r ∼ 3Rvir), hot gas starts loosing sAM while cold gas
conserves it down to the inner halo (r ∼ Rvir/3).
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arbitraryframe,andquantifyitsone-andtwo-pointstatisticsin2and3dimensions(maintext)
andhigherdimensions(Appendix).Wewillproceedasfollows.
Section3.4forecastsspecialeventsthroughthecoalescenceofcriticalpointsinthemulti-scale
landscape.Section3.5predictstheclusteringpropertiesofthesespecialevents.Section3.6
comparesthepredictionstorealisationsofGaussianrandomfields.Section3.7discussespossible
applications.Finallysection3.8wrapsup.Section3.ApresentsthejointPDFofaGaussianrandom
fielduptothethirdderivativeofthefield.Section3.Bpresentsthecountsinarbitrarydimensions
andillustratestheminupto6D.Section3.Cexplainshowthecriticaleventsaremeasuredin
randomfieldmapsandcubes.Section3.C.3presentsanalgorithmtogenerategaussianrandom
fieldssatisfyingasetofgiven“event”atsomescaleandposition.

3.4Theory:onepointstatistics
Inthisworkweconsidertheoverdensityfieldδ=(ρ−ρ̄)/ρ̄tobeahomogeneousandisotropic
Gaussianrandomfieldofzeromean,describedbyitspowerspectrumP(k),asdefinedinsec-
tion2.1.1.3.Inthissection,wewillfocusononepointstatisticsassociatedwithmergerrates.
Insection3.4.1wedefineandderivethenumbercountsofcriticaleventsinsmoothing-position
space.Thensection3.4.2presentsthenumbercountsofcriticalevents,countedtogetherandby
type(peak,filamentandwallmergers),whilesection3.4.3presentsthedifferentialeventtypeas
afunctionofeventheight.section3.4.4sketchesthecorrespondingtheoryforprojectedmaps,
whilesection3.4.5presentsitsextensiontonon-Gaussianfields.

3.4.1Criticaleventsdefinition
Whenstudyingthetimeevolutionofthedensityfield,thesphericalcollapsemodelhasshownthat
onecanestablishamappingbetweencollapsetimeandoverdensity–highoverdensityregions
collapseearlierinthehistoryoftheUniversethanunderdenseones.Atthesametime,larger
overdensitiesenclosemoremassandwillhencegivebirthtomoremassivestructures.These
relationsmathematicallyread

δ(R)=
δc

σ(R)D(z)
,M=

4π

3
ρ̄R

3
,(3.1)

whereRisthesmoothingscaleoftheTop-Hatfilter,δc=1.69isthesphericalcollapsecritical
overdensity(seesection2.1.2.2),D(z)isthelinearmattergrowthfunctionatredshiftz(see
section2.1.2.1)andρ̄isthemeanmatterdensityoftheUniverse.Thesphericalcollapsethreshold
canalsobeadaptedtostudytheformationofvoids(Jenningsetal.,2013;R.K.Shethandvan
deWeygaert,2004)withδv=−2.7.Fromatheoreticalperspective,theactionofsmoothing
thedensityfieldδenablestoprobethetime-evolutionofsphericalproto-halosbyfollowing
thedensityevolutionofpeaksassmoothingscaleincreases.Inordertomatchtheresultsof
equation(3.1)withaGaussianfilter,asisthecaseinthefollowingofthiswork,oneneedto
establishamappingofthesmoothingscalesbetweenTop-HatfilteringandGaussianfiltering.
ThisisusuallyachievedbymatchingthevarianceofthefieldσG(R/α)=σTH(R).Atscales
ofafewMpc/h,thescaleratioisoftheorderofα≈2.1foraΛCDMpowerspectrum(see
section2.1.6.2)sothatequation(3.1)becomes

M=
4π

3α3ρ̄R
3
.(3.2)

Letusnowdefinecriticaleventsassociatedtomergers.Theseeventsaredefinedinsmoothing-
positionspaceandcorrespondtomergersofcriticalpoints(peaks,saddlepointsandminima).The
sloppingsaddledefinedinHanami,2001areparticularcriticaleventsthatcorrespondtomergers
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Figure4.13:EvolutionoftheratioofthegasgravitationaltorquestotheDMgrav-
itationaltorques(blue)andoftheratioofthestargravitationaltorquestotheDM
gravitationaltorques(orange)forgascrossingaRvir/3atz=2.5inhaloA.Theratio
Ωb/ΩDM(horizontaldottedline)correspondstotheinitialgas-to-DMdensityratio.
Startorquesbecomeimportantintheinnerhalor/Rvir/3(verticaldottedline).

results,togetherfigure4.10,suggestthatthespin-downofthegashappensduetotheinteraction
withtheinnerDMhaloandthestellardisk.

4.3.4Theorientationoftheangularmomentum
Sofar,IhaveonlydescribedtheevolutionofthemagnitudeofthesAMofthegas.Inpractice,
theevolutionoftheorientationofthesAMevolvesslightlydifferently.Inordertoquantifythe
evolutionofthesAMorientation,arelevantquantityistherelativeanglebetweenthesAMat
radiusR1,R2,definedas

cosθ=
l(R1)·l(R2)

‖l(R1)‖‖l(R2)‖
.(4.10)

IfthesAMorientationisconserved,equation(4.10)shouldhavevaluesclosetoone,whereas
randomreorientationsyieldvaluesclosetozeros.Valuescloseto−1arefoundinanti-aligned
cases.Theevolutionofcosθisshownonfigure4.15,whichpresentstherelativealignmentof
thesAMbetweenitsvalueatRviranditspastvalueat3Rvir(leftpanel)anditsvalueatthe
interfacebetweentheouterandinnerhalo(0.3Rvir,centerpanel)andbetweentheinnerhalo
andthedisk(0.1Rvir,rightpanel).Thealignmentangleiscomputedatcrossingtime(r=Rvir)
forallsixhalos.ThesAMofthecoldgasstaysmostlyalignedfrom3Rvirto0.3Rvirwithtypical
misalignmentsoftheorderofπ/3(∼60°)orless.Atitsentryinthedisk,mostoftheoriginal
orientationhasbeenlost.Ihoweverreportaweakyetnon-nullalignment.Beforeenteringthe
halo,theevolutionofthehotgasissimilartothecoldgas:theorientationisconservedfrom3Rvir

toRvirbutitbecomessignificantlylessalignedbetweenRvirandRvir/3,wherethemisalignment
istypicallyoftheorderof2π/5(∼70°).IdonotreportanysignificantevolutionofthesAM
orientationwithredshift.

4.3.5Dominanttorquesinthecoldandhotphase
Figure4.9showsa3DrepresentationofthesAM,pressuretorquesandgravitationaltorques
actingonthecoldgasofhaloAatz=3.ThefigureillustratesthatbothsAMandgravitational
torqueshaveacoherentlong-rangespatialstructure.Onthecontrary,pressuretorquesvaryon
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between a peak and a saddle point. In this chapter, we will instead focus on all critical events as
they are of interest to study the evolution of the geometry of the cosmic web. The formation and
location of critical events is illustrated for a 1D field on figure 3.2: critical events are found at the
tip of critical point lines and represent the disappearance of a critical point into another critical
point of another kind (e.g. a maximum and a minimum in 1D, a maximum and a saddle point in 2
or 3D). They encode locations where the topology of the field is changed by removing a pair of
critical points.

Let us emphasize here that critical points are a compact encoding of the proto-structures: each
proto-filament has at its center a filament-type saddle-point, while proto-walls have at their center
a wall-type saddle-point. Using an analogy with a mountainous landscape, one can describe a
given mountain range by giving the set of its peaks and passes. In practice, we have compressed
the continuous information about the height of the mountains into a discrete set of critical points.
A similar approach can be used to describe the skeleton of the cosmic web as a set of its critical
events.

The concept of critical events can be presented using the same analogy. Let us illustrate
the concept of critical events using an analogy with a mountainous landscape, the latter being
restricted to 2D space, see figures 3.3 and 3.4. Amountainous landscape is made of peaks analogous
to proto-halos. Each pair of neighbour peaks is linked via a pass, analogous to a proto-filamentary
structure. Following the ridge from one peak to another one is analogous to following a filamentary
structure between two proto-halos. On each downhill side of a pass there are two valleys whose
faces are analogous to proto-walls in the cosmic web while their depth (hence their geometry) is
described by their lowest point. With the action of time, the mountains will erode until eventually
no peak will subsist – this is analogous to the smoothing operation. In the process, a disappearing
peak will see its height (the density) decrease with time. If the peak is not prominent enough, it
will eventually be smoothed to the point where it no longer is a peak but a shoulder on another
peak’s slope. Just before the peak disappears, it is still linked to its neighbour via a pass. When the
peak disappears so does the pass – indeed a pass is always located between two peaks ; when one
disappears, so does the pass. This particular event is what we define as a critical event. It encodes
the moment when two critical points (here a peak and a saddle point) annihilate. This can also
be interpreted as the moment a peak disappears on the slope of its nearest neighbour – the two
peaks merged and the most prominent subsisted. Critical events have hence a dual interpretation:
in the initial Lagrangian space, critical points are found at the location where a critical event
merges into another critical event of another kind (e.g. a peak with a filament saddle-point). In
the Eulerian physical space, critical points spot the merger of two similar structures, for example
two halos merging into a single one (squashing the filament in between them).

Since the primordial density field is a 3D field, the density landscape is made of peaks (proto-
halos), saddle-points (proto-filaments and proto-walls) and minima (proto-voids). Critical events
record the merger of peaks into proto-filaments (PF critical events), of proto-filaments into
proto-walls (FW critical events) and of proto-walls into proto-voids (WV critical events).

Using the duality discussed above, they also encode halo mergers (PF critical events), filament
mergers (FW critical events) and wall mergers (WV critical events). This is illustrated on figure 3.5.
PF critical events (top panel) encode the merger of two halos separated by a filament. After the
merger, the most prominent peak subsists, while the other proto-halo and the proto-filament have
annihilated. FW critical events (center panel) encode the merger of two filaments separated by
a wall. After the merger, the most prominent filament subsists, while the other proto-filament
and the proto-wall have annihilated. WV critical events (bottom panel) encode the merger of two
walls separated by a void. After the merger, the most prominent wall subsists, while the other
proto-wall and the proto-void have annihilated.
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Figure 4.12: Absolute value of the torque ratios ri measured in the cold gas (see text for
details) as a function of time in different halos for different radial distance, as labelled.
Bottom le�: Mean value of the torque ratios, averaged over all six halos. After 1Gyr,
there is no average evolution of the torque ratios at any radius.
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Figure3.2:2D“landscape”ofa1DfieldsmoothedatascaleRinsmoothing-position
space.HereRisthesmoothingscale,whileδisthedensitysmoothedatthegivenscale.
Solidlinesindicatemaxima(red)andminima(blue).Criticalpointlinesendatcritical
events(blackdots).Theprojectionsofthecriticalpointlinesareshownasredandblue
dashedlines,whileverticaldottedpurplelinesindicatetheprojectionofcriticalevents
toillustratethatcriticaleventsarefoundatthelocationwheretwocriticalpointsmerge.
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Figure3.3:3D“landscape”ofa2DfieldsmoothedatascaleRinsmoothing-position
space.Thedensityfield(bluetoredmap)issmoothedatincreasingR.Foreachscale,
thecriticalpoints(redlines:peaks,greenlines:saddlepoints,bluelines:minima)are
found.Atthetipofeachbranchacriticaleventisfound( :peak-saddlecriticalevents,
×:saddle-minima).Linesneartheboundarieshavebeenhiddenforthesakeofclarity.
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Figure4.10:Fromlefttoright,mass-weightedprojectionofthemagnitudeoftheDM
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Figure4.11:Le�:Radialprofileoftheradialcomponentandright:oftheortho-radial
componentofthedifferentforcesaroundhaloAatz=2.7:DMgravitationalforces
(black),stargravitationalforces(orange),gasgravitationalforces(blue)andpressure
forces(red).Inwardradialaccelerationsareshownassolidlinesandoutwardaccel-
erationsareshownasdashedlines.Darklinesshowtheprofilesforthehotgasand
lightlinesforthecoldgas.ThevirialradiusRvir,Rvir/3andRvir/10areshownas
verticaldashedgraylines.Gravitationalforceshaveasimilaractiononcoldgas.The
ortho-radialcomponentofpressureforcesissignificantlysmallerinthecoldgasoutside
theinnerhalo.
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Figure 3.4: From left to right and top to bottom, a smoothing sequence of a Gaussian
random field, whose density is colour coded from blue to red as a function of height
(analogous to the slices shown on figure 3.3). The skeleton tracing the ridges is shown
in purple, while the anti-skeleton tracing the trough is shown in white. The saddles
shown as green crosses lay at the intersection. The Maxima are shown as red triangles
while the minima as blue squares. As one smooths the field, these critical points drift
towards each other along the skeletons, until they vanish in pairs. The upcoming
coalescence are identified with gray circles. Note that as saddle points vanish, the two
corresponding skeletons do too. Note also that the direction of coalescence is typically
set by the skeleton’s just before coalescence. In this two dimensional example, the ratio
of peak+saddle to void+saddle event is one. The black segment in the bottom left of the
first and last image represents the amount of smoothing. This work is concerned with
studying the one and two point statistics of these gray circles. Note that these events
are indeed proxy for mergers of the peaks of the underlying field: for instance, between
snapshot 3 and 5 the central four peaks have merged into one. Similarly, between 1 and
4 the central four voids have merged into one. We provides an interactive tool to follow
such events in 2D and 3D.
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Figure 4.9: 3D representation of the sAM (left panel), pressure torques (central panel)
and DM gravitational torques (right panel, black) and star gravitational torques (right
panel, yellow) of the cold gas being accreted onto the central galaxy of halo A at z = 2.7.
An interactive version can be found online. Pressure torques applied to the cold gas
are mostly directed radially with respect to the filamentary structure, so that their net
impact averages to zero. Gravitational torques are spatially coherent and contribute to
a non-null net torque on the cold gas.

acceleration is due to both the DM and the pressure forces. The ortho-radial acceleration stays
pressure-dominated in the hot phase up to a few Virial radii. Interestingly, both components of
the gravitational forces have similar magnitudes in the cold and hot phase. I also notice that in the
outer halo, the magnitude of both components of the pressure forces are comparable, indicating
that pressure forces do not have a preferred direction. Pressure forces form a “pressure-ring” in
the inner halo, as shown clearly in figure 4.10, right panel.

4.3.3 The magnitude of the angular momentum
Before turn-around, gas acquires AM via torque with the cosmic web as explained by the TTT
(Catelan and Theuns, 1996; Hoyle, 1949; Peebles, 1969; S. D. M. White, 1984). At these scales, the
torque magnitudes are proportional to the mean density of the gas and DM component. Indeed,
when the gas is far from the halo, the density ratio sourcing the gravitational torques is given
Ωb/ΩDM ≈ 0.19. As a consequence, a similar ratio is expected on the torque ratio, as shown
on figure 4.13. The figure presents the evolution of the torque for cold gas falling in halo A at
z = 2.5.

The sAM of the hot and cold gas follows a different path. In order to study how the sAM
evolves, one can study the Lagrangian evolution the sAM of all the gas accreted at the same time
as a function of its radius, as shown on figure 4.14. The figure presents the Lagrangian evolution
of the sAM as a function of radius for the cold (solid lines) and hot gas (dashed lines). In all halos,
the sAM of the cold gas is conserved down to smaller radii, typically r ∼ Rvir/3 than in the hot
gas.

For the hot gas, the virial shock is able to efficiently mix the pristine, freshly-accreted high-
sAM gas with the gas already in the halo. In the process, most of the AM is either radiated away
as thermal energy or transferred to the hot halo. This picture is consistent with the results of
section 4.3.2 and figure 4.10, where I showed that the dominant forces in the outer halo and up to
the outskirts of the halo in the hot gas are pressure forces.

The fate of cold gas is significantly different. On average in all our halos, the cold gas has a
sAM ∼ 3 times larger than the warm gas throughout its accretion in the outer halo down to the
inner halo. The cold gas is mostly in free-fall (Rosdahl and Blaizot, 2012) up to the inner halo,
where the cold gas shocks and the sAM quickly drops down to values comparable to the hot gas.
While significant deviations are found from halo to halo, see the different panels of figure 4.14, the
mean Lagrangian history of the sAM is clearly different between the cold and the warm gas. Our
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Peak-filament 

crit. event
(halo merger)

Filament-wall 

crit. event
(filament merger)

Wall-void 

crit. event
(wall merger)

Figure3.5:Illustrationofcriticaleventsina3Drandomfieldsandtheirphysical
meaning. symbolsarepeaks,×symbolsarefilament-typesaddlepoints(filament
centres),⊗symbolsarewall-typesaddlepoints(wallcentres)and#symbolsareminima
(voidcentres).Top:Peak-filamentcriticaleventsencodethemergeroftwohalosand
thedisappearanceoftheirsharedfilament.Afterthemerger,onlyonepeaksubsists
andthefilamentdisappears.Middle:Filament-wallcriticaleventsencodethemerger
oftwofilamentsandthedisappearanceoftheirsharedwall.Afterthemerger,only
onefilamentsubsists.Bottom:Wall-voidcriticaleventsencodethemergeroftwo
wallsandthedisappearanceoftheirjointvoid(surroundedbythetwowallsandthe
dottedlines).Afterthemerger,onlyonewall-typesaddle-pointsubsistsandthevoid
hasdisappeared.Halomergersareencodedbypeak-filamentcriticalevents,filament
mergers.Alternatively,onecouldhavechosentodescribetheseeventsasresp.filament,
wallandvoiddisappearances.
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4.3Results
Inthefollowingofthischapter,IwilladoptthesamenamingconventionsasDanovichetal.,
2015.IwillwriteRvirthevirialradiusofahalo.Theouterhaloisdefinedastheregionbetween
RvirandRvir/3.TheinnerhaloisdefinedastheregionbetweenRvir/3andRvir/10.The“disk”
istheregionatradiusr<Rvir/10wherethegalaxyisfound.

4.3.1Specificangularmomentumvs.angularmomentumperunitvolume
??differsfromEq.9ofDanovichetal.,2015.Indeed,??isanequationonthesAMinsteadofthe
AMperunitvolume.TherateofchangeofAMpervolumeincludesadependencetothecell
volume,whichisitselfhighlysensibletothecompressionanddecompressionofthegas.This
isparticularlyimportantinastrophysicalflowsthatarehighlycompressible.Contrarytowhat
Danovichetal.,2015reported,Ifindthatthedivergencetermdominatesoverthegravitational
andpressureterms.Inflowinggastypicallymovesat100km/swithtypicalvariationscalesof
afewkpc.Anorderofmagnitudeofthedivergenceisthen≈100kms−1/1kpc≈100Gyr−1,
withlargervaluesfoundinshockedandhighlycompressedregions.Thesevaluesarecomparable
orlargerthanpressureandgravitationaltorques,highlightingtheirimportanceinthestudyof
theevolutionoftheAMperunitvolume.

Inthefollowingofthedissertation,IwillusethesAM,itsevolutionbeingdescribedby??.
Iwillhencenotconsiderthedivergenceterminourstudy,asitdoesnotentertheequationof
evolutionofthesAM.Inadditiontoneglectingthisterm,followingtheLagrangianevolution
ofthesAMhastheadvantageofinterfacingnaturallywithtracerparticles.Indeed,Lagrangian
tracerparticleshaveafixedmass,sothattheirsAMislinkedtotheirAMviaaconstantfactor
(theirmass).

4.3.2Dominantforcesinthecoldandhotphase
Thedifferentaccretionmodeforthecoldandthehotphaseofthegasleadstoaspatialsegregation
ofthecoldphaseintothincollimatedfilamentarystructures,asshownonfigure4.2.Inaddition,
theirthermodynamicalpropertiesdiffer:thecoldphaseismadeofaquitehomogenousgas,sothat
theinternalpressuregradientsareweak.Asaresult,strongpressuregradientsarefoundattheir
interface,asshownbyDanovichetal.,2015.Onthecontrarythehotgasislesshomogenous,so
thatpressureforcesmaybelocallydominant.[♥reorderfigures]Figure4.10presentsprojected
mapsofthemagnitudeofthegravitationalforcesandpressureforcesaroundonehaloatz=2.7
forthehotgas(toppanel)andthecoldgas(bottompanel),whilefigures4.21aand4.21bpresents
similarmapsinthethreedirections(x,yandz).Inthehotgas,thetwodominantforcesare
qualitativelyDMgravitationalforcesandpressureforces,withstargravitationalforcesbeing
importantonlyintheinnerhalo.Inthecoldphase,pressureforcesaresignificantlysmaller,while
gravitationalforcesaremostlyunimpaired.Intheinnerhalo,anotable“pressure-ring”isclearly
visibleinthecoldgas,asshowninthebottomrightpaneloffigure4.10.

Inordertobetterdisentanglethedifferentcontributionstothedynamicalevolutionofthe
gas,oneneedstodistinguishtheradialcomponentoftheforces—thatisresponsibleforthe
infallofthegas—andtheortho-radialcomponent—thatismostlyresponsibleforthesAM
variation.Thisisshownonfigure4.11thepresentsradialprofilesofthetwocomponentsofeach
(specific)forces(pressureforces,gravitationalforces)inoneifthesimulatedhalo.Inthedisk,the
dominantforcesintheradialandortho-radialdirectionsarestargravitationalforcesduetothe
disk.Theforcesaremostlyradial,withtheirortho-radialcomponentoneorderofmagnitude
smallerthantheradialone.Intheinnerhalo,stargravitationalforcesbecomelessdominant.The
radialaccelerationbecomeDM-dominated,whiletheortho-radialcomponentisdominatedby
pressuretorques.Thisisinparticularthecaseforthehotgas,whereortho-radialpressureforces
areoneorderofmagnitudelargerthanDMgravitationalforces.Inthecoldphase,theortho-radial
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3.4.2 3D critical events number counts
In this section, we will present the derivation of the number count of critical events in smoothing-
position space in 3D. In section 3.4.2.1, we present how one can express the critical event constrain
as a function of the local properties of the field and its derivatives. We then express the condition
in the frame of the Hessian of the field in section 3.4.2.2 where it takes a simpler expression. In
section 3.4.2.3, we extend the previous formula to distinguish between different critical event
types (halo mergers, filament mergers, wall mergers).

3.4.2.1 General formulation
Following Hanami, 2001, the number density of critical events in smoothing-position space is
given by

∂4N
∂r3∂R

≡ 〈δ(3)D (r − r0)δD(R−R0)〉 , (3.3)

where r0 is the position of a critical event (i.e. a critical point with a degenerate direction) in real
space and R0 its associated smoothing scale. Following the definition of section 3.4.1, critical
events are found at the smoothing-position location where two critical points of different types
(maximum, saddle points or minimum) merge. The nature of a critical point (occurring where
∇δ = 0) is characterised by its index, that is to say the number of negative eigenvalues of the
density Hessian matrix at this point. Critical events can then be defined as critical points for which
one of the eigenvalues vanishes, which is also equivalent to having a vanishing determinant. By
definition, only critical points whose indices differ by one can merge (peak–filament type saddle
point, filament–wall type saddles, wall type saddle–void).

Let us therefore first define the determinant of the Hessian d(δ) ≡ det(∇∇δ) = σ32λ1λ2λ3,
λ1 ≤ λ2 ≤ λ3 being the ordered eigenvalues of the Hessian matrix∇∇δ/σ2. In the following,
we will use ∂R to denote derivatives with respect to scale R. Since critical events are found
where d = 0 and ∇δ = 0, let us rewrite equation (3.3) in terms of the properties of the field,
using the coordinate transformation from r, R to ∇δ, d. This involves the 4D Jacobian of the
transformation1

J(d,∇δ) =

∣∣∣∣∣∣
∂Rd ∇d

∂R∇δT ∇∇δ

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∂Rd ∇d

−R∇∇2δT ∇∇δ

∣∣∣∣∣∣
, (3.4)

using the fact that for a Gaussian filter (see Table 2.2)

∂Rδ = −R∇2δ, (3.5)

with ∇2 the Laplacian operator. The fully covariant formulation of the number density of critical
events is then

∂4N
∂r3∂R

=
〈
|J | δ(3)D (∇δ) δD(d)

〉
. (3.6)

The expectation value in equation (3.6) can be evaluated using the joint distribution of the field
and its successive derivatives up to third order, P (x, xi, xij , xijk) which involves 20 variables,
see section 3.A for the PDF for Gaussian random fields. One difficulty in evaluating equation (3.6)
spans from δD(d). In practice, it can for instance be dealt with numerically by ‘broadening’ the
Dirac delta function: this method is used for validation and when considering two point statistics
in the next section. Alternatively, we can go to the Hessian’s eigenframe as described in the next
section.

1Note that the determinant can be developed along the first line or the first column of the Jacobian matrix to find
out – as shown by the simplifications in the next section – that the final result in our case does not depend on ∂Rd,
thanks to the zero determinant constraint det∇∇δ = 0.
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Table 4.2: Cold gas fraction in the six halos at z = 2 and z = 4, comparing the cold
gas mass to the total baryon mass within two virial radii (left columns) or within the
inner halo (right columns).

z = 2 z = 4

Simulation r < 2Rvir (%) r < 0.3Rvir (%) r < 2Rvir (%) r < 0.3Rvir (%)

A 26 37 33 52

B 7 16 32 55

C 1 1 1 1

D 22 74 2.2 7.4

E 16 26 32 55

F 9 22 33 58
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Figure 4.8: Cold gas fraction with respect to the total baryon mass in the inner halo as a
function of redshift for the six halos. With increasing time, most of the gas is converted
to star so that the cold gas fraction decreases.
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3.4.2.2ExpressionintheframeoftheHessian
TheJacobianisbyconstructioninvariantunderrotation,sowecanrewriteitintheframeof
theeigenvaluesoftheHessian(whichwillbedenotedwithtildas)withoutlossofgenerality.
Developingdintoσ32x̃11x̃22x̃33andassuming(arbitrarily)thatdirection3isthedegenerateone,
theJacobiancanberewrittenasfollows

J(D,δ)

σ1σ4
2σ3

=|x̃11x̃22|

∣∣
∣∣
∣∣
∂Rx̃33x̃33i

∂Rx̃ix̃ij

∣∣
∣∣
∣∣,(3.7)

=|x̃11x̃22|

∣∣
∣∣
∣∣
∣∣
∣∣
∣∣

∂Rx̃33x̃133x̃233x̃333

∂Rx̃1x̃1100

∂Rx̃20x̃220

∂Rx̃3000

∣∣
∣∣
∣∣
∣∣
∣∣
∣∣

,(3.8)

=|x̃11x̃22|
2
|∂Rx̃3||x̃333|,(3.9)

wherethefactorisationwith|x̃11x̃22|alongthefirstlineinequation(3.7)isaconsequenceofx̃33
beingzero–whichalsonullsthelastcomponentofequation(3.8).Usingequation(3.5)againto
re-expressthederivativew.r.t.smoothingintermsoftheLaplacianofthefield,wecanrewrite
thenumberdensityofcriticaleventsusingthetypicalscalesofequation(2.90)as2

∂n

∂R
=

2π2R

R̃2R3
∗

〈
|∑

ix̃3ii||x̃333|δ
(3)
D(x̃i)|x̃11x̃22|δD(x̃33)

〉
,(3.10)

whereweintroducedn=∂3N/∂r3thevolumedensityofcriticalevents(thatdoesnotdepend
onthespatiallocationrasthefieldisassumedtobestationary).Letusstressthatthedistribution
ofthefieldsexpressedintheframeoftheHessianmatrixdiffersfromtheoriginalones.The
statisticsofxandxiandxijkareleftunchangedandwethereforedropthetildesforthefield
anditsfirstandthirdderivatives.However,goingfromcartesiancoordinatestotheHessian
eigenframemodifiesthedistributionofthesecondderivativesthatwechooseheretoorder(such
thattheDoroshkevichformulaisrecovered)

P̃(x̃11,x̃22,x̃33)=2π
2
(x̃33−x̃22)(x̃22−x̃11)(x̃33−x̃11)×

P(x11=x̃11,x22=x̃22,x33=x̃33,x12=0,x23=0,x13=0),

wherex̃11<x̃22<x̃33aredistributedaccordingtoP̃andfieldsincartesiancoordinatesfollow
thedistributionP.Notethatthefactor2π2isduetotheintegrationovertheEulerangles.
Equation(3.10)thereforeintroducesajacobian2π2|x11x22(x11−x22)|,asx33isnull,whengoing
fromtheHessianeigenframetocartesiancoordinatesandthedifferentialnumbercountofcritical
eventsbecomes

∂n

∂R
=

2π2R

R̃2R3
∗

〈
|∑

ix3ii||x333|δ
(3)
D(xi)|x11x22|

2
×

|x11−x22|δD(x33)δ
(3)
D(xi6=k)

〉
,(3.11)

whereδ
(3)
D(xi6=k)mustbeunderstoodasaproductofDiracdeltafunctionsofalltheoff-diagonal

componentsoftheHessianmatrix.HereR∗andR̃arethetypicalintercriticalpointseparation
2Onefactorof|x̃11x̃22|dropsbetweenequation(3.9)and(3.10)becauseoftheDiracofDinequation(3.6).
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Figure4.6:Le�panel:PlotofthevelocitydivergenceascomputedbyRamsesvs.the
ratioofthevaluecomputedinpost-processingtoRamses’sone.Rightpanel:PDFofthe
ratio.95%ofthedistributionfallsbetweenthetwohorizontallines.95%ofthecells
haveavaluebetween0.71and1.12timesthevaluecomputedinternallybyRamses.
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Figure4.7:Venndiagramoftheensemblesoftracerparticlesusedtodefinethecold-
accretedtracerparticles.Directcold-accretedtracerparticlesaretheintersectionofthe
tracerparticlesaccretedcoldbetween1.5and0.5Rvir(blue)thatendupinthecentral
galaxyatz=2(red)andthatwerefirstaccretedontothecentralhalo(green).See
thetextfordetailsonhoweachoftheseensemblesaredefined.Percentagesindicate
thefractioninsimulationAofalltheparticleswithin2Rvirfoundineachpartofthe
diagram.Percentageswithinparenthesisindicatethefractionoftracerintheinnerhalo
(r<0.3Rvir)foundineachpartofthediagram.Directcold-accretedbaryonsrepresent
26%ofthebaryonsthatendupwithin2Rvirand37%ofthebaryonswithin0.3Rvir.
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and inter inflection point separation introduced in equation (2.90). The novelty of equation (3.11)
w.r.t. the classical BBKS formula is the weight |∑i x3ii||x333|which requires the knowledge of the
statistics of the 3rd order derivative of the field. The expectations in equation (3.11) can be evalu-
ated with the joint statistics of the field and its successive derivatives, P (x113, x223, x333, x11, x22)
which now only involves 5 variables. Interestingly, because the dominant contribution to the
expectation value of 〈|∑ix3ii||x333|〉 comes from

〈
x2333

〉
with very good accuracy (at the percent

level), equation (3.11) is very well approximated by

∂n

∂R
≈ 2π2R

R̃2R3∗

〈
x2333δ

(3)
D (xi) |x11x22|2 ×

|x11−x22|δD(x33) δ(3)D (xi 6=k)
〉
. (3.12)

Note that this equation closely resembles the equation giving the flux of critical lines per unit
surface presented in Pogosyan et al., 1998, up to the delta function on the third eigenvalue in the
present context. This is in fact expected since we require here that along the filament’s direction
the curvature should be flat, whereas they marginalised over all possible longitudinal curvature.
The similarity reflects the fact that critical points essentially slide along critical lines as one
smooths the field, see figure 3.4. In some sense the 3D event count can be approximatively recast
into a 1D event count along the ridges. The expectation involves the product of the transverse
curvatures because the larger those curvature the larger the flux of such lines per unit transverse
surface.

3.4.2.3 Gaussian number density of critical events per type
The aforementioned formalism makes no assumption on the type of the merging critical points.
While the coalescence of peaks and filaments (PF critical events, the slopping saddles of Hanami,
2001) are clearly central to the theory of mass assembly, the filament-saddle to wall-saddle
(FW critical events) and wall-saddle to minima coalescence (WV critical events) also impact the
topology of galactic infall, as they destroy tunnels and voids within the surrounding cosmic web.

Let us therefore compute the number density of critical events of each type of mergers (P ≡
PF, F ≡ FW andW ≡WV). Using the fact that for Gaussian random fields, equation (3.11) can
be split into odd- and even-derivative terms, one can write

∂nj
∂R

=
2π2R

R̃2R3∗

Codd︷ ︸︸ ︷〈∣∣∣∣∣
∑

i

xjii

∣∣∣∣∣|xjjj |δ
(3)
D (xi)

〉
× (3.13)

〈
ϑH(x33 − x22)ϑH(x22 − x11) δD(xjj) δ

(3)
D (xk 6=l)

∣∣∣∣∣
∑

kl

εjkl

2 x2kkx
2
ll(xkk − xll)

∣∣∣∣∣

〉

︸ ︷︷ ︸
Cj,even

where ε is the completely antisymmetric Levi-Civita tensor, ϑ the Heaviside function, and j =
1, 2, 3 for peak (P), filament (F ) and wall (W) mergers respectively. Note that equation (3.13) for
a given value of j is essentially the same as equation (3.11), modulo a choice of null eigenvalue
and the requirement that the eigenvalues are sorted. In 3D, Codd and Cj,even have analytical
expressions given by

C2,even = 〈λ1λ3δD(λ2)〉 =
2√
15π

,

C1,even = C3,even = 〈λ1λ2δD(λ3)〉 =
29− 6

√
6

18
√
10π

, (3.14)
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Figure 4.5: (a) Scheme of a binary search in an oct structure in 1D. The requested points
are shown as red and blue dashed lines. The algorithm starts at the root level l = 0
and goes down the structure ; at each level, it picks the cell that contains the requested
point. (b) A similar illustration in 2D, the algorithm works in the same way. At each
level, it selects one of the four cells (red and blue squares) from the oct (thick line). The
algorithm can be easily generalised to three or more dimensions. It is able to find any
cell containing a given point in lmax iterations exactly. If the grid is sparse, as is the
case for an AMR structure, lmax becomes an upper boundary.
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and

Codd=

√
27(1−γ̃2)
√
50π5

(
2

√
21(1−γ̃2)

+tan−1

√
21(1−γ̃2)

2

)
,(3.15)

whichcanalsobecomputedinarbitrarydimensionsasshowninsection3.B.[♥Explicitly
statethePDFoftheλi]Fromthiswecancomputetheratioofpeaktofilamentmergers
rP/F=C2,even/C1,even.Interestingly,theeventratioisindependentofthespectralindexofthe
fieldandisgivenby

rP/F=
24

√
3

29
√
2−12

√
3
≈2.05508≈

37

18
,(3.16)

whichisnothingbuttheratiobetweenthemeannumberofwall-typesaddlesandpeaksminus1,
arelationshipwhichisvalidinarbitrarydimension.Thisequationshowsthattherearetwice
morefilamentdisappearinginfilamentmergerevents(Fevents)thaninhalomergerevents(P
events).Similarly,wecancomputerF/Wtodeducethattherearetwicemorewallsdisappearing
duetofilamentmergers(Fevents)thanduetovoidmergers(Wevents).Section3.Balsopresents
theseratiosindimension4to6.

3.4.33Ddifferentialeventcountsofagivenheight

IntroducingδD(x−ν)intheexpectationofequation(3.13)allowsustowritethedensityof
criticaleventsasafunctionofheight,hencemakethedistinctionbetweenmergersofimportant
criticalpointsandlesssignificantones.

ForGaussianrandomfields,thefieldonlycorrelateswithitsevenderivatives(secondinour
case).Imposingtheheightofthecriticaleventsweconsiderthereforeonlymodifiestheterm
Cj,evenwhileCoddisleftunchanged,following

Cj,even(ν)=
〈
ϑH(x33−x22)ϑH(x22−x11)δD(xjj)δ

(3)
D(xk6=l)δD(x−ν)

×
∣∣
∣∣
∣
∑

kl

εjkl

2
x
2
kkx

2
ll(xkk−xll)

∣∣
∣∣
∣

〉
.(3.17)

Interestingly,Cj,even(ν)appearstohaveananalyticalexpressiononcerotationalinvariantsare
usedtoevaluatetheexpectations.Followingtheformalismdescribedfirstin(Pogosyanetal.,
2009),weintroducethevariables

J1=I1,J2=I
2
1−3I2,(3.18)

J3=
27

2
I3−

9

2
I1I2+I

3
1,ζ=

x+γJ1
√

1−γ2
,(3.19)

thatarelinearcombinationsofthedensityfieldxandrotationalinvariantsofitssecondderivatives
namelythetraceI1=trH=λ1+λ2+λ3,minorI2=1/2((trH)2−trH·H)=λ1λ2+
λ2λ3+λ3λ1anddeterminantI3=detH=λ1λ2λ3oftheHessianmatrixH=(xij).The
distributionofthesevariablesisgivenby

P(ζ,J1,J2,J3)=
25

√
10π

24π2exp

(
−
1

2
ζ
2
−

1

2
J
2
1−

5

2
J2

)
,(3.20)

whereJ3isuniformlydistributedbetween−J
3/2
2andJ

3/2
2andJ2ispositive.Usingthese
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Figure4.4:SchemeoftheAMRstructureusedtoestimatethegradientofaquantityf
inthecentraloct(red).Octsarerepresentedinthicklines,cellsinthinlinesandvirtual
cellsindashedlines.Le�panel:Thevirtualcellvaluesona43gridareinterpolated
fromthenearestcellintheAMRgrid.Ifthenearestcellisatthesamelevel,itsvalueis
directlyused.Ifthecellisatacoarserlevel,itsvalueisdirectlyused(forexamplef31
andf32havethevalueofthegreencell).Ifthecellisrefined,themeanofitschildren
isused(forexamplef20isthemeanofallthebluecells).Rightpanel:Gradientsare
estimatedusingafirst-orderfinitedifferencecentredschemeonthe43virtualcells.

historyofallthebaryons(gasandstar)thatendupwithin2Rvirofthecentralgalaxy.This
ensembleofparticleinthevicinityofthegalaxyarethengroupedinthreesets.

1.thebaryonsthatendupintheinnerhalor<0.3Rvirattheendofthesimulation.Iwill
refertothissubsetas“baryonsinthegalaxy”.

2.thebaryonsthatneverheatedabovethethresholdtemperatureT≤Tmaxfrom1.5Rvirto
0.3Rvir.Iwillrefertothissubsetas“coldbaryons”.

3.thebaryonsthatwereneveraccretedonasatellitegalaxies.Iwillrefertothissubsetas
“directlyaccretedbaryons”.Thiseffectivelyselectsgaswhosefirstaccretionisontothe
mainhalo.Inpractice,thisisdonebyexcludinganytracerfoundatanytimeatlessthana
thirdofthevirialradiusofanyhalootherthanthemainone.

TherepartitionofthegasinhaloAatz=2isshownonfigure4.7wherebaryonsinthegalaxy
arerepresentedintheredensemble,cold-accretedbaryonsinblueanddirectlyaccretedbaryons
ingreen.Inthefollowingofthechapter,thesubsetofinterestistheintersectionofthethree
ensembles:thisisthegasthatwasaccretedcoldontothegalaxy,thatendupintheinnerhalo
atz=2andthatwasnotaccretedviamergers.Intheremainingofthepaper,Iwillreferto
thissubsetasthe“coldgas”whileIwilluse“hotgas”todescribegasthatwasnotaccretedvia
mergersbutwhicheventuallyheatedupabovethetemperaturethreshold.

Ihavecheckedthatthefractionpresentedonfigure4.7arerobusttochangesofthethreshold
radiusforfirst-accretiondetection:usingRthresh=0.5Rvirinsteadof0.3Rvironlyleadsto
percentdifferences.Indeed,mostofthegasalreadywithin0.5Rvirofahaloislikelytolaterfall
intotheinnerpartofthegalaxy.

ThecoldgasfractionsinthedifferenthalosarepresentedinTable4.2andtheirevolutionis
shownonfigure4.8.[♥removethisifIdon’ttalkaboutitandalsoifIdon’tundertand
it.]
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rotational invariants, one can rewrite equation (3.17) for each type of critical event

C1,even(ν)=
〈
|I2|δD(x−ν)δD(I3)B(−2J

1/2
2 <J1<−J1/2

2 )
〉
,

C2,even(ν)=
〈
|I2|δD(x−ν)δD(I3)B(−J1/2

2 <J1<J
1/2
2 )
〉
, (3.21)

C3,even(ν)=
〈
|I2|δD(x−ν)δD(I3)B(J1/2

2 <J1<2J
1/2
2 )
〉
=C1,even,

with

δD(I3) =
27

2
δD

(
J3 −

3J1J2 − J3
1

2

)
, (3.22)

δD(x− ν) =
1√

1− γ2
δD

(
ζ − ν + γJ1√

1− γ2

)
, (3.23)

and the condition that the determinant is null due to λj being zero is enforced by restricted the
range of J1 according to the Boolean specified in equations (3.21). Eventually, the integration in
equation (3.21) can be done symbolically and an analytical expression for Cj,even(ν) follows

C1,even(ν)=
∑

i=1,6,9

c1,i exp

[
− ν2

2 (1− γ2/i)

]
, (3.24)

C2,even(ν)=c2,6 exp

[
− ν2

2(1− 5γ2/6)

]
, (3.25)

with

c1,1 =
3
√

5
2γ
√
1− γ2ν

(
275γ4 + 30γ2

(
2ν2 − 23

)
+ 351

)

π3/2 (9− 5γ2)4
,

c1,6 = −
erf
(

γν√
2
√

5γ4−11γ2+6

)
+ 1

√
5π
√
6− 5γ2

, c2,6 =
2

π
√
30− 25γ2

,

c1,9 =

erf
( √

2γν√
5γ4−14γ2+9

)
+ 1

4π
√
5 (9− 5γ2)5/2

×
(
3600γ4ν4

(9−5γ2)2
+
120γ2

(
27−35γ2

)
ν2

9−5γ2
+575γ4−1230γ2+783

)
,

The resulting counts of critical events as a function of their height ν is plotted in figure 3.9 for
different values of the spectral index ns. Note that ∂2n/∂R∂ν scales like 1/R4 but is also a
function of R via the spectral parameters γ and γ̃.

3.4.4 2D event counts and differential counts
Since the formalism is very similar, let us also briefly present the analogues of equation (3.13) for
2D fields. It reads

∂2n

∂R∂ν
=

2πR

R̃2R2∗
〈|x211 + x222||x222|δD(x1) δD(x2)〉× (3.26)

〈ϑH(x22−x11) δD(x22)δD(x12) δD(x− ν)|x11−x22|〉 ,
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Figure 4.3: (a): Relative difference between the sum of the sAM evolution rate due to
stars, DM and gas gravitational forces (as computed with the method presented in the
text) and the rate due the total gravitational torques (as computed by Ramses). (b): Same,
but with the total gravitational accelerations. Vertical dashed line indicate 5% and 95%
quantiles. The vertical dotted line indicates the median value. The two methods yield
similar results within a few percent.

quantity using a centred finite-difference scheme on the 43 grid, as illustrated on figure 4.4, right
panel. (e) Store the value of the gradient in the central 23 cells.

This approach aims at providing results as close as possible to the values used internally by
Ramses. In practice, most AMR post-processing tools compute gradients on a fixed regular grid.
Even though this approach yields sensible results at scales comparable to the (arbitrary) grid
spacing, any information at finer scales is lost while values at coarser levels have to be interpolated,
eventually leading to spurious gradients. In the case of the study of accretion onto galaxies, the
fixed-grid approach fails at providing a precise description of the gradients at play (pressure and
potential gradients), as shocks may form over a large region of size ∼ R3

vir. In order to capture all
of them on a regular grid, one would then require∼ (Rvir/∆x)

3 ≈ (100 kpc/30 pc)3 ≈ 3× 1010

cells, which is in practice too large to fit in memory. In practice, it is much more efficient and
consistent to directly work on the AMR structure dumped alongside the physical information
of the simulation. Using a tree search algorithm, as illustrated on figure 4.5, I have developed
a post-processing tool that is able to compute finite difference gradients directly on the AMR
grid. It is worth noting that this approach is exactly consistent with the internal approach of
Ramses, except at the interface between different grid levels where a linear interpolation is used
by Ramses, whereas our method uses a simple average. One way to check the consistency is
to compare gradients computed by the post-processing tool to the ones computed internally by
Ramses. This is for example done using the velocity divergence, as shown on figure 4.6. The figure
shows that the post-processing method recovers the velocity divergence within a few percent,
while most of the scatter is attributed to the fact that Ramses uses a linear interpolation at the
interface between coarse and fine cells.

4.2.6 Cold gas selection

The ratio of the total accreted mass with a maximum temperature below a given threshold Tmax

to the total gas mass — the cold fraction — is a widely reported quantity in the study of the
cosmological gas accretion, dating back to Kereš et al., 2005. The cold fraction is made of cold
flows that remain cold throughout their infall into the galaxy. In this study, a temperature cut
T . Tmax = 2.5× 105K (see e.g. Nelson et al., 2013, for a discussion on the effect of the
threshold) is used. In order to study the sAM evolution of the cold gas, I use the Lagrangian
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Figure3.6:ThePDFofcriticaleventsofthevarioustypes(P,F)in2Dforns=
−2,−3/2,−1,−1/2fromlighttodark.Notethatthedominantchangewithspectral
indexisintheamplitudewhichscaleslike1/R̃2/Rd

⋆.Therestoftheshapevariation
comesfromtheweakerγandγ̃dependenceofCoddandCeven.

whichaftersomealgebra,giventheknowledgeofthe2DPDFgiveninsection3.A,yieldsforthe
peakmergerrate

∂2n

∂R∂ν
=
RCodd

R̃2R2
∗

[
4γν

√
1−γ2

(3−2γ2)2exp

(
−

ν2

2(1−γ2)

)

+

√
8π(2γ4+γ2(ν2−5)+3)

(3−2γ2)5/2erfc
(

−γν √
4γ4−10γ2+6

)
exp

(
−

3ν2

6−4γ2

)]
,

with

Codd=
γ̂+3γ̂2tan−1(3γ̂)

4π2,givenγ̂=
√
1−γ̃2.

Thewallmergerrateisobtainedbyswappingνto−νinthisexpression.Thetworatesare
plottedinfigure3.6andvalidatedagainstGaussianrandomfieldsinfigure3.10.Thecounts,
∂n/∂R=2CoddR/(3

√
3R̃2R2

∗)followsbyintegrationoverν.
Section3.Balsopresentsdifferentialcountsindimension4to6,togetherwithasymptotic

expressionsinthelargedimensionlimitfortheintegratedcountratios.Asexpected,forany
dimensionthenumbercountsperunitlog-volumeislogarithmicallyscaleinvariant(uptothe
slowvariationinthespectralparameters),i.e.Rd∂2nd/

∂logR∂νisafunctionofγ,γ̃andν
only.

3.4.5Beyondgaussianstatistics
LetusfinallycomputetheonepointstatisticsforclosetoGaussianfields.TheEdgeworth
expansionjointstatisticsofthefieldatx,P(x,xi,xij,xijk),involvingthehierarchyofcumulants
obeys

P(x)=PG(x)

(
1+

∞∑

k=3

σ
k−2〈Hk(x)〉

σ2k−2·Hk(x)

)
,(3.27)
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Insteadofprovidingsmoothtrajectories,tracerparticlesprovideastatisticalsamplewhose
meanaccuratelytracksthepropertiesofbaryonsinthesimulation.Ihavethenusedthemto
trackthetemperatureofthegas,sothatonecandistinguishcoldgasfromhotgas,butalsoother
quantitiessuchthesAMofthegasorthedifferenttorques.

4.2.4Torqueextraction
IhavemodifiedthecodeRamsestoextractinpost-processingthegravitationalaccelerationdueto
thedifferentmattercomponents(DM,gas,stars).ThiswasperformedbystrippingdownRamses
tokeeponlythePoissonsolver,appliedtothedensityofeachindividualcomponent2withexactly
thesameparametersasthefullrun.ForeachoutputIhavecomputedthegravitationalforceof
thestars,gasanddarkmatter.Foreachcomponent(star,gasandDM),Ihavealsocomputedthe
rateofchangeofsAMofthegasas

fi=
τi·l
‖l‖

2,(4.8)

whereτi≡r×aiisthespecifictorqueduetothestar(⋆),gasorDMcomponentandl=r×v
isthegassAM.Usingequation(4.5)andaftersomealgebra,onegetsthatthetotalrateofchange
f=dlogl/dt.Equation(4.8)isthereforeameasureoftheinversee-foldingtimealongthe
Lagrangiantrajectoryofaparticle.Bothpositionsandvelocitiesareevaluatedforthegasin
theframeofthecentralhalo.fiispositiveandlargewheretorquesareefficientatincreasing
thesAMandnegativewheretorquesareefficientatdecreasingthesAM.Figure4.3ashowsthe
relativedifferencebetweenthesumoftheevolutionratesf⋆+fDM+fgasextractedindividually
inpost-processingandthetotalevolutionratef=τ·l/‖l‖

2
computedon-the-flybyRamses.

Figure4.3bshowstherelativedifferencebetweenthegravitationalaccelerationscomputedusing
thetwomethods.Theagreementisoftheorderoflessthanapercentin90%ofthecells.Note
thataperfectagreementisnotexpected,asthepotentialfromtheSMBHshasbeenneglected
inthepost-processingmethod.Inaddition,Ramses’Poissonsolverhasanaccuracyof10−4,
consistentwiththemedianerrorobtainedinthegravitationalaccelerations(0.02%).Overall,the
agreementbetweenthecomputedratesarewithinafewpercent.Theerrorsontheevolutionrate
areslightlylarger,albeitstillsmall,asaresultofthedivisionbylthatskewsthedistributionand
spreadsassignslargerweightsinregionswherelissmall.Thisconfirmsthatthepost-processing
decompositionyieldsresultsconsistentwiththeon-the-fly-computedgravitationalfieldused
internallytoevolvethesimulation.Usingequation(4.8),onecanalsocomputetorquetimescales
using

tτ,i=
1

fi
.(4.9)

ThesetimescalesmeasurethetypicaltimeoverwhichagiventorquewillremoveallthesAM
fromthegas.

4.2.5Gradientestimation
Inordertocomputethetorquesduetopressure,Ihaveextendedtheytcode(Turketal.,2011)to
enablecomputationofgradientsonanoct-basedAMRgrid.Thealgorithmworksasfollow.(a)
Loopoveralloctsinthetree.(b)Computethepositionsofthe43=64virtualcellscentredon
theoctandextendingin±2∆xinallthreedirections,asillustratedonfigure4.4,leftpanel.(c)
InterpolatethevalueofinterestatthecentreofeachvirtualcellfromtheAMRgrid.Ifthevirtual
cellexistsonthegridoriscontainedinacoarsercell,thevalueonthegridisdirectlyused.Ifthe
virtualcellcontainsleafcells,themeanofthesecellsisused.(d)Computethegradientofthe

2ThefiducialimplementationsolvesthePoissonequationdirectlyonthetotalmatterdensity(gas+stars+DM+
SMBHs).
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whereHk is a vector of orthogonal polynomials w.r.t. to the KernelPG obeyingHk = (−1)k∂kPG/∂x
k/PG

while at tree order in Perturbation Theory (Bernardeau et al., 2002), 〈Hk(x)〉/σ2k−2 is indepen-
dent of the variance σ2(z) below k = 6. Cumulants such as 〈x21x113〉 entering equation (3.27)
could in the context of a given cosmological model involve a parametrisation of modified gravity
(via e.g. a parametrisation of F2(k1,k2)), and/or primordial non-gaussianities (via e.g. fNL). From
this expansion, or relying on the connection between event ratio and connectivity discussed in
section 3.B.6, we can for instance compute the non-Gaussian correction to the ratio of critical
events, defined in equation (3.16) as

rP/F
rP/F ,G

=
(
1+ cr

(
8
〈
J3
1

〉
−10 〈J1J2〉−21

〈
q2J1

〉))
. (3.28)

where cr =
(
29
√
2+12

√
3
)
/210/

√
π, while σ21q2 = |∇ρ|2 the modulus square of the gradient,

J1 and J2 are defined in equation (3.19) via the trace and minor of the Hessian. These extended
skewness parameters are isotropic moments of the underlying Bispectrum which, when gravity
drives the evolution, scale with σ at tree order in perturbation theory (e.g.

〈
J3
1

〉
/σ is independent

of σ). The correction to one entering equation (3.28) is negative (approximately equal to−σ(1/7−
log(L)/5) for a ΛCDM spectra smoothed over LMpc/h), suggesting that gravitational clustering
reduces the relative number of peak mergers compared to filament mergers. When astronomers
constrain the equation of state of dark energy using the cosmic evolution of voids disappearance
they effectively measure σ in equation (3.28). Conversely, for primordial non Gaussianities, the
extended skewness parameters must be updated accordingly (see Codis et al., 2013; Gay et al.,
2012). For instance, 〈J1q2〉 = 〈J1q2〉grav−2fNL

√
1+f2NL/(1+4f2NL).

Since the computation of the expectation (3.13) with the Edgeworth expansion (3.27) is beyond
the scope of this work, let us investigate an alternative proxy for the event rate. Figure 3.7 makes
use of the perturbative prediction of Gay et al., 2012 to first order in σ for the gravitationally-driven
non-gaussian differential extrema counts to compute the product of such counts as a proxy for
the events, namely P(ν) ∝ P (ν)×F (ν), F(ν) ∝F (ν)×W (ν), and W(ν)∝W (ν)×V (ν). This
Ansatz is reasonable, since for a merger to occur, two critical points of the same height must
exist beforehand. We use the Gaussian PDF as a reference, to recalibrate the relative amplitude of
the filament to peak merger counts. Since Gay et al., 2012 provide fits to the critical PDFs as a
function of σ, it is straightforward to compute their product.

From figure 3.7, we see that gravitational clustering shifts the peak event counts to lower
contrast, as it should. Let trivially, the filament merger rates also shift towards negative contrasts.
From these PDFs we can re-compute the cosmic evolution of the ratio of critical events: its scales
like rP/F = 7/34(1− σ/7) (for n = −1) in good agreement with equation (3.28), suggesting that
this approximation indeed captures the main features of gravitational clustering.

3.5 Theory: two point statistics
Let us now present a method to compute the two-point statistics of critical events. Such statistics
is of interest e.g. to study the cosmic evolution of the connectivity of peaks, or to understand
how large scale tides bias mass accretion (the so-called assembly bias). Section 3.5.1 presents the
two-point statistics of merger events in 3D, while section 3.5.2 provides analytical approximations
while assuming mergers occur along a straight filament. Section 3.5.3 computes the conditional
merger rates subject to larger scale tides. We match these predictions to simulations in section 3.6
below.

3.5.1 Clustering of critical events in R, r space
We cannot generally assume that the orientation of the two critical events are aligned w.r.t. the
vector separation, so the covariant condition for critical event of type j ∈ {P,F ,W}, condj , is
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Figure 4.2: Upper panel: Projection of the gas density around the halos A (left), B
(centre) and C (right) at z = 2. Lower panel: Line-of-sight integrated star density.

short of providing the Lagrangian history of the gas. To overcome this issue, AMR codes have
been equipped with “tracer” particles. Tracer particles are passively displaced with the gas flow
and hence track its Lagrangian evolution. Each tracer can also record instantaneous quantities,
in particular the temperature of the gas it tracks and density. Using the approach described by
Genel et al., 2013, I have implemented tracer particles for the code Ramses. While a more detailed
discussion of the scheme are presented in section 4.6, let me present here a short description of
the tracer particle scheme.

One of the constrain on tracer particle is their ability to accurately reproduce the Eulerian
distribution of the gas. A naive approach to track the motion of the gas is to use the velocity of the
gas itself. This is usually done with a cloud-in-cell interpolation (first order interpolation), where
the value of the velocity is interpolated from the 8 closest cells. Such a velocity-based approach
was implemented in Ramses (Dubois et al., 2012) and used to probe the link between cosmic gas
infall and galactic gas feeding. While this approach yields smooth trajectories, it falls short of
reproducing the gas density distribution accurately in regions of converging flows (Cadiou et al.,
2019). Using a different approach, Genel et al., 2013 suggested to instead sample mass fluxes using
a Monte-Carlo approach. In this approach, the mass flux between cells, which is readily computed
by the Riemann solver of the code, is reproduced by moving particles across the cells interface.
Each particle is assigned a transition probability

pij =
∆Mij

Mi
, (4.7)

where ∆Mij is the transferred mass (as computed by the Riemann solver) andMi is the mass of
the cell originally containing the particle. The scheme can be easily generalised to any baryonic
mass transfers between gas, stars, SMBHs via star formation and SN and AGN feedbacks.
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Figure3.7:Predictedcosmicevolutionoftheproductofextremacountsasaproxyfor
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givenbytheargumentoftheexpectationinequation(3.6)multipliedbyrequirementonthesign
ofthetwonon-zeroeigenvalues.Forinstance

condP(x)=|J|δ
(3)
D(xi)δD(D)×ϑH(−tr(xik))ϑH

(
tr

2
(xik

)
−tr(xilxlk)),

wherethetwoHeavisideconditionsensurethatthetraceisnegativeandtheminorpositiveso
thatthetwoeigenvaluesarenegative.Fromthejointtwo-pointcountofcriticalevents,wecan
definetherelativeclusteringofcriticaleventsofkindi,jsmoothedatscales(Rx,Ry)andlocated
atpositions(rx,ry),ξij(s)as

1+ξij(s)=〈condi(x)×condj(y)〉
〈condi(x)〉〈condj(x)〉

,(3.29)

with

s≡
√
2


rx−ry √

R2
x+R2

y


,(3.30)

theeventseparationbetweenx(0)andy(s).Evaluatingtheexpectationinequation(3.29)requires
fullknowledgeofthejointstatisticsofthefieldP(x,xi,xij,xijk,y,yi,yij,yijk)(involving40
variables,seesection3.A.2).

WerelyonMonte-CarlomethodsinMATHEMATICAinordertoevaluatenumericallyequa-
tion(3.29).Namely,wedrawrandomnumbersfromtheconditionalprobabilitythatxandy
satisfythejointPDF,subjecttotheconditionthatxk=0,yk=0,x=ν1andy=ν2.Foreach
draw(x(k),y(k))dependingonthetypeofcriticaleventhencethesignoftr(xij)andtr2(xik)−
tr(xikxkj)wedroporkeepthesample;ifitiskept,weevaluate|J(x)|δ

(ǫ)
D(D(x))|J(y)|δ

(ǫ)
D(D(y))

whereδ
(ǫ)
Disanormalizedgaussianofwidthǫ,whichinthelimitofǫ→0wouldcorrespondtoa
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Table4.1:Propertiesofthehalosatz=2.

NameSimulationMvir/1011M
⊙M⋆/1010M

⊙

AS13.666.07

BS27.829.20

CS36.645.09

DS17.294.18

ES15.237.84

FS34.633.49

thesimulationisinitialisedtoZ0=10−3Z
⊙toallowfurthercooingbelow104Kdownto

Tmin=10K.Reionisationoccursatz=8.5usingtheHaardtandMadau,1996modelandgas
self-shieldingabove10−2m

pcm−3.Starformationisallowedaboveagasnumberdensityof
n0=10mpcm−3andwithefficiencyǫffthatdependsonthegravoturbulentpropertiesofthe
gas(fordetails,seeKimmetal.,2017;Trebitschetal.,2017).Themaindistinctionofthisturbulent
star-formationrecipewiththetraditionalstarformationinRamses(RaseraandTeyssier,2006)
isthattheefficiencycanapproachandevenexceed100%(withǫff>1meaningthatstarsare
formedfasterthaninafree-falltime).ThestellarpopulationissampledwithaKroupa,2001
initialmassfunction,whereηSN=0.317andtheyield(intermsofmassfractionreleasedinto
metals)is0.05.ThestellarfeedbackmodelisthemechanicalfeedbackmodelofKimmetal.,2015
withaboostinmomentumduetoearlyUVpre-heatingofthegasfollowingGeenetal.,2015.
ThesimulationalsotrackstheformationofSMBHsandtheevolutionofAGNfeedbackinjet
mode(radiomode)andthermalmode(quasarmode)usingthemodelofDuboisetal.,2012.The
jetismodelledinaself-consistentwaybyfollowingtheAMoftheaccretedmaterialandthespin
oftheblackhole(Duboisetal.,2014).Theradiativeefficiencyandspin-uprateoftheSMBHis
thencomputedusingtheMADresultsofMcKinneyetal.,2012.SMBHsarecreatedwithaseed
massof104M⊙forS1and105M

⊙forS2andS3.
Thesimulationshavearoughlyconstantphysicalresolutionof35pc(oneadditionalmaximum

levelofrefinementatexpansionfactor0.1and0.2),astarparticlemassresolutionofm⋆,res=
1.1×104M

⊙,adarkmatter(DM)particlemassresolutionofmDM,res=1.5×106M
⊙,andgas

massresolutionof2.2×105M
⊙intherefinedregion.Acellisrefinedaccordingtoaquasi-

Lagrangiancriterion:ifρDM+ρb/fb/DM>8mDM,res/∆x3,whereρDM,andρbarerespectively
theDMandbaryondensity(includingstarsplusgasplusSMBHs),andwherefb/DMisthe
universalbaryon-to-DMmassratio.Themaxlevelofrefinementisalsoenforcedupto4minimum
cellsizedistancearoundallSMBHs.Tracerparticles(Cadiouetal.,2019)areaddedintherefined
regionwithafixedmassofmt=2.0×104M

⊙(Ntot≈1.3×108particles)andaredetailed
inmoredepthinthenextsection.Thedescriptionofthetracerparticleschemeisdetailedin
section4.6.Thereisonaverage0.55tracerperstarand22perinitialgasresolutionelement.Cells
ofsize35pcanddensity20cm−3containonaverageonetracerpercell.

4.2.3Lagrangiantracers
Thepeculiarevolutionofcoldflowsisusuallycapturedbytheirmaximumtemperature,asthegas
thatcomposethemneverheatedupaboveagiventhreshold(seesection4.2.6),whicheffectively
selectsthegasthatcrossedthevirialradiuswithoutshocking.WhileAMRcodesareparticularly
goodatcapturingshocksandtriggersuper-Lagrangianrefinementinregionsofinterest,theyfall
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Figure 3.8: (a): The auto-correlation of peak merger ξPP (in shades of red, as labelled
in terms of the height of the two critical points) and the cross correlation of peak and
filament merger ξPF (in shades of yellow, as labelled) as a function of separation s. As
expected, the saddle mergers are clustered closer to the higher peak compared to the
peak mergers. (b): The two-point correlation of events in 2D fields with scale invariant
power spectra of index ns = −1

Dirac function imposing here that the two determinants are zero. Eventually

〈condi(x)condj(y)〉≈
Pm(x= ν1,y=ν2, xl=yl=0)

N∑

k∈Sij

∣∣∣J(x(k))
∣∣∣δ(ǫ)D

(
D(x(k))

) ∣∣∣J(y(k))
∣∣∣δ(ǫ)D

(
D(y(k))

)
,

where N is the total number of draws, Pm the marginal probability for the field values and
its gradients, and Sij is the subset of the indices of draws satisfying the constraints i, j on the
Hessians. The same procedure can be applied to evaluate the denominator. Equation (3.29) then
yields an estimation of ξij(s, ν1, ν2). This algorithm is embarrassingly parallel.

This is illustrated in figure 3.8a which shows the auto-correlation of peak merger ξPP on
the one hand, and the cross correlation of peak and filament merger ξPF on the other at fixed
merger height, as labelled. Here we used ǫ = 0.1. Note that because equation (3.29) is a ratio, the
prefactors in the counts involving scale all cancel out.

3.5.2 Correlation of peak merger along filament

Let us briefly present the two-point statistics of high density peak mergers while assuming for
simplicity that the mergers occur along the same (straight) filament (discussed in section 3.4.2), as
it is instructive and simpler. In this approximation we can resort to one dimensional statistics. In
the high density limit, we may drop the Heaviside constraint on the sign of the eigenvalues since
it anticorrelates with the height of the peak. Then the (1D) correlation function of peak mergers,
1 + ξν1ν2(s) of height ν1 and ν2 becomes

〈δD(x−ν1)x2111δD(x1) δD(x11) δD(y−ν2) y2111δD(y1) δD(y11)〉
〈δD(x−ν1)x2111δD(x1) δD(x11)〉〈δD(y−ν2) y2111δD(y1) δD(y11)〉
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4.2 Methods
4.2.1 Equations

In this section, I detail the equations used throughout the remaining of the paper. I first derive
the equation driving the evolution of the specific angular momentum (sAM) of the gas,

l = r× v. (4.1)

To do so, let us start from Euler’s equation and the mass conservation equation

∂ρ

∂t
+∇ · (ρv) = 0, (4.2)

∂v

∂t
+ (v · ∇)v = −∇P

ρ
−∇φ. (4.3)

Taking the derivative of equation (4.1) w.r.t. time, one gets that

dl

dt
= r×

(
∂v

∂t
+ (v · ∇)v

)
+

(
∂r

∂t
+ (v · ∇)r

)
× v. (4.4)

After trivial algebra, the rightmost part of the right hand side vanishes. The Lagrangian time
derivative of the sAM then reads

dl

dt
= τP + τφ, (4.5)

where τP ≡ −r×∇P/ρ, τφ = −r×∇φ are the specific pressure and gravitational torques.
Here P and ρ are the pressure and density of the gas and φ is the gravitational potential. The
Lagrangian rate of change describes the evolution of the sAM in the frame comoving with the
gas. The potential is defined using Poisson equation

∇2φ = 4πGρtot, (4.6)

where ρtot is the total matter density (DM, stars, gas and SMBHs). Using the linearity of equa-
tion (4.6), the total potential can be written as the sum of the potential due to each component
φ = φDM+φ⋆+φgas

1. One can similarly decompose the gravitational torques into three different
components τφ = τφ,DM + τφ,⋆ + τφ,gas.

4.2.2 Numerical simulation
I have run a suite of three 50 cMpc/h-wide cosmological simulations, hereafter named S1, S2,
S3. The three simulations contain 6 halos withM ' 5× 1011M⊙, hereafter named A, B, C, D, E
and F. Their properties are presented in Table 4.1. The size of the zoomed Lagrangian volume
in the initial conditions is chosen to encapsulate twice the virial radius of the halo at z = 2.
The simulation are started with a coarse grid of 1283 (level 7) and several nested grids with
increasing levels of refinement up to level 11. The adopted cosmology has a total matter density
of Ωm = 0.3089, a dark energy density of ΩΛ = 0.6911, a baryonic mass density of Ωb = 0.0486,
a Hubble constant of H0 = 67.74 km s−1Mpc−1 , a variance at 8Mpc σ8 = 0.8159, and a non-
linear power spectrum index of ns = 0.9667, compatible with a Planck 2015 cosmology (Planck
Collaboration, 2015).

The simulations include a metal-dependant tabulated gas-cooling function following Suther-
land and Dopita, 1993 allowing gas to cool down to T ∼ 104K via Bremsstrahlung radiation
(effective until T ∼ 106K), via collisional and ionisation excitation followed by recombination
(dominant for 104K ≤ T ≤ 106K) and via Compton cooling. The metallicity of the gas in

1Here I neglect the contribution from SMBHs as it is negligible on galactic scales.
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wheretheexpectationisovertheGaussianPDFwhosecovarianceforthefield(x,x1,x11,x111,y,y1,y11,y111)
obeys
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,(3.31)

whereforinstanceγ02(s)=〈x(0)y22(s)〉.Thedominantcontributioninthelargethreshold
ν1,ν2≫1,largeseparations≫1regimereads

∆ξ
0
ν1ν2(s)=

ν1ν2(γ00(s)+γ(2γ02(s)+γγ22(s)))

(1−γ2)2,(3.32)

whichasexpectedscalesliketheunderlyingcorrelation,γ00(s),boostedbythebiasfactorν1ν2
(Kaiser,1984).Inthatlimit,thesub-dominantcorrectiontothecorrelationfunctioninvolvingthe
thirdderivativeofthefieldreads

∆ξ
1
ν1ν2(s)=

2
(
γ̃2γ

11(s)+2γ̃γ13(s)+γ33(s)
)2

(1−γ̃2)2,(3.33)

whereγ̃-weightedlinearcombinationoftheautocorrelationof∇∆δandthecrosscorrelationof
∇∆δand∇δappear,evaluatedateventsseparatedbys.Theassumptionofsuccessivemergings
ofpeaksoccurringalongastraightfilamentisofcourseveryidealised,andpreventsusfrom
consideringcrosscorrelationsbetweenpeakmergersande.g.filamentmergers.

3.5.3Conditionalmergerratesinvicinityoflargertides
Inthecontextofgalaxyformation,itisofinteresttoquantifyconditionalmergerratescomputed
subjecttotidesimposedbythelargescalestructuretoexplaingeographicallytheoriginof
assemblybias.Todosowemustcomputetheconditionaleventcounts,subjecttoagivenlarge
scalecriticalpointatsomedistancesfromtherunningpointx.Thecriticalpointcanbee.g.a
peakofagivengeometryandheight,ifoneisconcernedwiththeimpactofclustersonmergers
treesofdarkhalosintheirvicinity(Hahnetal.,2009;Ramakrishnanetal.,2019),oritcouldbea
saddlepoint,asaproxyforalargerscalefilament,whenstudyinghowhalosgrowthstallsinsuch
vicinity(Borzyszkowskietal.,2017;Mussoetal.,2018).Inturnthisinvolvesthejointexpectation

〈condj(x)δD(yi)|detyij|〉.(3.34)

Evaluatingequation(3.34)requiresfullknowledgeofthejointstatisticsofthefieldatx(0)and
y(s),P(x,xi,xij,xijk,y,yi,yij)(involving30variables).ThecorrelationsofthePDFinvolves
thecovarianceofthefieldanditsderivativescomputedattwosmoothingscales,RandRc

correspondingtotheproxyforthetimelineofthehalosontheonehandandthelargescale
structureontheotherhand.Wecanthenmarginaliseoverallvariables,subjecttoe.g.imposing
theheight,νcandshape,µciofthelargescalecriticalmode:

〈cond(x)δD(yi)|detyij|δD(x−ν)δD(y−νc)ϑH(−λi)δD(µi−µ
c
i)〉
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Figure4.1:SchemeofthelinkedlistholdingtheparticlesandtheAMRtree,refined
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octatlevel1(c).[♥Movemesomewhere...ornot?]
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where λi are the eigenvalues of xij and µi are the eigenvalues of yij . The conditions imposed by
the mergers and the properties of the peaks and large scale environment reduces the number of
integrals from 30 to 21. Section 3.C.3 describes how to sample conditional event counts using
constrained realisation of Gaussian random fields.

For the sake of simplicity, let us illustrate here the conditional merger rates in 2D. Let us
impose given large scale saddle with curvature 1/2,−1/3 and look a the excess probability of
having a a merger of type j at some distance r and orientation θ w.r.t. to the frame set by the
saddle. [♠ CP will do plot and conclude.]

3.6 Measurements for Gaussian random fields
Let us validate the theory while counting critical events within realisations of Gaussian random
fields. We then bin them to estimate their one and two point statistics.

3.6.1 Method
For each power-law power spectrum with spectral index ns = −2,−1.5,−1,−0.5, we have
generated 200 gaussian random fields. We have also generated 200 gaussian random fields
with a ΛCDM power spectrum using mpgrafic (Prunet et al., 2008) in a Planck Collaboration,
2018 cosmology generated using the Eisenstein and Hu, 1999 fitting formula. Each realisation
will henceforth be called a “cube”. Each cube has a size of 2563 pixels and a physical extent
of 100Mpc/h .3 We have smoothed each cube using a Gaussian filter with scale ranging from
1Mpc/h to 20Mpc/h (2.56 px to 51.2 px). The smoothing operation were operated in Fourier
space, assuming periodic boundary conditions. At each scale, we have detected all critical points
(minima, saddle points and extrema) using the method detailed in section 3.C.1. We have then
detected the critical events using the method detailed in section 3.C.2.

Additionally we have generated 200 20482 cubes with a power-law power spectrum with
spectral index ns = −1 and a physical box size of 1 000Mpc/h which we smoothed with a
Gaussian filter with scale ranging from 1Mpc/h to 20Mpc/h .

3.6.2 Critical events counts
In this section we present the number density of critical event measured in cubes with a power-law
power spectrum and compare the theoretical predictions of section 3.4.3 to measurements in
cubes.

We first measured the ratio of the number of critical events of different kind. We found
rF/P = rF/W ≈ 2.1, regardless of the smoothing scale or the underlying power spectrum. This
excess of about 2% in the ratio originates to an over-detection of saddle point with respect to local
extrema. Theory predicts this ratio to be Nsaddle/Npeak ≈ 3.055 in 3D (see e.g. Codis et al., 2018,
equation 2) while the measured value is 3.1. In the following of the chapter, we have corrected
the excess number density of F ,W critical events.

Let us now proceed to the number count at fixed density. Figure 3.9 shows the PDF of the
critical events as a function of their height for different power-law spectra (ns = −2, −1.5, −1,
−0.5, ΛCDM). The critical events have been selected at scale 2.35Mpc/h ≤ R ≤ 3.01Mpc/h
(6.0 px ≤ R ≤ 7.7 px). The lower boundary ensures that the critical points are well separated4.
The upper boundary is fixed so that the smoothed cubes have consistent effective spectral param-
eters γeff(R) and γ̃eff(R). Indeed the cubes have scale-dependant spectral parameters induced by
the finiteness of the box and the discreteness of the grid (see e.g. Gay, 2011, figure 5.1). Errorbars

3The box size is only relevant in the ΛCDM case, as the power-law cases are scale invariant.
4Critical points are typically separated by R∗ & 0.6R (for ns < 0), so R = 6px gives a typical separation of

3.6 px between critical points, which is larger than the number of points used to infer the curvature.
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before it reaches the disk. The details of where this AM will end up are key to understand the
AM distribution in galaxies, but also to understand to what extent their spin is aligned with the
cosmic web. If the dominant forces acting on the AM are pressure forces, resulting from internal
processes (SN winds, AGN feedback bubles), then the spin of the galaxy would likely be a result
of chaotic internal processes and would lose its connection to the cosmic web. Similarly, if the
AM is lost into thermal energy (which is then radiated away) in shocks, the galactic spin would
be a weak function of the large-scale AM induced by the cosmic web. On the contrary, if the
dominant forces are gravitational forces, then the spin-down of the cold gas is likely to drive a
spin-up of either the disk or the dark matter halo, which themselves are the result of their past
AM accretion history. In this last scenario, the details of which part(s) of the halo or the disk
interact exchange AM with the infalling material would constrain models aimed to understand
the evolution of the spin of galaxies.

Historically, the study of cold accretion has been particularly challenging in numerical simu-
lations. Early simulations using SPH methods largely over-estimated the fraction of gas accreted
cold (see e.g. Nelson et al., 2013, for a discussion on this particular issue) as a result of the
difficulty to capture shock using SPH. AMR simulations do not suffer from this caveat (Ocvirk
et al., 2008), yet they fail at providing the Lagrangian history of the gas — in particular its past
temperature — which is required to detect the cold-accreted gas. In order to circumvent this
limitation, most simulations relied on velocity-advected tracer particles (Dubois et al., 2013;
Tillson et al., 2015). However, this approach yields a very biased tracer distribution that fails
at reproducing correctly the spatial distribution of gas in filaments: most tracer particles end
up in convergent regions (center of galaxies, center of filaments) while divergent regions are
under-sampled. In order to reproduce more accurately the gas distribution, Genel et al., 2013
suggested to rely on a Monte-Carlo approach where tracer particle follow mass fluxes instead of
being advected. Using this approach, Cadiou et al., 2019 showed that tracer particles are able to
faithfully reproduce the gas distribution while providing the Lagrangian history of the gas, and
in particular its past temperature and position.

In this chapter, I detail the results obtained from cosmological simulations of group progenitors
as z > 2. I provide a detailed study of the evolution of the AM of the cold and hot gas. In particular,
this chapter aims at answering the question of which forces are responsible for the spin-down
and realignment of the AM of the gas accreted in the two modes of accretion (hot and cold).
Section 4.2 presents the numerical setup and tools I used. In particular, I developed new numerical
methods tailored to the problem of cosmic accretion: I developed a new tracer particle scheme for
the AMR code Ramses. I also implemented new methods to extract the gravitational potential
of the gas, stars and dark matter respectively as well as a new post-processing tool to compute
pressure gradients. Section 4.3 presents a detailed study of the AM evolution of the cold and hot
gas. It details the evolution of the magnitude and orientation of the AM and the different forces
and torques at play in the different regions of the halos. Section 4.4, I discuss the results and their
implication on the distribution of AM in the galaxy and the inner halo. Finally, section 4.5 wraps
things up and concludes.

[♥move this] In most AMR codes, the collisionless fluids (stars, DM, black holes) are represented
as particles that live on the AMR grid. In Ramses, particles are stored in a doubly-linked-list ;
this structure has the advantage to enable insertions and deletions in time O(1), at the cost of
requiring O(N) of memory, where N is the number of particles. Each oct has also a pointer to
the head and the tail of the linked particle list, as illustrated on figure 4.1.
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Figure3.9:PDFofthecriticaleventsasafunctionofheightinascaleinvariantGRFas
labelled.Theleftbundlecorrespondstovoidmergers,themiddlebundletofilaments
mergersandtherightbundletopeakmergers.Theplaincurvecorrespondstothe
theorywhiletheerrorbarscorrespondtotheerroronthemeanextractedfrom160
simulations.ThegreylinesaretheresultsobtainedforaΛCDMpowerspectruminitially
smoothedoverascaleof2.5Mpc/h.Thetoppanelshowstheresidualsforns=−2.
Thedetectionalgorithmisstillaccuratein3D.

havebeenestimatedusingabootstrapmethodranon400subsampleseachmadeof50randomly
chosencubes.Solidlinesshowtheresultofafitofthetheoreticalformulatothecubedatawith
freeparametersγ̂,ˆ̃γ.

Theeffectivespectralindexn̂sisfixedusingγ=
√
(ns+3)/(ns+5).Wefindvaluesofγ

andγ̃consistentwiththeeffectivevaluesmeasureddirectlyinthecubesusingequation(2.92).
Forexamplewithns=−2wemeasureinthecubesγeff=0.62±0.02,γ̃eff=0.72±0.01
(ns,eff=−1.75±0.13)usingequation(2.92).Themeanvalueshavebeenestimatedwithasample
of100cubesandtheerrorsarethestandarddeviationsofthesample.Thefittingprocedureonthe
PDFofthecriticaleventsyieldsγ̂=0.621±0.002,ˆ̃γ=0.737±0.004(n̂s=−1.74±0.02).The
relativedifferencebetweentheoryandmeasurements,presentedontheupperpaneloffigure3.9,
shownosystematicdeviationofthemeasurementsandiswithinafewpercentsintheregion
wheremostoftheeventsare.

Inordertofurthertestthetheoreticalprediction,wehaveproceededtothesameanalysis
inthe2Dcase.Theresultsarepresentedonfigure3.10andshowthattheagreementbetween
theoryandmeasurementsisoftheorderofthepercent.Onceagain,nosystematicdeviation
ofthemeasurementsisnoted.Theresultsin2and3Dconfirmtheanalyticalformuladerived
insection3.4.3andillustratetheaccuracyofthedetectionalgorithmpresentedinsection3.C.
Interestingly,sincethealgorithmhasbeendesignedtomakenoassumptiononthenumberof
dimensions,itisexpectedtoworkaswellinddimensions.

3.6.3Twopointstatistics

Letusnowestimatethetwo-pointstatisticsofcriticalevents.LetuswriteformallyAandBany
twosubsetsofcriticalevents.Theircorrelationfunctioncanbenumericallyestimatedusing

ξAB(s)=〈AB〉
f
√
〈ARA〉〈BRB〉

,(3.35)
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initialtinydensityfluctuationsottheprimordialdensityfieldandundertheeffectofgravitational
forces,matterdepartsunderdenseregiontoflowthroughcosmicsheetsintofilamentarystructures.
Darkmatterthenflowsfromthesefilamentstowardshigh-densitypeaksthatwilllaterbecome
halos.Intheprocess,matteracquirespropertiesintheirjourneythroughvoids,sheetsand
filamentsofthecosmicwebwhichinturnaffecttheassemblyofdarkmatterhalos,asshownin
chapter3.BaryonsfollowthesameinitialfateasDMandflowfromunderdenseregionstosheets.
Yet,astheyflowinsheets,pressureforcespreventsthemfromshell-crossingsothattheylose
theirnormalvelocitycomponent.Followingpotentialwellscreatedbydarkmatter,baryonsthen
flowtowardsfilamentarystructureswheretheyloseasecondcomponentoftheirvelocityand
reachadense-enoughstatetoefficientlycoolradiatively.

Atfirstorder,galaxiesformationisaffectedbythemassoftheirdarkmatterhostandthelocal
environment,asencodedbythelocaldensityonsub-Mpcscales,asitisassumedthatbaryons
havethesamepastaccretionhistoryasdarkmatter.Thesemodelshaveprovensuccessfulat
explaininganumberofobservedtrends,inparticularagainstisotropicstatistics,intheso-called
halomodel,yettheyfailatexplainingsomeeffectssuchasspinalignments(Chisarietal.,2017;
Codisetal.,2015b;Duboisetal.,2014),coloursegregation(Kraljicetal.,2018;Kraljicetal.,2019;
Laigleetal.,2018)orstarformationrates(Kraljicetal.,2019;Malavasietal.,2017).Indeed,
galaxiesformbyconvertingtheirgasintostarsandbysuccessivemergers,whichareinturn
affectedbythetidesandlarge-scalemodulationsofthedensityfieldinducedbythecosmicweb.
Thedetailedhistoryofhowthegaswasacquiredandhowmuchangularmomentum(AM)it
brought,aswellastheoriginofthemergersshouldinprincipleimpacttheformationofthe
galaxy.Sincethephysicalprocessesinvolvedindarkmatterhalosformationdifferfromthe
baryonicprocessesatthecoreofgalaxyformation,onecanexpectthatthecosmicwebwillhave
adifferentimpact,ifany,ontheformationofgalaxiesandmayexplainthedisparityoftheir
propertiesinsimilar-lookingdarkmatterhalos.

Inparticular,atfixedhalomassandlocaldensity,propertiesofgalaxiessuchastheircolour
orthekinematicstructurevarieswiththeirlocationinthecosmicweb.Onekeyprocessinthe
differentialevolutionofgalaxiesisgasaccretion.Indeed,atlargeredshiftsithasbeensuggested
thattheaccretionofgasisdominatedbyflowsofcoldgasfunnelledfromthelargescalesto
galacticscales(BirnboimandDekel,2003;DekelandBirnboim,2006).Thismodeofaccretionhas
thenbeconfirmedinnumericalsimulationsusingdifferentmethods(Nelsonetal.,2013;Ocvirk
etal.,2008)asthesourceofasignificantfractionofthebaryonicmassbutalsoAM(Kimmetal.,
2011;Tillsonetal.,2015)andithasbeenproposedthattheseflowsmayfeedsupermassiveblack
holes(Duboisetal.,2012),whichinturnaffecttheinflowrates(Duboisetal.,2013;vandeVoort
etal.,2011a;vandeVoortetal.,2011b).UsinganextensionofTidalTorqueTheory(TTT)(Peebles,
1969;Schaefer,2009),Codisetal.,2015bshowedthatanisotropicenvironments,suchaslarge-scale
filamentarystructures,biasestheAMdistributiontoalignitwiththecosmicweb.Thisgaswill
thenfallingalaxiesviacoldflows,feedingdiskswithangular-momentumrichgasthatisitself
alignedwiththetidesofthecosmicweb.

Recentworkshaveshownthattheflowsaresubjecttoavarietyofprocesses:theymay
fragment(Cornuaultetal.,2018)orbedisruptedbyhydrodynamicalinstabilities(Mandelker
etal.,2016;Mandelkeretal.,2018)buttheyarealsosensibletofeedbackevents(Duboisetal.,
2013).Inthiscontext,Danovichetal.,2015showedthatinnumericalsimulations,coldflowsare
neverthelessabletofeedgalaxieswithangular-momentumrichmaterial.Inthisstudy,itwas
advancedthattheAMacquiredoutsidethehaloistransporteddowntotheinnerhalo;thegasthen
settlesinaringsurroundingthedisk,wheregravitationaltorquesspinthegasdowntothemean
spinofthebaryons.Anotherstudy,albeitatlargerredshifts,foundthatthedominantforcewas
pressure(Prietoetal.,2017).SincetheirisnotmuchfreedomonthefinalAMofthegalaxies,as
constrainedbytheirradius,theexcessAMbroughtbycoldflowshastoberedistributedsomehow
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Figure 3.10: PDF of the critical events as a function of height in a scale invariant GRF
in 2D with spectral index ns = −1. The left curve corresponds to filament mergers and
the right curve to peak mergers. The plain curve correspond to the theory while the
error bars correspond to the error on the mean extracted from 200 simulations. The
top panel shows the residuals. The agreement between the analytic prediction and
the measurements reflects the accuracy of the algorithm presented in section 3.C in
identifying critical events.

where RA and RB are uniformly distributed random points with 1/f times the number of points
as A and B respectively. We have additionally checked that common estimators, such as the
Landy-Szalay estimator yield similar results. This is further discussed in section 3.D, which shows
that both estimators yield similar results at scales of interest to our analysis (s = r/R ' 1).
For each cube in the simulation, we select all critical events in a thick slice of smoothing scales
(∆R/R = 0.3). We then select two subsamples, the first is selected at an overdensity ν = 1 with
kind j and the second at ν = 0.7 with kind k (j, k ∈ {P,F ,W}). The correlation functions are
then given by the number of pairs at distance s = r/R in all cubes using equation (3.35). The
pair counting was done using a dual-tree algorithm, as described in Moore et al., 20015.

Figure 3.11 shows the measured correlation functions in 2D for a power law power spectrum
with spectral index ns = −1 (top panel) and in 3D with a ΛCDM power spectrum smoothed at
scales between 1 and 20Mpc/h (bottom panel). In both cases the PF correlation function (peak
merger to filament merger correlation) peaks at r ≈ 1.5R while the PP correlation function
(peak merger autocorrelation) peaks at r ≈ 2.5R. This indicates that each halo merger is more
likely to be followed by a filament merger compared to another halo merger. Interestingly, peak
mergers are also more likely to be followed by void mergers. Indeed, a halo merger induces a
topological defect, as it leads to a resulting over-connected halo. The defect is quickly corrected
by a filament merger, decreasing the local connectivity of the halo back towards the cosmic
average. Doing so another topological defect appears as a void becomes under-connected as one
of its walls disappeared. This last defect is then corrected by a last void merger that makes the
under-connected void disappear. On average, critical events appear so that the global ratio of
peak-to-filament, filament-to-walls and wall-to-void stays constant as smoothing increases, so
that the global connectivity is preserved. The link between critical events and global connectivity
of the cosmic web is further discussed in section 3.7.2.

5See the scipy doc for more information.

Maxime Trebitsch — Obelisk collaboration
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4.1 Introduction
One of the success of the ΛCDM model is its ability to reproduce the large-scale structure of the
Universe observed in galaxy distribution (e.g. Springel et al., 2006). These structure form out the
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Figure3.11:(a):CorrelationfunctionsbetweencriticaleventsP,Fin2Datfixed
smoothingscale.(b):CorrelationfunctionsbetweencriticaleventsP,F,Win3Dat
fixedsmoothingscale.Pairsofcriticaleventshavebeenselectedatν=0.7andν=1.0.
Thecorrelationfunctionofhalo-mergerwithfilament-merger,ξPF,peaksatr∼1.5R
whilethehalo-mergerautocorrelationfunctionsξFFpeaksatr∼2R.Thisshowsthat
halo-mergersaremorelikelytobefollowedbyfilament-mergers.Thedatahavebeen
filteredusingaSavgolfilter.ErrorbarshavebeenestimatedassumingaPoissonnoise
onthesample.

3.7Applicationsanddiscussion

Thescopeofapplicationofthepresentformalismisobviouslyverywide.Ratherthanattempting
tocoveritall,onlyafewexampleswillbepresented,whileamorethoroughinvestigationisleft
forfuturework.

Inacosmicframework,section3.7.1willfirsttranslatetheonepointstatisticspresentedin
theprevioussectionintomergerratesasafunctionofmassandredshift.Section3.7.2explains
howmergersoffilamentsneedtomatchthatofpeaksinordertopreservetheconnectivityof
peaks.Section3.7.3explainshowconditionalmergercountsinthevicinityofafilamentexplains
howtheenvironmentdrivesassemblybias.Section3.7.4showhowthecriticaleventscanbe
usedtocompresstheinitialcosmologicalconditionintoaveryfinitesetofpointsasamean
topredictthepropertiesofgalaxiesemergingfromtheseconditionsusingmachinelearning
tools.Section3.7.5illustrateshowthewallmergerratesyieldconstraintonmodifiedgravity
orprimordialnongaussianities.Finally,applicationstootherfieldsofresearchincosmology
(intensitymaps,weaklensing,voidstatistics)andbeyondarediscussedinsection3.7.6.

3.7.1MergerratesinM,zspace

Theskeletontreeformalismoverwhichthepresentworkisbuiltpresentsomeresemblanceto
ExtendedPressSchechtertheory(EPS)andexcursionsettheories,butwithnoticeabledifferences.
Letushighlighttheadvantagesandlimitationsofthepresentformalism.Initsoriginalform,
excursionsettheoryBondetal.,1991assumesthatthestepsinvolvedinaveragingoverlargerand
largerscalesarefullyuncorrelated,henceignoresthecorrelationofthefieldonvariousscales.

ItisstraightforwardtochangevariablefromRtoM(=α
4
3πρ̄R3)andfromνtozusingthe

sphericalcollapseconditionwithaGaussianfilter(equations3.1and3.2),sothatforconditionc
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function.Letusrestricttotwoestimators,thefirstonebeing

ξAB=〈AB〉
f
√
〈ARA〉〈BRB〉

,(3.85)

whereA,BisthetwocatalogswearecrosscorrelatingandRA,RBarerandomsampleswith1/f
timesmoredatathanA,Brespectively.WecomparethisestimatortothepopularLandy-Szalay
(LS)estimator(LandyandSzalay,1993;SzapudiandSzalay,1999)

ξAB,LS=〈(A−RA/f)(B−RB/f)〉
〈RARB〉/f2.(3.86)

Theresultsareshownonfigure3.23.Atlargescales,bothestimatorsconvergetotheexpected
valueofone.Howeveratsmallscales,theLSestimatorismorenoisy.Thisisdueto[♥Simon,an
idea?].Followingapragmaticapproachwehaveusedthroughoutallouranalysistheestimator
ofequation(3.35).
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Figure 3.12: PDF of the halo merger rate (solid red lines) and the wall merger rate
(dashed blue lines) as a function of redshift of formation, see the text for details. For
small masses the merger rate follows the Press-Schechter (Press and Schechter, 1974)
halo mass function (up to an [♥ arbitrary] renormalisation, black dotted line), while at
larger masses the halo merger rate decays significantly faster. As expected, the transition
mass increases with time. The same evolution is found for void mergers.

(peak, saddle, void) we have6
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c
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(
3M

4πρ̄

)1/3

, (3.36)

where α ≈ 2.1 and ρ̄ ≈ 2.8× 1011 h2M⊙/Mpc3ΩM (see e.g. Musso et al., 2018, Table A1).
From equations (3.13) and (3.36), we are in a position to count how many (peak, filament,

void) mergers occur early or late in the accretion history of a certain mass or within some mass
range, via straightforward integration. This also allows us to quantify the rate of small mergers
within some time sequence.

For instance, equation (3.36) yields the number of expected mergers involving satellite of
massM at redshift z if a type of merger condition is imposed. Note that for collapsing filaments
and walls the δc threshold should be different (Pogosyan et al., 1998).

Figure 3.12 shows the merger rate of peaks and voids as a function of the mass of non linearity.
The cosmology-dependant terms of equation (3.36) have been computed using the code Colossus
(Diemer, 2018) in a Planck cosmology. In order to evaluate the number density of critical events,
we have assumed a scale-dependant equivalent power-law power spectrum7. At small masses,
the peak merger rate behaves like a Press-Schechter function (up to a renormalisation) while at
large masses, the decay is faster than Press-Schechter, see section 3.7.1.1 for details. [♥ need
checking] [♥ the rare event limit does not seem to fit in the picture? Mistake there?]
[♠ discussion: distinguish minor major merger ratios]

6Note that dD/dz = −Df/(1+z) with f ≡ d logD/d log a ∼ Ω0.6
m .

7At each scale, the equivalent power-law power spectrum is given by the formula ns,eq = −3− 2 d log σ/d logR .
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Figure 3.22: Density profile of a random field constrainted to a density δ = 1, null
gradient and a hessian with eigenvalues σ2/2,−σ/2,−σ in directions x, y, z at the
centre of the box, assuming periodic boundary conditions. The expectation of the
field is shown in dashed lines and the value of the field in one realisation is shown in
solid lines. Dotted lines show the second order Taylor series of the field around the
constrained point. The inset shows a zoom on the constrained zone. For the sake of
clarity, each curve have been shifted by 0.02. At small distances from the constrain, the
field resembles its mean and its Taylor expansion.

procedure may leave some heads unpaired (e.g. critical points at the largest smoothing scale do
not merge but have no successor). In practice the unpaired heads typically account for less than a
percent (0.5% for ∆R = αR∆ logR with α = 2) of the total number of heads.

An alternative to the present algorithm could involve modifying Disperse to only retain
points of lowest persistence.

3.C.3 Generation algorithm

We have used ConstrField coupled with MPgrafic from Prunet et al., 2008 to generate con-
strained realisations of a Gaussian random field. We generate an unsmoothed Gaussian random
field, constrained to have a filament-type saddle point of height δ = 1 (ν = 1.17) at smooth-
ing scale R = 5Mpc/h . The eigenvalues of the Hessian are constrained to be {λ1, λ2, λ3} =
σ2{−1/2,−1/2,−1} with eigenvectors {x̂, ŷ, ẑ}. Figure 3.22 shows the mean density profiles as
well as one realisation. As expected, the density is locally entirely set by the constrain and have a
parabola-like shape. At larger scales, the field decouples from the constrains resulting in large
fluctuations around the mean value.

3.D Comparison of two-point correlation function estimators

In the field of cosmology, some efforts (see Kerscher et al., 2000, and references therein) have
been dedicated to build unbiased estimators of the two point correlations. Indeed, such estimator
are impacted by the size of the sample as well as finite volume effects if the catalog does not cover
the entire sky. Because of periodic boundaries, we do not have problem with the size of the box.
Let us take a pragmatic approach in order to pick a suitable estimator of the two-point correlation
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3.7.1.1Rareeventlimit
Forthelargeνlimit,equation(3.36)yields

∂2n

∂logM∂z

∣∣
∣c∝ν

4
M

1/3
exp

(
−

ν2

2(1−
5
9γ2)

)
,(3.37)

sothatthemergerratescaleslikeM(2ns+4)/3,withanexponentialcutoffinM(ns+3)/3given
thatν2∝σ−2

0∝Rns+3∝M(ns+3)/3.Notethatthecutoffis1/(1−
5
9γ2)fasterthanforthe

PressSchechtermassfunction.[♥check]
Therateofvoiddisappearance,equation(3.36)

3.7.2Consistencywithcosmicconnectivityevolution
ThepropertiesoftheinitialrandomfieldwasshownbyCodisetal.,2018tocontroltoalarge
extenttheconnectivityofdarkhalos,asdefinedbythenumberofconnectedfilaments(locally
andglobally)atagivencosmictime.Theupshotofthisworkisthatthepackingofpeaks
(imposedbytheirexclusionzone)andsaddlesimpliesthat3-4filamentstypicallydominatelocally.
Interestingly,therateoffilamentdisappearingmustmatchthepeakmergerrate,inorderto
preservethisnumber.Beyondnumerology,thisrateisimportantbecausefilamentslaterfeed
coherentlydarkhalos,hencetheirlifespanmattersinthesubtlebalancebetweenenvironmentally
drivendisruptionversusbuildingupthroughfilamentarycoldgasinflow.

Inpractice,oneshoulddistinguishthelocalandglobalconnectivity(seeCodisetal.,2018,
formoredetails).Unfortunately,thelinkbetweenglobalconnectivityandmergerratesthatwas
discussedinthepresentworkdoesnottranslatestraightforwardlytothelocalconnectivity.Our
qualitativeunderstandingofthecriticalstructureofGaussianrandomfieldsremainsinclose
relationtopackaging:eachvicinityofacriticaleventorpointmustbycontinuityoccupyacertain
volumeofspace,assetbyitseigenvalues,whichputsconstrainsonthepositionofotherpointsin
thevicinity.Theideaisthate.g.beforeconnectingagivenpeaktoapeakofadifferentheight,the
fieldmustfirstgothroughalocalminimaalongtheridge,whichdistanceissetbythe‘width’of
thatpeak.Forevents,theprocessofsmoothingthefieldwillimpactboththelocalcurvaturebut
alsothecurvatureoftheseotherpoints.Henceitisexpectedthatsmoothingjointlydisconnects
neighbouringpeaksasmergersoccur:theridgesaresmoothedoutbecausetechnicallytheir
saddlepointsvanish.

Wecanquantifythisprocessviathetwopointfunctionsoftheseevents.Fromtheauto-
andcross-correlationspresentedinsection3.5,wecandefinetheratiooftheseparationatthe
peakofthesetwocorrelations(sij=argmaxsξij(s))asameasureoftherelative‘proximity’of
thetwoevents.SincethisratiosPF/sPP≈3/4issmallerthanone,itmeanstherateatwhich
filamentsdisappearmatchesthemergerrate,sothatthetypicalnumberoffilamentperhalo
remainsconstantthroughcosmictime.Figure3.13presentsacartoonillustratinghowsmoothing
inducesalocalPFFPsequenceofmergersin2D,whichpreservestheconnectivityofpeaks,and
isconsistentwiththerelativeratesofevents.Figure3.14(leftpanel)illustratesananalogous
consistentPF

4
Psequencein3D.Therightpanelshowshowthelocalconnectivityof3canalso

bepreserved,astheweakerfilamentstypicallylieofftheplane.
Finally,theclusteringoffilamentdisappearanceimpactstheconnectivityofpeaksasthey

mergeasdiscussedinthenextsection,(seefigure3.15,bottomrightpanel).Thisisadirect
consequenceoftheclusteringofeventsofthevarioustypes.

3.7.3Assemblybiasintheframeoffilaments
Letusnowmakeuseofthemergerstatisticstostudytheimpactofthelargescalestructures
onassemblybias,followingsection3.5.3.Previousworkshavehighlightedthemodulation
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8:ifc6∈P′
kthen

9:P′
k←P′

k+{p,c}⊲Foundnewprogenitor
10:endif
11:endfor
12:Pk←P′

k

13:forcinCR,kdo⊲Loopovercrit.points
14:ifc6∈P′

kthen⊲Keeponlyunpairedones...
15:Hk←Hk+{c}⊲...andaddthemtoheads
16:Pk←Pk+{c}
17:endif
18:endfor
19:R←R(1−∆logR)
20:endwhile
21:returnHk⊲HeadsarepointswithnosuccessorsatlargerR
22:endprocedure
Here,SortedPairs(X,Y,Rmax)returns(x,y,d),wherex,yarepointsinX,Yandd≤Rmaxis
theirrelativedistance(in(r,R)space).Thetuplesaresortedbyincreasingdistance.Thiscanbe
efficentlyimplementedusingaKD-treewithperiodicboundaryconditions.BuildHeadsbuildsall
headsbyusingawatershedapproach.Startingfromthelargestsmoothingscales,itfindsand
discardsallcriticaleventsthatareprogenitorsofaheadatanylargerscale.Theremainingpoints
havenosuccessor(theyaretheprogenitorofnothing)andarehenceheads.

Oncetheheadshavebeencomputed,thesecondstepofthealgorithmpairsthem(line9)
1:procedureFindHeadPairs(H1,...,Hd,R,∆R)⊲Findpairsofheads(crit.events)
2:HR,k←{c∈Hk|R≤c.R<R+∆R}⊲KeepheadsatscaleR
3:P←{}⊲Headpairlist
4:forkin1,...,d−1do
5:P←P+SortedPairs(HR,k,HR,k+1,R)
6:P←P+SortedPairs(HR,k+1,HR,k,R)
7:endfor
8:P←SortByDistance(P)
9:P′←{}⊲Pairswithnodoublecounts
10:forc1,c2,dinPdo
11:ifc16∈P′andc26∈P′then
12:P′←P′+{c1,c2}
13:endif
14:endfor
15:E←{}⊲Criticalevents
16:forc1,c2inP′do
17:E←E+CritEventData(c1,c2)
18:endfor
19:returnE
20:endprocedure
Lines5-6ensurethatthedetectionmethodisinvariantbypermutationofk←d−k+1.
CritEventData(c1,c2)computestheproperties(position,kind,gradient,...)ofthecritical
eventsgiventwocriticalpoints.FindHeadPairsworksasfollow.Itfirstfindsallpairsofheads
separatedbylessthanasmoothingscale.Itthenloopsoverallpairs(sortedbyincreasingdistance)
andgreedilyconsumesheads.Eachheadcanonlybepairedonce,toitsclosestnot-yet-paired
headofeitherthepreviousornextkind.ThispreventsforexampleFcriticalpointspointsfrom
beingpairedtoaPandaWcriticalpoint,whichwouldresultinadoublecount.Notethatthis
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Figure 3.13: Le�: Snapshots of the density field at two smoothing scales (colour
coded from blue, low density to red high density). The black line represents density
ridges/trough connecting the red peaks, and the blue voids via the green saddle points.
As the two low persistence pair of peaks (in white) merge the connectivity increases
from 4 to 6 (as labeled). The fate of this connectivity now depends on the nature and
location of the next merger events inspired from Sousbie et al., 2011a. Right: As labelled
from a) to d) an abstraction of the merger sequence of a 2D ‘cosmic crystal’ impacting
the connectivity of the central peak. Ridges are shown in black while troughs are shown
in dark blue. The red circles represent the peaks, the green stars the saddles and the blue
diamonds the voids. A P1 merger (highlighted in light gray) rises the mean connectivity
of the central peak from 4 to 6, but the next two F1,2 mergers (highlighted in darker
gray) lower it back to 4. The next P2 merger (panel d) will reduce the void’s connectivity.
A more realistic representation of this process is also visible on figure 3.4.
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Figure 3.14: Following the cartoon shown in figure 3.13, the left panel shows a smooth-
ing sequence (from top to bottom) which would preserve the connectivity of a 3D peak.
It requires that each P merger should be followed by fourF mergers in the vicinity. The
right panel highlights how the multiplicity is preserved if one starts with 3 dominant
co-planar filaments.
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where∆x = x− xc. The algorithm works as follow:
1. Solve equation (3.84) for each cell on the grid. We then get a set of points (xi

c,x
i), where

the former is the cell centre and the latter the closest critical point.
2. Remove all critical points found at |xi

c,x
i|∞ ≥ ∆x, where ∆x is the grid spacing.

3. For all critical point, compute the value of the hessian by interpolating linearly from the
2N (4 in 2D, 6 in 3D) neighbouring cells.

4. Compute the eigenvalues of the hessians and the type of the critical point (maximum, saddle
point(s) or minimum).

5. Merge all critical points of the same kind closer than∆x. To do this, we first build a KD-Tree
of the critical points and find all the pairs located at a distance dij = |xi − xj |∞ ≤ ∆x.
For each pair, we keep only the point that is the closest to its associated cell.

3.C.2 Critical events detection
The algorithm is based on the idea that each critical event has two predecessors at the previous
smaller smoothing scale (two critical points). Conversely, each critical point has either a critical
point successor of the same kind at the next (larger) smoothing scale or a critical event. Therefore,
a way to detect critical events is to find critical points that do not have a successor. These points
will be referred to as “heads” as they are the tip of a continuous line of critical points in the
smoothing scale direction. Critical events are then found between pairs of heads of kind k and
k + 1 (e.g. a peak and a filament).

Following this idea, the algorithm can be decomposed in two steps: compute the heads of
each kind, than find pairs of heads to detect critical events. In the following of the section,
let us call R0 (resp. R1) the smallest (resp. largest) scale at which the field is smoothed. Let
CR,k = {ri, R}i=1,...,N be the set of theN critical points of kind k at scaleR. The whole detection
algorithm reads
1: procedure FindCritEvents(CR,k, α)
2: E ← {} ⊲ All critical events
3: for k in 1, . . . , d do ⊲ Find heads of critical points
4: Hk ← BuildHeads(k, ∆ logR)
5: end for
6: R← R0

7: while R ≤ R1 do ⊲ Find pairs of heads (crit. events)
8: ∆R← R×∆ logR ⊲
9: E ← E+FindHeadPairs(H1, . . . , Hd, R, α∆R)
10: R← R+∆R
11: end while
12: return E
13: end procedure
The parameter α controls how far heads can be in in the smoothing scale direction, in units of
logR. A value of 1 looks for pairs of heads at the same scale, a value of 2 looks for pairs of heads
at a scales R,R+∆R.

The first step (line 4) of the algorithm builds the set of heads Hk. It works as follow
1: procedure BuildHeads(k, ∆ logR) ⊲ Build heads of kind k
2: Hk ← CR1,k ⊲ Initialize heads
3: Pk ← Hk ⊲ Initialize progenitors
4: R← R1

5: while R ≥ R0 do
6: P ′

k ← {} ⊲ Initialize new progenitors at R
7: for p, c, d in SortedPairs(Pk, CR,k, R) do
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effectinducedbylarge-scalefilamentarystructureontheassemblyofdarkmatterhalosand
theirgalaxiestherein.Indeeditisexpectedontheoreticalgroundthatthetypicalaccretion
rateincreaseswhengoingfromfilamentcentretowardsnodes(Mussoetal.,2018).Looking
atgalacticpropertiesinstead,Kraljicetal.,2019showedthatthegalacticratioofvelocity-to-
velocity-dispersion(v/σ)isalsomodulatedasafunctionofthedistanceandorientationtothe
nearestfilamentarystructure.Usingtheframeworkdevelopedinthiswork,wegenerateasuite
ofGaussianrandomfieldsconstrainedtothepresenceofaproto-filamentatitscentre,theexact
generationprocedurebeingdescribedinsection3.C.3.Theproto-filamentisdefinedatascale
R=5Mpc/h,isorientedalongthezaxisandlaysinawallintheyzplane.Usingthesetof
constrainedcubes,wecomputetheexcessdensityofeachkindofcriticaleventwithrespectto
thecosmicmean,atfixedsmoothingscale(henceatfixedobjectmass)2.5≤R≤5Mpc/h.The
resultsareshownonfigure3.15.Letusfirstrestrictourselvestothehalomergerrate(topleft
paneloffigure3.15).Goingfromthevoidstothewall,fromthewalltothefilamentandfrom
thefilamenttothenearestnode,thehalomergerrateincreasesandthemaximumhalomerger
rateisfoundatthelocationwhereanodeisexpected(z∼±10Mpc/h).Atlargerscales,the
fieldbecomesunconstrainedsothatthemergerratefallsbacktoitscosmicmean.Wereproduce
herefromfirstprincipletheresultsofBorzyszkowskietal.,2017,showingthathaloscloseto
thefilamentcentrearestalled:theydonotundergomanymergernordotheyaccretemuchas
thelocaltidalfieldschannelsallthemattertowardsthetwosurroundingnodes,bypassingthe
centreofthefilament.Quantitatively,halosformingatthecentreofthefilamentarefoundto
haveahalomergerrateclosetothecosmicaverage,whilethoseclosetothenodesareexpected
tohave40%moremergers.Conversely,halosforminginavoidnexttoafilamentarystructure
areexpectedtohaveamergerrate−20%smallerthanthecosmicmean.

Letusnowaddtotheemergingpicturethefilamentcoalescencerate.Filamentmergerrates
actlocallytodecreasetheconnectivityofhalos,aseachfilamentmergerwilldisconnectone
filamentfromtwohalos.Thetoprightpaneloffigure3.15showsthatthemergerrateismaximal
alongthewallandminimalalongthefilament.Goingofftheplaneofthewall(xdirection),
thefilamentmergerratesimplydecreasestowardsthecosmicmean.Interestinglythefilament
mergerrateismininalinthenodes(−13%)andmaximalinthewall(+10%).Asaconsequence,
halosformingclosetoanodehavealargerhalomergerratebutasmallerfilamentmergerrate.
Thisinturnwillhaveanimpactontheassemblyofdarkmatterhalosandtheirgalaxiestherein.
Inthewallwherethefilamentmergerrateisthehighest,weexpectfilamentstomergefaster
thanhalos,resultinginhaloswithfewerconnectedfilaments.Thiscanbeinterpretedusingthe
resultsofsection3.4.4.Indeedinacosmicwall,thegeometryislocally2Dsothatthetheoretically
expectedconnectivitybecomes4insteadof6.

Thebottomleftpaneloffigure3.15showsthatthewallmergerrateisdecreasedinwalls
andevenmorestronglyinfilaments.Theminimumwallmergerrateisfoundatthelocationof
thenodewitharate−40%smallerthanthecosmicmean.Conversely,thewallmergerrateis
enhancedinthetwovoidssurroundingthewallwitharate20%abovethecosmicmean.

Theevolutionoftheconnectivitywithcosmicenvironnementisresumedbythebottomright
paneloffigure3.15,whichshowstheratioofhalomergers(Pcriticalevents)tofilamentmergers
(Fcriticalevents),forwhichthecosmicmeanis2.055(seeequation(3.16)).Smallvaluesof
rF/Pindicatethathalomergefasterthantheirsurroundingfilaments,sothattheconnectivity
increasesashalosgrow.Onthecontrary,largevaluesofrF/Pindicatethatfilamentsmergefaster
thanhalos,sothattheconnectivitydecreasesashalosgrow.Thebottomrightpaneloffigure3.15
showsthatinnodes,theratiodropstoaboutrF/P≈1.1.Onthecontraryhalosforminginvoids
areexpectedtohavearatioofabout2.4.Wethereforepredictthat,atfixedfinalmass,halos
formingnexttoanodewillgrowanincreasingnumberofconnectedfilaments8.Theexpected

8ConverselyCodisetal.,2015afoundthatwhenaveragedoveralllargescalestructures,connectivityincreases
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Figure3.21:Theratioofpeaktofilamentmergerasafunctionofd.Forreference,the
firstdiagonalisshownasadashedgraylineaswell.Theratioisapproximatelyfittedas
d−1+((2d−4)/7)

7/4
/2andshownasreddots.Thedashedlineistheidentity.

onecaneasilyderive
∂Ni

∂R
=−Ni×d

R

R2
⋆

1−γ̃2
γ̃2(3.79)

whichind=3forpeaksreads()

−
∂N0

∂R
=3N0

R

R2
⋆

1−γ̃2
γ̃2(3.80)

=
3R

R3
⋆R̃2

(1−γ̃
2
)
29
√
15−18

√
10

1800π2(3.81)

whichhappenstobeequaltothedifferentialnumbercountsof3Dcriticalevents(equation(3.13))
butonlyifCoddiscomputedwiththeapproximationinequation(3.12)thatboilsdownto(using
equation(3.66))

Codd≈
3(1−γ̃2)
d(d+2)

(d

2π

)d/2

(3.82)

andifwedrop(??)thevolumefactorV2=2π2.Thesameresultisfoundin2Dansisstilltobe
understood...

3.CAlgorithms
Thesourcecodeoftheimplementationcanbefoundonline.ItisbasedonPythonandtheScipy
stack(Jonesetal.,2001).

3.C.1Criticalpointsdetection
ThissectionpresentsthealgorithmusedtofindtheextremainaNdimensionalfield.LetF,Fi

andFijbeafieldevaluatedonagrid,itsderivativeanditshessian.Foranypointxonthegrid,
wehavethefollowingrelation

Fj(x)=Fj(xc)+(xi−xc,i)Fij(x)+O(∆x
2
i).(3.83)

CriticalpointsarefoundwhereF′
j=0bysolvingthelinearsystemofequation

∆xiFij=−Fj,(3.84)
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physical outcome of this process is that the streams feeding a galaxy growing next to a node
will become more and more isotropic with increasing connectivity. Assuming that an isotropic
acquisition of matter leads to a smaller amount of angular momentum being transferred down
to the disk, we argue that this effect prevents the formation of gaseous disks in the vicinity of
nodes. Conversely, we predict that halos growing in the neighbouring voids see their filaments
destroyed faster than they merge, so that the halo is likely to grow with steadier flows coming
from a few filaments (see also Codis et al., 2015a; Laigle et al., 2015, section 6.2.1, and 5 resp. for
similar conclusions reached via the kinematic structure of large scale flows in filaments).

3.7.4 Modified gravity or primordial non-gaussianities
Voids are very interesting laboratory both for galaxy evolution and cosmology. They represent
primitive environments for galaxies, where density is low and matter flow is still relatively curl-
free. Void galaxies are therefore interesting probes for galaxy formation (e.g. Lindner et al., 1996).
Voids are also a tool of choice to probe the cosmology or to test theory of modified gravity (e.g.
Cai et al., 2015; Gay et al., 2012; Lavaux and Wandelt, 2012) as a mean to constrain the equation
of state of dark energy. In particular, these authors have used the cosmic evolution of the size and
the number of voids as constrains onD(z). In the present formalism void disappear as a function
of cosmic time via mergers of walls, hence the one point statistics of wall merger could be used as
a cosmic probe.

Let us briefly quantify the effect first on simulations, and then compare to the proxy of
Section 3.4.5 relying on known perturbative results. Figure 3.16 presents the redshift evolution of
critical counts measured in 45 realisations of ΛCDM simulations in boxes of 500 Mpc/h involving
2563 particles evolved using Gadget (Springel et al., 2001) sampled on a 2563 grid smoothed
with a Gaussian filter over 6 Mpc/h. The algorithm described in section 3.C is used to identify
and match the critical points.

At high redshift, the Gaussian prediction is recovered. At lower redshift, the P and F counts
shift towards lower contrast, but resp. decrease and increase in amplitude, while theW counts
increase in amplitude. Since the first halo to merge are due to high σ peaks, it is expected that the
low-z PDFs are biased towards low densities. Similarly, the mean density of filamentary structure
decreases with increasing time, as the less dense filaments take more time to gravitationally form,
so that the PDFs of the filament mergers shifts to smaller densities at low z. The evolution of void
structures with cosmological time is somehow the opposite as the one for peaks: early forming
voids are the most underdense while late-time voids form out of less underdense regions. At fixed
resolution, this results in a shift of the typical density of voids towards higher densities. Indeed,
in the limit of infinite time, it is expected that the only voids found at a given size stem from
ν = 0, as any void with ν < 0 will have had time to collapse earlier.

Finally, the qualitative similarity with the cosmic evolution of the measured event counts and
the prediction shown in figure 3.7 is striking, strongly suggesting that indeed, the set of critical
events in the initial condition do capture the upcoming cosmic evolution of the field.

From equation (3.27) the cosmic evolution of the rate of void of volume V merging during
time interval δz can be expanded to first order in σ via equation (3.36) as

∂2n

∂logV∂z =
∂2n

∂logV∂z
∣∣∣
G
+ σ(z)

∂2n

∂logV∂z
∣∣∣
NG

, (3.38)

where the first term reflects cosmic evolution of the rate of void disappearance presented in sec-
tion 3.7.1, while the second term is obtained by substituting ∂2n/∂R∂ν

∣∣
G
by ∂2n/∂R∂ν

∣∣
NG

into
equation (3.36). As discussed in section 3.4.5, the scaling of these non-Gaussian corrections yield

with mass.
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Using equation (3.74) and equation (3.79) gives us a simple relation between the number density
of critical points and the number density of critical events

Ni =
1

d× d logR∗/dR





N0 if i = 0,
(Ni−1 +Ni) if 0 < i < d− 1,
Nd−1 if i = d− 1.

For Gaussian random fields, we also have the property that Ni = Nd−i−1 and Ni = Nd−i−2.
This provides us with simple way to compute the ratio of critical events as a function of the ratio
of the critical points. For any d, the ratio of filament to peak is connected to the ratio of F to P
critical events

N1

N0
=
N0 +N1

N0
= 1 +

N1

N0
= 1 + rF/P . (3.76)

As an example, let use derive the ratio of other critical points in dimensions up to 6D. For d = 4,

N1

N0
=
N2

N3
= 1 + rF/P ≈ 4.17,

N2

N1
=
N1 +N2

N0 +N1
=
N0 +N1

N0 +N1
= 1.

For d = 5,

N1

N0
=
N3

N4
= 1 + rF/P ≈ 5.36,

N2

N1
=
N2

N3
=
N1 +N2

N0 +N1
=
rF/P + rW1/P
1 + rF/P

≈ 2.07.

For d = 6,

N1

N0
=
N4

N5
= 1 + rF/P ≈ 6.67,

N2

N1
=
N3

N4
=
N1 +N2

N0 +N1
=
rF/P + rW1/P
1 + rF/P

≈ 2.64,

N3

N2
= 1.

[♠ it would be useful to giveN0(d) here?] Given that Codis et al., 2018 provides an asymptotic
limit for the connectivity, we can re-express it in terms of the ratio of critical events as

N1

N0
=
Nd−2

Nd−1
= 1 + rF/P = d+

1

2
((2d− 4)/7)7/4 , (3.77)

which in the large d limit, asymptotes to

rF/P
d→∞∼ 1

2

(
2

7

)7/4

d7/4 ≈ 1

17
d7/4 . (3.78)

3.B.7 testing the link between critical pts and events counts
[♥ puzzling result → TO BE UNDERSTOOD]

From equation (3.79) and because for a Gaussian filter, we have

dσ2i
dR2

= −σ2i+1,



3.7Applicationsanddiscussion107

Halomergers(Pevents)Filamentmergers(Fevents)

Wallmergers(Wevents)FilamentmergertopeakmergerF/Pratio

Figure3.15:Fromlefttorightandtoptobottom,peak-merger,filament-mergerand
wall-mergerexcessdensityaroundalarge-scaleproto-filament,illustratedbythevertical
cylinder(zdirection)andthewallinwhichitresides,illustratedbythegreyplane(yz
plane).ThebottomrightpanelshowsthelocalratiooffilamenttopeakmergersrF/P.
Eachsideofthecubeshowsaslicethroughthecentre,shiftedtothesideoftheplotfor
visualisationpurposes.Redregionshaveanexcessofcriticaleventswhileblueregions
haveadeficitofcriticaleventswithrespecttocosmicaverage.Interactiveversionsof
theseplotscanbefoundonlineforthehalomergers,filamentmergers,wallmergers
andfilamenttopeakmergerratio.Goingfromvoidstowall,fromwalltofilamentand
fromfilamenttothenearestnode(alongthezaxis),thehalomergerrateincreasesand
thefilamentmergerratedecreases.Halosinthefilamentarethereforestalled:they
mergelessthanthoseinthenodes.Atthesametime,thefilamentmergerratedecreases
whengoingfromthefilamenttowardsthenodesothatthemeanconnectivity,givenby
theratioofhalomergertofilamentmerger,isexpectedtoincrease.
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Figure3.20:ThePDFofcriticaleventsofthevarioustypes(P,F,W1,W2)in4D(top),
in5D(middle)and6D(bottom)forns=−2,−3/2,−1,−1/2fromlighttodark.

Finally,theddimensionalratioofcriticaleventoftypejandkissimplygivenby

rj/k=

〈
δD(λj)

∣∣∏

i6=j

ϑH(λi−λj)λi
∣∣
〉/〈

δD(λk)
∣∣∏

i6=k

ϑH(λi−λk)λi
∣∣
〉

wherethePDFtoevaluatethisexpectationisgivenbyequation(3.73).Notethatthesecountscor-
respondtotheareabeloweachcurveshowninfigure3.20.In3D,werecovertheratiopresentedin
themaintext.In4Dtheratioisanalyticandreads2(57+25π−50cot−1(3))/

(75π−2(57+50cot−1(2)))≈
3.17Moregenerally,

d=2:rF/W=1,

d=3:rF/P=2.06,

d=4:rF/P=3.17,rW/P=3.17,

d=5:rF/P=4.36,rW1/P=6.72,rW2/P=4.36,

d=6:rF/P=5.67,rW1/P=11.97,rW2/P=11.97.

andrW3/P=5.67.Notethattheseratiosarepurenumbersanddonotdependonthedetailed
shapeoftheunderlyingpowerspectrum.

3.B.6Self-consistencylinkswithcriticalpointscounts
TheseresultscanbeusedtoderivetheconnectivityasdefinedinCodisetal.,2018.Indeed,let
usformallywriteNithenumberdensityofcriticalpointofkindiinddimensionsandNithe
numberdensityofcriticaleventofkindi−i+1.TheevolutionofNiisgivenby

∂Ni

∂R
=−





N0ifi=0,
(Ni−1+Ni)if0<i<d−1,
Nd−1ifi=d−1.

(3.74)

ForGaussianrandomfields,thenumberdensityofcriticalpointcanbeformallywrittenas

Ni=
1

Rd
∗

〈∣∣
∣
∏

j

λj

∣∣
∣
〉〈
δ
(3)
D(xi)

〉

︸︷︷︸
Ci

,

wherethePDFtoevaluatetheleftpartofther.h.s.isgivenbyequation(3.73).HereCiisanumber
commontoallpowerspectra.ThederivativeofNiwithrespecttothesmoothingscaleisthen

∂Ni

∂R
=−Ni×d

dlogR∗
dR

.(3.75)
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Figure 3.16: Critical events number count as a function of the rarity in dark-matter only
simulations in different redshift bins as mentioned in the legend, with the same colours
as figure 3.9. The curves have been normalised so that in each redshift bin, the integral
of the three curves (W,P,F ) equals one. At high redshift, the merger rates resembles
the Gaussian prediction (thick dashed gray lines, with an arbitrary normalisation). The
skewness of the distributions increases with decreasing redshift as the field departs
from gaussianity.
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Figure 3.17: (a): Critical points number count as a function of the rarity in dark-matter
only simulations in different redshift bins as mentioned in the legend. The curves have
been normalised so that in each redshift bin, the integral of the four curves equals
one. The purple bundle corresponds to voids, the blue one to walls, the green one to
filaments and the red one to peaks. (b): Product of the PDFs. At large redshifts, the
curves resemble the prediction of figure 3.7.
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3.B.4 Critical event number counts in ND
It now follows that the critical event number counts of type j at height ν in dimension d read:

∂2ndj
∂R∂ν

=
RVdCd,odd

R̃2Rd∗

〈
δD(λj)

∣∣∣∣∣∣
∏

i 6=j≤d

ϑH(λi − λj)λi

∣∣∣∣∣∣

〉
, (3.69)

where this expectation is computed using the conditional expectations presented in the previous
section. Equation (3.69) is a function of ν because of the correlation between ν and

∑
i λi seen in

equation (3.59). Recalling the formal analogy with the flux of critical lines per unit hyper surface,
[♠ check?]

∂2ndP
∂R∂ν

γν→∞∼ R

R̃2Rd∗

VdCd,odd√
2π

exp

[
−1

2
ν2
](

ν

R0

)d−1

,

in the large d large ν limit (Pogosyan et al., 2009). The contribution from the odd part of the
distribution function, Cd,odd obeys

Cd,odd =

〈∣∣∣∣∣
∑

i

xjii

∣∣∣∣∣|xjjj |δ
(d)
D (xi)

〉
, (3.70)

where the expectation in equation (3.70) should be computed with the odd derivative PDF given
in section 3.B.3. After a bit of algebra,

Cd,odd =
( d
2π

)d
2 2
√
6

π

√
(d− 1) (1− γ̃2)
d2(d+ 2)2(d+ 4)

+ (3.71)

( d
2π

)d
2 6
(
1−γ̃2

)

πd(d+ 2)
tan−1

(√
3

2

√
d+4

√
1− γ̃2√

d−1

)

Finally, the volume Vd of the hyper-wedge corresponding to the marginalisation over the
orientation of the Hessian obeys

Vd=
1

2d−1d!

x
dSO(d)=

1

2d−1d!

n−1∏

i=1

Vol(Si) ,

=
1

2d−1d!

n−1∏

i=1

2π(i+1)/2

Γ((i+ 1)/2)
, (3.72)

where Vol(Si) denotes the i-dimensional volume (i.e. surface area) of the unit i-sphere in Ri+1,
the factor d! comes from not sorting the eigenvalues and the factor 2d−1 from not imposing their
sign. It follows that V2 = π/2, V3 = π2/3, V4 = π4/12, V5 = π6/45 and V6 = π9/540. The
PDFs of critical events in 4D, 5D and 6D are shown in figure 3.20. Note that the intermediate
signature events dominate in number over the extreme ones, in accordance with the relative
number of critical points.

3.B.5 Ratios of critical events
From equation (3.59), the integration over ν yields the marginal probability of {λi}:

Vd
∏

i≤d

dλi
∏

i<j

(λj−λi) exp


−1

2
Qd({λi})−

1

2

(∑

i

λi

)2

 . (3.73)
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jointestimatesforthecumulants(Codisetal.,2013),henceameasureoffNLoraparametrisation
ofmodifiedgravity.

3.7.5CriticaleventsasinputtoMachinelearning

Thereisalongtraditionofrelyingonmergertreesofdarkhalosextractedfromsimulationsasa
meantotagthehaloswithphysicalproperties(see,e.g.Benson,2010,andreferencetherein).One
ofthelongtermmainmotivationforthepresentworkistoextendthisstrategytotheothertwo
mergertrees,(filamentsandwalls),andtorelyonmodernsegmentationtechniquestoidentify
whichcombinationofeventsaremostlikelytoleadtogalaxiesofacertaintypetobeproduced
incosmologicalsimulations.Thisstrategyislikelytobeefficientandrewarding,asthesetof
criticaleventsisaverystrongcompressionofthesetofinitialconditions,andbecauseoncethe
segmentationhasbeendone,thesubsetofeventswhichareinthepastlightconeofagalaxy
withagiventaghavephysicalmeaning.Forinstance,recentdisconnectoffilamentsarelikelyto
impactgasinfallhencestarformationanddiscreformation.Thesetofcriticaleventsrepresentsa
usefuleffectivetopologicalcompressionoftheinitialconditionswhichwillimpacttheupcoming
‘dressed’mergers(i.e.thecosmicevolutionofpeaksandtheirfilamentsandwalls).Notethatthe
exactrelativeconfigurationofcriticaleventsinthesmoothing-positionspacemaybeofrelevance,
andisnotfullycapturedbythesoleknowledgeoftheoneandtwopointstatistics.Inorderto
assesthis,wecanrelyonmachinelearningtechniques.

3.7.5.1Predictingv/σfrompastlightconeofHorizon-AGN

Letusillustratethisstrategyonthecatalogueofsyntheticgalaxiesfromthecosmologicalsimula-
tionHorizon-AGN,forwhichwehaveclassifiedthembasedontheirmorphologyviaacontinuous
kinematicproxy,v/σ.Thisratioiscomputedfromthe3Dvelocitydistributionofstellarparticles
ofeachgalaxy.Intheframeoftheangularmomentumofthatgalaxy,thevelocityisdecomposed
intocylindricalcomponentsvr,vθ,vz,andtherotationalvelocityofagalaxyvisdefinedasthe
meanofvθofindividualstars.Theaveragevelocitydispersionofthegalaxyσ2=(σ2

r+σ2
θ+σ2

z)/3
iscomputedusingthevelocitydispersionofeachvelocitycomponentσr,σθandσz.Thisratio
allowsustoseparaterotation-dominated(v/σ≫1)fromdispersion-dominated(v/σ≪1)
galaxies.Foreachcentralgalaxyidentifiedinthesimulation,weidentifytheLagrangiancounter
partofalldarkmatterparticleswithinitshosthalo.Thisdefinesaconnexegravitationalpatch
withinwhichwecanidentifyallcriticalevents.Hence,thesimulationprovidesuswithasetof
relationsforkpatchesandthreetypesofcriticaleventsj∈[P,F,W]

(
{∆rj,i,Rj,i,νj,i}i≤nj,k

)
j∈[P,F,W]→v/σk,(3.39)

where∆rj,iistherelativepositionwithinthepatchofthecriticaleventioftypejmeasuredw.r.t.
thecentreofmassofthepatch,νj,iisitscontrast,andRj,ithecorrespondingscale,whilev/σk
istheratioofthepatchk.LetuscallEkthel.h.s.ofthisrelation.Standardmachinelearning
tools(nearestneighbourg,gradientboostedtrees,decisiontree,etc),allowsustobuildapredictor,
Pr(E)fromasubsetof(Ek→v/σk)k≤Ktrain.Fromthistraining,wecandooneoftwothings:i)
useitasablackboxtoassociatev/σktootherpatchesforwhichwecomputedtheirsetofevents,
Ek;ii)identifywhichfeaturesinthiseventsetisresponsibleforthecorrespondingvalueofv/σ.
Theformerwouldbeofintereste.g.inthecontextofcovarianceestimatesforweaklensing
surveys,asitwouldallowustogeneratealowcostsyntheticgalaxycatalogueswhichinclude
morphologyasatag.Thelattercouldbeimplementedoversetsofsimulationswhichimplement
differentfeedbackrecipeesasameanofdisentanglingtherelativeimpactofenvironmentand
subgridphysics.
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Inequation(3.58)Vdarisesfromtheintegrationovertheanglesandisgivenbyequation(3.72)
below.

3.B.3JointPDFofthefirstandthirdderivatives

Here,wewilllookintothepdfofthefirstandthirdderivativesinddimensionsinorderto
computetheoddderivativetermCoddthatenterscriticaleventnumbercountsinddimensions.

First,letusnotethatthefirstderivativesareGaussiandistributedwithindividualvariance 〈
x2
i

〉
=1/dsothattheprobabilityforallfirstderivativestobezerois[♠notationahomo-

geneiser]

P(∇=0)=

(d

2π

)d/2

.(3.61)

Nowletusstudythestatisticsofthethirdderivatives.Bysymmetry,onecannotethat

〈(∑

i

x1ii

)2〉
=

1

d
,(3.62)

becausethethirdderivativesarerescaledbyσ3,and

〈
x
2
1jj

〉
=〈x111x1jj〉=

1

5

〈
x
2
111

〉
=3〈x1jjx1kk〉∀j6=k6=1.

Therefore,

1

d
=
〈
x
2
111

〉
+(d−1)

〈
x
2
1jj

〉
+2(d−1)〈x111x1jj〉

+(d−1)(d−2)〈x1kkx1jj〉∀j6=k6=1

impliesthat
〈
x2
iii

〉
=15/d(d+2)(d+4)andthefullcovariancematrixofthethirdderivativesis

thereforenowknown.However,weareinterestedinstatisticssubjecttoazerogradientconstraint,
inparticularthethreequantitiesofinterestare(fixingdasthedegeneratedirectionandassuming
animplicitsummationontheiindices)

〈
x
2
ddd|xd=0

〉
=
〈
x
2
ddd

〉
−〈xdiixd〉

2

〈
x2
d

〉,(3.63)

〈
(xdii)

2
|xd=0

〉
=
〈
(xdii)

2〉
−〈xdddxd〉

2

〈
x2
d

〉,(3.64)

〈xdiixddd|xd=0〉=〈xdiixddd〉−〈xdxddd〉〈xdxdii〉 〈
x2
d

〉,(3.65)

whichcaneasilybecomputedthankstotheadditionalrelation
〈
x2
11

〉
=3/d(d+2),

〈
x
2
ddd|xd=0

〉
=

3

d(d+2)

[5

d+4−
3γ̃2

d+2

]
,(3.66)

〈
(xdii)

2
|xd=0

〉
=

1−γ̃2
d

,(3.67)

〈xdiixddd|xd=0〉=
3

d(d+2)
(1−γ̃

2
).(3.68)
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3.7.5.2 The impact of extended critical sets
Let us first illustrate the former on synthetic galaxies from Horizon-AGN. While it is beyond
the scope of this work to explore fully the latter, let us provide numerical evidence why the
extra knowledge of critical event of type F and W are of interest to increase the accuracy of
the estimation. ?? shows the relationship between the predicted and the measured v/σjk for the
validation set when the full set {Ej

k}j∈[P,F ,W] is used (top left panel) or only subsets {EP
k }, {EF

k },
and {EW

k } are used (from left to right and top to bottom).

3.7.5.3 Early versus late critical events
We can also test to what extent the more recent events are more relevant to present morphology
by restricting our training to subsets of events skewed towards the larger scales. In order to do
this we introduce a threshold Rmin and define new sets of events as

{Ej
k,Rmin

} =
(
{∆rj,i, Rj,i, νj,i}i≤nj,k

)
Rj,i≤Rmin

, (3.40)

where the set is now subject to some chosen upper-bound Rmin on the allowed Rj,i. ?? shows
the evolution of the quality of the fit as a function of Rmin.

3.7.5.4 Configuration versus distances or size
Finally, let us consider the importance of the relative distance |rj,i − rj′,i′ | versus configuration
|r̂j,i · r̂j′,i′ | of events. ?? (left panel) shows the quality of the fit when using only the relativeangles,
or only the (position) relative distances between events. ?? (left panel) shows the quality of the fit
when restricting ourselves to events higher than a given threshold.

Beyond the scope of this work, when co-analysing the evolution of galactic properties with
critical point mergers, one could relate the various (filament, wall) mergers to special events
in terms of change in connectivity and feedback (e.g. quenching of AGN activity by filament
disconnect). It could also be interesting to see if spin flip correlates with filaments or wall vanishing.
The twin simulation, Horizon-noAGN could be analysed jointly to study its specific impact.

3.7.6 Discussion
[♠ discuss other works and link with excursion set theory]

Intensity mapping (Madau et al., 1997) also provides a test bench for applying the present
formalism to sequences of 2Dmaps as a function of redshift. Existing (e.g. Chime, Shaw et al., 2014)
or upcoming surveys e.g. SKA, Camera et al., 2015 will indeed provide both extrema and merger
counts extracted from sets of maps at various redshifts. The cosmology dependence of extrema
counts is through (R⋆, γ) and the relevant cumulants, whereas the cosmology dependence of
event counts also involve (R̃, γ̃) and higher order cumulants at fixed level of non gaussianity
(e.g. involving 3rd order derivative of the field to first order as discussed in section 3.4.5). Hence
studying both counts as a function of redshift will prove complementary.

It is of interest to follow the position of all critical points (not just the maxima) explicitly as
a function of true cosmic time in galaxy catalogue extracted from hydrodynamical simulations,
so as to assess i) the impact of biasing involved in selecting specific tracers and ii) how non-
linear clustering impacts the statistics. This is done illustratively using 330 snapshots of galaxies
extracted from Horizon-AGN (shown on figure 3.1 at redshift zero with its set of walls and
filaments), for which the critical points are derived using DisPerSE with a persistence threshold
of σ/100. The algorithm described in section 3.C is used to match merging critical points as a
function of redshift. The set of events are then binned as a function of log density for 4 redshift bins
and shown on figure 3.18. Gravitational clustering has skewed the PDFs, but most dramatically
galaxies poorly trace under dense regions, hence the number of wall mergers plummeted.

The cross-correlations associated to SZ, CIB and the convergence maps of weak lensing map
from the CMB measured by Planck and SPT provide other opportunities for implementing event
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Figure 3.19: The correlation functions entering equation (3.55) for a scale invariant
powerspectrum of index ns = −3/2.

3.B Critical events in ND
For the sake of completeness and possible interest in other fields of research, let us present the
one point statistics of critical events in arbitrary dimension d.

3.B.1 Spectral parameters
In this section we provide definitions for the spectral parameters of a d dimensional Gaussian
random fields. Let us first define the variance of the i-th derivative of the field

σi(R) =
1

2π2

∫
dk k2P (k)k2iW 2(kR), (3.56)

where P (k) is the power spectrum and W (kR) = exp
(
−(kR)2/2

)
. The characteristic scales

R0, R∗ and R̃ are defined by equation (2.90) and the spectral parameters γ and γ̃ are defined by
equation (2.91). In d dimension for a power-law power spectrum with index n, we have

R2
0

R2
=

2

n+ d
,

R2
∗

R2
=

2

n+ d+ 2
,

R̃2

R2
=

2

n+ d+ 4
,

γ2 =
n+ d

n+ d+ 2
, γ̃2 =

n+ d+ 2

n+ d+ 4
. (3.57)

3.B.2 Joint PDF of the field and its second derivatives
[♥ understand or remove] From Pogosyan et al., 2009 the probability of measuring the set of
d eigenvalues of the d dimensional Hessian {λi} and density ν obeys

Vd
∏

i≤d

dλi
∏

i<j

(λj − λi) exp
(
−1

2
Qγ(ν, {λi})

)
, (3.58)

where Qγ is a quadratic form in λi and ν given by

Qγ(ν, {λi}) = ν2 +
(
∑

i λi + γν)2

(1− γ2) +Qd({λi}) , (3.59)

with

Qd({λi}) = (d+ 2)


1
2
(d− 1)

∑

i

λ2i −
∑

i 6=j

λiλj


 . (3.60)
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withanimplicitsummationoverrepeatedindicesandsymmetrizationbetweenparenthesised
indices(forinstance:taa(jδkl)=[taajδkl+taakδlj+taalδjk]/3andsoon).Equation(3.44)depends
onlyonasinglecorrelationparameter:γ.Asimilarprocedurecanbeperformedforthejoint
probabilityofthefirstandthirdderivativesofthefields,P1(xi,xijk)bydefiningthefollowing
nineparameters(seealsoHanami,2001)

ui≡∇iu,vi≡
1

2
ǫ
ijk
∇i(∇j∇j−∇k∇k)x,withj<k,

wi≡
√

5

12∇i

(
∇i∇i−

3

5
∆

)
x,(3.48)

andreplacingthevariables(xi11,xi22,xi33)with(ui,vi,wj).Inthatcase,theonlycross-correlations
inthevector(x1,x2,x3,u1,v1,w1,u2,v2,w2,u3,v3,w3,x123)whichdonotvanisharebetween
thesamecomponentsofthegradientandthegradientoftheLaplacianofthefield:

〈xiui〉=γ̃/3,i=1,2,3,(3.49)

whereγ̃wasdefinedinequation(2.91).Thisallowsustowrite:

P1(xi,xijk)=
1057/233exp(

−
1
2(Q1+Q3)

)

(2π)13/2(1−γ̃2)3/2,(3.50)

withthequadraticforms:

Q1=3
∑

i

((ui−γ̃xi)2
(1−γ̃2)+x

2
i

)
,(3.51)

Q3=105

(
x
2
123+

3∑

i=1

(v
2
i+w

2
i)

)
,

=
35

2
xijkxijk.(3.52)

3.A.2TwopointPDFs
Callingx=(x,xi,xij,xijk)andy=(y,yi,yij,yijk),theJointPDFreads

P2(x,y)=

exp


−1

2




x

y




T

·C−1·




x

y







det|C|1/2(2π)15,(3.53)

whereCisthecovariancematrixwhichdependsontheseparationvectorsonlybecauseof
homogeneity

C=




CxxCxy

CT
xyCyy


.(3.54)

NotethatxT·C−1
x·xisgivenbyQ0(x)+Q2(x)+Q1(x)+Q3(x),wheretheQiaregivenby

equations(3.44)and(3.52).Thecrosstermswillinvolvecorrelationsofallcomponentsofxandy

Cxy=〈x·y
T
〉.(3.55)

ThecorrelationlengthofthevariouscomponentsofCxydiffer,ashigherderivativesdecorrelate
faster,seefigure3.19.NotethattheseparationsaremeasuredinunitsofR,whereastheQiare
independentofR.
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counts in 2D as a function of smoothing. Beyond the restricted knowledge of critical points, one
could also follow critical lines, surfaces and volumes as a function of cosmic time, hence defining
event surfaces, volumes and 4-volume in space time. Conversely, in the context of understanding
the impact of black holes on galaxy formation, past AGN activity may be imposed by requiring
that one had a set of high density contrast event at very early time.

3.7.6.1 Applications beyond cosmology
The present analysis was mostly restricted to (quasi) Gaussian random fields, because of their
relevance in cosmology and also because in this context the theory can be developed in some
details (as Gaussian process define a Morse function on a scale-by-scale basis). But the concept of
bifurcation of critical points in a one parameter set of random field extends beyond Gaussianity.
Any system involving random field controlled by one parameter could in principle be investigated
with this framework in order to identify bifurcation/merger of ridges (though the specific role
played by Gaussian smoothing would clearly generally not hold). For instance, critical events
in dust maps (such as Collaboration, 2018; Meisner and Finkbeiner, 2014) could be used as an
alternative statistics to quantify the properties of the underlying turbulence, a process which is
known to display self similarities.

A wild range of important physical processes occur when rare events collide, hence boosting
probabilities and passing thresholds, which in the context of this work corresponds mergers of
rare peaks (e.g. analysing dust map emission or disintegration events in Fermi maps). In this
context, the process of interest is the appearance of pairs of critical points as one ‘unsmooths’
the field: this will corresponds to the generation of pairs of critical points. Following the results
of section 3.B.4 formalism could be extended to situations where the field whose evolution is
investigated corresponds to probability distributions living in higher dimensions (or on more
complex manifolds).

3.7.6.2 Streaming decompression algorithm
In the context of streaming of hierarchical images the set of critical events within a 2D image
characterises its multi-scale topology. It would therefore be of interest to send beforehand a
description of this set as a mean of prioritising which sub region of the image needs to be streamed
first because the topology of its excursion (i.e. the local parsimonious representation of the image
as iso-contours) has changed. This would allow the received image to acquire its most important
higher resolution features first.

3.8 Conclusion

As a proxy for cosmic evolution, we computed the rate of merging critical points as a function of
smoothing scale from the initial cosmic landscape to forecast special events driving the assembly
of dark halos and possibly galaxies. We considered all sets of critical points coalescence, including
wall-saddle to filament-saddle and wall-saddle to minima, as they impact the topology of galactic
infall, such as filament disconnection or void disappearance.

• We studied critical events of all types, their clustering properties, and presented analytical
formulae for the one-point statistics of these events in fields of dimensions up to 6.

• We provided covariant formulation of the skeleton tree formalism which allowed us to also
compute the two-point statistics for critical events.

• We showed how critical events can be used as tags for machine learning and quantified the
effectiveness of such sets or predicting galactic morphology.

• We extended to higher dimensions the count statistics and found asymptotic expression for
event counts.

• We related the event count to extrema counts and found consistency relations for the global
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counts. This yields an analytical prediction of connectivity of peak in four dimension:
κ4 = 200π/(75π−114−100 cot−1(2)) ≈ 8.35.

• We showed that the correlation of critical events is qualitatively consistent the preservation
of the connectivity of dark halos, and that merger rates measured in the frame of cosmic
saddles are consistent with assembly bias being driven by the environment.

• Gravitational clustering introduces non Gaussianities which decreases the relative total
number of peak mergers. This trend is captured by the Edgeworth expansion of the critical
event statistics.

• We discussed briefly other applications in parameter estimation for cosmology, astrophysics
and other fields of research.

We have only touched on practical applications for the forecasting of special events in a
multi-scale landscape. It should prove to be a fruitful field of research in astronomy and beyond
for the next decade.

3.A Joint PDFs
Let us present here the PDF of the field and its (up to 3rd) derivative which will allow us to
compute the expectations involved in the main text.

3.A.1 One point PDFs
Since the odd and even variables of Gaussian random fields do not correlate, let us write the joint
PDF as PG = P0(x, xkl)P1(xi, xijk). The expression for P0(x, xkl) for the Gaussian field was
first given by Bardeen et al., 1986. Introducing the variables

u ≡ −∆x = −(x11 + x22 + x33) , (3.41)

w ≡ 1

2
(x11 − x33) , (3.42)

v ≡ 1

2
(2x22 − x11 − x33) , (3.43)

in place of diagonal elements of the Hessian (x11, x22, x33) one finds that u, v, w, x12, x13, x23
are uncorrelated. Importantly, the field, x is only correlated with u and

〈xu〉 = γ, 〈xv〉 = 0, 〈xw〉 = 0, 〈xxkl〉 = 0, k 6= l,

where γ is the same quantity as in equation (2.91). The full expression of P0(x, xkl) is then

P0(x, xkl) =
51/2152

(2π)7/2(1− γ2)1/2 exp
(
−1

2
[Q0 +Q2]

)
,

with the quadratic forms Q0 and Q2 given by

Q0 = x2 +
(u− γx)2
(1− γ2) (3.44)

Q2 = 5v2 + 15(w2 + x212 + x213 + x223)

=
15

2
xabxab , (3.45)

where the last identity is demonstrated in Pogosyan et al., 2009 and involves the detraced tensors:

tij = tij −
1

3
taaδij , (3.46)

tijk = tijk −
3

5
taa(jδkl) , (3.47)


